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Abstract—The demand for reliable performance prediction of
large-scale systems is ever-increasing. With the constant need of
application users for faster execution and expectation on system
administrators to efficiently allocate system resources, reliable
performance prediction frameworks are crucial for identifying
scalability bottlenecks which result in suboptimal performance
and poor resource utilization. Such challenges in scalable per-
formance prediction are further exacerbated by irregular ap-
plications which present dynamic workload fluctuations across
processors. In this paper, we propose a novel trace-driven perfor-
mance prediction framework to reliably predict the performance
of a class of irregular applications which employs the Particle-in-
Cell (PIC) method. The framework provides multiple advantages
in terms of scalability prediction, algorithm evaluation, and
performance tuning. To demonstrate scalability prediction, we
predicted the performance of CMT-nek, a large-scale scientific
application which employs the PIC method, on Quartz (a DOE
HPC system) with an average Mean Absolute Percentage Error
(MAPE) of 8.42%. For algorithm evaluation, we evaluated the
efficiency of two candidate particle mapping algorithms used in
CMT-nek. For performance tuning, we performed a parameter
study to assess the impact of a key problem parameter in CMT-
nek on application performance.

Index Terms—performance modeling, irregular workloads,
trace-based simulation, particle-in-cell, load-balancing

I. INTRODUCTION

The critical importance of performance prediction for iden-
tifying performance bottlenecks of large-scale systems has led
to the introduction of a variety of modeling-based prediction
methods. While some methods rely on generating analytical
performance models [1]–[5] which include system parameters
such as processor count, interconnect, etc., other approaches
use node or device-level performance models in conjunction
with simulators to study system performance [6]–[8].

One key limitation of these existing methods is the as-
sumption of a workload that is statically distributed across the
processors. Although effective for representative applications,

This work is supported by the U.S. Department of Energy, National Nuclear
Security Administration, Advanced Simulation and Computing Program, as
a Cooperative Agreement under the Predictive Science Academic Alliance
Program, under Contract No. DE-NA0002378. The work was also supported
by the National Science Foundation under grant CNS-1718033.

these methods are not sufficient for increasingly common
applications with irregular workloads that change throughout
the execution of an application. In order to reliably predict
the performance of such irregular applications on large-scale
systems, performance prediction must accurately model the
dynamic workload on all the system nodes throughout the
execution. In this paper, we accomplish this goal by presenting
a trace-driven workload prediction approach for one such
class of irregular applications which exhibit dynamic workload
behavior, namely the Particle-in-Cell (PIC) method, which
is widely used in the fields of plasma physics and fluid
mechanics. As a case study, we evaluate our approach on
CMT-nek, which is a potential exascale Compressible Multi-
phase Turbulence application that uses the PIC method to
simulate particle-laden explosively dispersed turbulent flows.

One of the salient features of the PIC method is the constant
interaction between the particles and the grid. The computation
grid is distributed evenly across the processors. During execu-
tion, particles move within the grid, resulting in the dynami-
cally changing workload variation across processors that ex-
isting prediction methods do not model. Figure 1(a) illustrates
this changing workload distribution using a heat-map of an ex-
periment run using CMT-nek on the Vulcan supercomputer [9],
which shows the non-homogeneous distribution of particles
across processors during execution. Such non-homogeneous
distribution is primarily due to two factors: initial particle
distribution, which is specific to the problem being simulated
in CMT-nek, and the particle movement during simulation
which causes particles to cross processor domains leading
to workload fluctuations. This irregular workload distribution
leads to the huge load-imbalance shown in Figure 1(b), where
81% of the processors, on average, remained idle with no
particle workload during the entire simulation.

To predicting application performance with such irregular
workloads, our performance prediction framework captures the
dynamic workload on any given number of processors using
a single application trace. The framework provides multiple
advantages in terms of scalability prediction, algorithm eval-
uation, and performance tuning. To demonstrate scalability
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Fig. 1: (a) Heatmap plot depicting particle distribution of CMT-nek simulation across 4096 processors on Vulcan. White
patches in the plot depict processors with no particles residing in them throughout the simulation. (b) Number of processors
with non-zero particles residing in them during the simulation for different processor configurations. On an average, 81% of
processors have zero particle workload throughout the execution.

prediction, our performance prediction framework predicted
the performance of CMT-nek on Quartz (a DOE HPC system)
with an average Mean Absolute Percentage Error (MAPE)
of 8.42%. For a given problem case-study involving 599,257
particles and 216,225 elements, we are able to predict the ideal
processor count to achieve optimal performance. For algorithm
evaluation, we evaluated the impact of two different mapping
algorithms, namely element-based and bin-based mapping
(discussed in III-B and III-C), on application performance,
demonstrating that using the latter approach would reduce the
peak particle workload by two orders of magnitude. Finally,
to demonstrate performance tuning, we performed a parameter
study to quantify and validate the performance impact of a key
problem parameter in the CMT-nek simulation.

The rest of the paper is organized as follows. Section II
describes our performance prediction framework, elaborating
on our dynamic workload generation process. Section III pro-
vides a brief background on our application case-study, CMT-
nek, and explain the two different particle mapping strategies
used in CMT-nek. Section IV presents and evaluates our
prediction results. Section V provides an overview of related
research on different load-balancing strategies for scalable
PIC implementations and different trace-based performance
prediction approaches. Section VI concludes our current work
and discuss future directions.

II. METHODOLOGY

As mentioned above, Particle-in-Cell (PIC) algorithms in-
volve tight interaction between particles and the neighboring
grid. In most PIC algorithms, the computation grid is static
while the particles keep moving across the grid, owing to the
forces acting upon them. The dynamic nature of the particle
movement is highly problem-dependent. The initial problem
conditions, particle density, and Eulerian forces acting upon
the particles, all contribute to particle movement. Such contin-
uous movement of particles may cause workload fluctuations,
based on how the particles are distributed across the particles.

Fig. 2: Performance prediction framework workflow.

Predicting the workload across the processors during the entire
simulation is not trivial.

The particle workload on each processor, which is primar-
ily specified in terms of number of particles residing in a
processor, is determined by the particle mapping algorithm.
The particle mapping algorithm distributes particles in the
computation grid across processors in a way to optimize the
workload distribution while preserving the particle-grid local-
ity. Most particle mapping algorithms [10]–[12] make use of
particle location while distributing the particle workload across
the processors. To accurately predict application performance
under such irregular parallel workloads, we need to capture
the dynamic workload fluctuations across the processors over
the course of execution. Using our approach, we calculate
the workload on each processor by mimicking the particle
mapping strategy onto an application trace. This application
trace contains the particle location sampled at pre-defined
intervals. We will refer to this application trace as particle



trace. By synthetically generating the workload based on this
particle trace and the mapping algorithm, we can study the
workload distribution on any given number of processors.

Figure 2 shows the workflow of our proposed performance
prediction framework. The key modules of our prediction
framework are Dynamic Workload Generator, Model Gener-
ator, and Simulation Platform. The Dynamic Workload Gen-
erator calculates particle workload based on an input particle
trace and mapping algorithm specified in configuration file.
The Model Generator generates the performance models for
the most expensive kernels in the PIC application based on the
training data. Finally, the generated performance models and
workload are inputted into a system-level Simulation Platform
to predict application performance on a target system.

The details of our work on the Model Generator [13] and
a coarse-grained Simulation Platform [7] have been published
elsewhere. The main focus of this paper is on the Dynamic
Workload Generator. The Dynamic Workload Generator accu-
rately generates the workload on each processor of a target
system. It provides multiple advantages. First, generating par-
ticle workload using a particle trace is computationally much
cheaper than profiling the application on a real system. For
example, while running a Hele-Shaw simulation on CMT-nek,
as described in Section IV-A, it required less than two minutes
to generate the particle workload on target system containing
4176 processors, whereas collecting the same information by
running the entire application would take close to 24 hours.
Also, as the particle movement is independent of the system
configuration, a single application trace is sufficient to predict
the workload on any given number of processors. Therefore,
by quickly generating the workload on any given number
of processors, we can study how the workload scales on
larger number of processors, helping us identify any scalability
bottlenecks. Using the Dynamic Workload Generator, we
were able to predict the workload distribution across different
processor configurations and perform detailed performance
analysis of CMT-nek application, as shown in Section IV.

A. Dynamic Workload Generator

A particle workload is expressed primarily in terms of the
number of actual particles (Np) and ghost particles (Ngp)
residing in a processor. Ghost particles are the particles which
are not present in the processor domain but their influence
is felt on the grid points local to the processor. A particle
workload is classified into computation and communication
load. Computation load is determined by the total number of
real and ghost particles residing in a processor. Communica-
tion load is determined by the total number of real and ghost
particles crossing processor domain during runtime.

Figure 3 shows the components and the workflow of the
Dynamic Workload Generator module. The two key inputs
to the Dynamic Workload Generator are the particle trace
file and the configuration file. As mentioned above, a particle
trace contains the coordinates of particle location at specified
intervals. The configuration file contains information of system
and application configuration:

Fig. 3: Dynamic Workload Generator module.

(i) System configuration: number of processors (R).
(ii) Application configuration: number of particles (Np),

number of spectral elements (Nel), grid dimensions (N ),
particle mapping algorithm used in the application, and other
problem parameters affecting performance.

To generate the particle workload, the Dynamic Workload
Generator calculates (i) the number of real and ghost particles
residing on each processor and (ii) number of real and ghost
particles moving across processor domain between consecutive
intervals. Let Rp be the residing processor which stores
the corresponding particle data. In the Dynamic Workload
Generator, we calculate the value of Rp for each particle
and update the particle counter for that processor. A separate
particle counter is maintained for real and ghost particles.

As shown in Figure 3, the Dynamic Workload Generator has
two main components. The Computation Load Generator cal-
culates the residing processor for each particle by mimicking
the logic used by the particle mapping algorithm to distribute
particles to the processors. For example, in case of element-
based mapping for CMT-nek, as discussed in Section III-B,
particles are assigned to processor which store the correspond-
ing element. Hence, in the Computation Load Generator, to
calculate the workload distribution based on element-based
mapping, we first calculate in which element the particle
resides. This is calculated based on particle location specified
in trace file and PIC domain information specified in the con-
figuration file. Upon calculating the residing element for each
particle, we identify the processor which stores the element
and update its particle counter. Similarly, for other mapping
algorithms, we calculate which processor stores each particle
by mimicking the logic used in the corresponding mapping
algorithm. As most particle mapping algorithms make use
of particle location to distribute particles across processors,
the particle trace and configuration file provide sufficient
information to generate particle workload for these particle
mapping algorithms on any given processor configuration.

The Communication Load Generator calculates the number
of particles being communicated across two processors at a
given sampling interval. A communication load is calculated
by checking if the residing processor (Rp) of a particle is
changed between two consecutive intervals. If the value of Rp

changes between two consecutive intervals, it means that the
particle has moved from one processor to another.

The two outputs of Dynamic Workload Generator are the



Computation matrix (Pcomp) and the Communication matrix
(Pcomm). The Computation matrix is a two-dimensional array
of size R × T where R is the processor count and T is the
total number of samples. The Computation matrix describes
the computation load across all the processors throughout the
PIC simulation. For example, Pcomp[i][j] denotes the number
of particles residing in processor i at jth interval. Figure 1(a)
shows the visual representation of the Computation matrix in
form of a heat-map. The Communication matrix is a three
dimensional array of size R×R×T . It quantifies the particle
communication across different processors between two con-
secutive intervals and describes the amount of particle data
transfer across processors throughout the execution. For ex-
ample, Pcomp[i][j][k] denotes the number of particles moving
from processor i to processor j at kth interval. Each particle
has a specific amount of data associated with it. By calculating
the number of particles moving across the two processors,
we can calculate the message size. The Dynamic Workload
Generator outputs separate computational and communication
matrices for real and ghost particles.

Currently, our Dynamic Workload Generator can gener-
ate workload distributions for element-based and bin-based
mapping algorithms for CMT-nek. It can be extended to
incorporate other particle mapping algorithms. By doing so, it
provides a fast and accurate method in identifying the optimal
mapping strategy for a given problem specification. By gen-
erating the workload distribution across multiple processors
for different mapping algorithms, we can evaluate the ideal
mapping strategy for optimal performance. In Section IV-C,
we evaluate the performance of the two mapping algorithms
used to distribute particles in CMT-nek. Using the Dynamic
Workload Generator, we predicted and subsequently validated
that using bin-based mapping approach reduced the peak
particle workload by two orders of magnitude. Furthermore,
Resource Utilization (RU), which is determined by the number
of processors having at least one or more particles on average
during the simulation, increased from 0.68% to 56.13% upon
using bin-based mapping.

B. Model Generator

To build performance models, we instrument the source
code and benchmark key computation kernels of PIC ap-
plication for various input parameter combinations. Upon
generating the training data from benchmarking, it is fed to
Model Generator to build analytical performance models. The
framework supports multiple regression methods for model
generation. While simple linear regression methods were suf-
ficient to generate single parameter performance models with
reasonable accuracy, they failed to generate accurate multi-
parameter performance models owing the model complexity.
To solve this problem, we developed a fast and accurate multi-
parameter modeling approach using symbolic regression [13].
By leveraging genetic programming [14], we were able to
automatically discover an underlying multi-parameter model
that captures difficult-to-understand behaviors.

The regression methods used to generate performance mod-
els for our case-study application CMT-nek are discussed in
Section IV-A. The generated analytical performance models
are represented in terms of workload parameters, such as
number of particles per processor (Np), number of elements
per processor (Nel) etc. Our generated CMT-nek performance
models had an average MAPE of 8.42%.

C. Simulation Platform

The Simulation Platform takes the dynamic workload and
the performance models as inputs along with the target system
specification to perform system-level simulations. By feed-
ing the dynamic workload into the Simulation Platform, we
simulate actual behavior of the target system by advancing
simulation clock of each processor based on their individual
workload. The amount by which simulation clock is advanced
is calculated by inserting the workload parameter values
into performance models. The Simulation Platform performs
system-level simulations to predict application performance.

The current version of our system-level simulation plat-
form, BE-SST [7], is a coarse-grained simulator integrated
into the parallel discrete-event simulation framework called
Structural Simulation Toolkit (SST) from Sandia National
Laboratories [6]. BE-SST can be used to perform rapid design-
space exploration to reduce a large design space into promising
candidates for detailed simulation. In [7], large-scale system-
level studies were performed to demonstrate its capabilities
on two HPC systems - Vulcan [9] from Lawrence Livermore
National Laboratory and Titan [15] from Oak Ridge National
Laboratory. Simulation results were validated against test-
bed measurements up to 128k cores, and blind performance
predictions were made up to 1 million cores. However, BE-
SST currently does not support trace-based simulations. This
capability is being added to BE-SST and will be available
in the next version update. When completed, the performance
prediction framework will perform trace-driven coarse-grained
system-level simulations.

D. Advantages and Limitations

Our prediction framework provides multiple advantages in
terms of performance evaluation and optimization. The key
advantages of our framework are in (a) scalability prediction,
(b) algorithm evaluation, and (c) performance tuning. As
mentioned before, accurately generating dynamic workload
is crucial in predicting performance of irregular applications
on large-scale systems. Large amount of compute hours can
be saved by analyzing how the application would scale for
large systems without having to re-run multiple times. To
perform scalability predictions, we take advantage of the
fact that particle movement is independent on the processor
count. Hence, a single application trace for a given problem
specification is sufficient to predict the application behavior
on any number of processors. As we show in Section IV-B,
we performed a strong scaling prediction on Hele-Shaw case-
study by increasing the processor count from 1044 to 8352
cores. Through the predictions, we evaluated that scaling the



processor count beyond 1104 has no impact on particle-solver
performance. Apart from evaluating scalability performance,
the dynamic workload generated can be used to calculate
resource utilization, quantifying load imbalance.

Another advantage of our prediction framework is algorithm
evaluation, evaluating different particle mapping strategies for
a given simulation problem. While different load-balancing
strategies [10]–[12], [16]–[18] have been proposed for PIC
algorithms, there is no one single mapping strategy which
is optimal for all problem configurations. Our prediction
framework provides two benefits in this regard. First, the
framework provides a test-bed for quick evaluation of any new
mapping strategy without having to spend large amounts of
code-development time for a scalable parallel implementation.
Second, if multiple particle mapping strategies are readily
available, as in the case of CMT-nek, the framework helps
pick the optimal mapping strategy suited for a given problem
specification by quickly generating the workload distribution
for different mapping strategies. This would be largely bene-
ficial while performing large-scale runs (hero-runs), where a
single order of performance improvement would save hundreds
of compute hours. In Section IV-C, we evaluate the efficiency
of two particle mapping algorithms available in CMT-nek on
Hele-Shaw simulation case-study.

Finally, our prediction framework helps in optimizing per-
formance through parameter tuning. Certain problem param-
eters have a significant impact in application performance in
a derived way. In CMT-nek, one such parameter is projection
filter size. Projection filter size defines the spread of particle
influence on the neighboring grid size. Projection filter size
has a significant effect on the total number of ghost particles
created across processors. Application developers and users
would be in a better position to fine tune the parameter value
if they can evaluate the performance impact. Our prediction
framework facilitates such a parameter study by providing
performance cost for the values in the given parameter range.
In Section IV-D, we perform a parameter study on projection
filter size and evaluate its impact on application performance.

One of the key limitations of our approach is in the trace
collection phase. Trace collection is often expensive and at
times infeasible. To obtain particle trace, the application needs
to be executed once, which may not be ideal, especially
while predicting performance of a large-scale simulation. Also,
in some cases, a trace file can be expensively large. The
size of the trace file is proportional to total numbers of
particles in simulation and sampling frequency. In case of
large-scale PIC simulations, which usually contain millions
of particles and executed for over million time-steps, a trace
file would be hundreds of Gigabytes large and would require
large amount of compute hours to obtain. One solution for
this problem is to generate a synthetic trace from a small-
scale run which is relatively inexpensive to collect. However,
generating a representative large-scale trace from a small-
scale trace is a complex task. We would be exploring this
in the future but currently is not in the scope of the paper.
Another challenge in trace collection is selecting the sampling

frequency. A low sampling frequency would reduce the file
size, but would not accurately capture particle movement. High
sampling frequency, on the other hand, would capture fine
particle movement at the cost of larger file size. In practice, we
use application user’s intuition to fine tune sampling frequency.

III. CASE-STUDY

A. CMT-nek

CMT-nek is a proposed Navier-stokes solver aimed at solv-
ing compressible multiphase turbulent flows. It is developed
at the DOE PSAAP-II (Predictive Science Academic Alliance
Program) Center for Compressible Multi-phase Turbulence
(CCMT). CMT-nek, built on top of Nek5000 [19], a highly-
scalable computational fuild dynamics (CFD) solver, is pri-
marily used to simulate particle-laden explosively dispersed
flows under high pressure and temperature. CMT-nek employs
a Particle-In-Cell method for solving particle properties. Zwick
et al. [12] provides more details about CMT-nek.

The computational domain of CMT-nek consists of both
spectral elements and particles. Each spectral element is
further decomposed into grid points. The solver structure of
CMT-nek is categorised into two key phases, namely fluid-
solver and particle-solver. The fluid-solver phase solves the
Euler equations of gas dynamics at each grid-point.

dX

dt
= V (1)

Mp
dV

dt
= F h + F c + F b (2)

The particle solver kernel tracks the particle evolution on the
computation grid by solving the governing equations of motion
and conservation of momentum as described in Equations 1
and 2. The particle solver kernel performs a set of operations at
each iteration, commonly known as PIC Solver loop as shown
below:

1. Interpolation (Grid-Particle interaction): Calculate the
Eulerian fluid forces acting upon particles by interpolating the
fluid properties from neighboring grid points.

2. Equation solver: Upon calculating the fluid forces on
particles, solve the governing equation of conservation of
momentum, specified in 2 to calculate particle velocity.

3. Particle pusher: Upon calculating new particle velocity,
advance the particle position to the next time-step based on 1.

4. Projection (Particle-Grid interaction): Project the newly
calculated Lagrangian particle properties onto the neighboring
Eulerian grid-points.

In the case of the CMT-nek particle solver kernel, collision
force is also accounted in addition to fluid forces to solve
Equation 2. These additional forces are calculated based on
particle-particle collisions.

The CMT-nek computational workload can be classified
into fluid workload and particle workload. Fluid workload is
primarily represented in terms of the number of elements per
processor (Nel) and grid resolution within an element (N ).
Particle workload is primarily represented in terms of the
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Fig. 4: Particle decomposition of a two-dimensional compu-
tational grid containing 16 spectral elements and 9 particles
using (a) Element-based mapping and (b) Bin-based mapping.

number of real (Np) and ghost (Ngp) particles residing in a
processor. Different decomposition strategies are available to
distribute spectral elements and particles onto the processors.
CMT-nek uses recursive-bisection algorithm [20] to distribute
spectral elements onto the processor in a way to minimize
grid-data exchange across processors. Most particle mapping
strategies use spatial locality to map particles to the proces-
sors owing to the tight particle-grid interaction. Efficiency
of different particle mapping strategies relies on how effec-
tively particles are distributed across processors in order to
ensure close to uniform workload distribution throughout the
application run time. In the following subsections, we discuss
two particle mapping strategies used in CMT-nek. In IV-C,
we evaluate the efficiency of these mapping strategies on a
Hele-Shaw case study containing 216,225 spectral elements
and 599,257 particles running on Quartz.

B. Element-based mapping

One simple and intuitive way to map particles to processors
is to ensure both the particle and the spectral element in
which it is residing are stored in same processor. By ensuring
such particle-grid locality, all the fluid-particle interactions
are computed locally per processor, thereby minimizing inter-
processor communication. Such element-based mapping is the
de facto standard for most PIC algorithms. However, as the
particles start moving across the grid, the element in which
the particle is residing changes, which may result in particles
crossing processor domain. In such cases, data associated with
the particle has to be transferred to new processor containing
the corresponding element. Also, if initial particle distribution
is non-homogeneous, a valid scenario in most explosive turbu-
lent simulations simulated in CMT-nek, processors experience
irregular workloads right from the beginning.

Figure 4(a) illustrates an example of element-based map-
ping on a two-dimensional computational grid containing 16
spectral elements and 9 particles. The computational grid is
decomposed into four processors. As shown in the left side
of the figure, element-based mapping algorithm maps the
particles to processors based on residing element. While this
provides an advantage of localizing particle-grid computations,
it suffers from load imbalance as shown in figure 4(a). Here,

processor 0 and processor 2 have four particles each where
processor 1 has only 1 particle and processor 3 has none.

C. Bin-based mapping

In order to solve the load-imbalance problem, CMT-nek
developers designed a bin-based mapping algorithm. In this
approach, particle-grid locality is decoupled and the particle
domain is partitioned into multiple bins which are uniformly
distributed across processors. Bin-based mapping ensures
close to optimal particle distribution. However, as particle-
grid locality is not preserved, additional work is needed to
perform particle-grid computation. This involves transferring
associated grid data between the processors. Also, as the parti-
cles move continuously, particle domain expands and shrinks.
Hence, particle domain partition and grid-data transfer has to
be performed at every iteration. Zwick et al. [12] provides a
detailed description of the bin-based mapping algorithm.

Figure 4(b) shows how particles are mapped based on
bin-based algorithm on a two-dimensional grid mentioned
above. Initially, a particle domain is identified by generating
a particle boundary, as shown with dotted lines. Later the
domain is partitioned using recursive planar cut algorithm.
Recursive bin partition terminates when either the bin size
reaches a threshold value or the number of bins are equal
to the number of processors. Each bin is then assigned to a
processor. As shown in the figure, using a bin-based mapping
approach, processor 0 receives three particles whereas rest of
the processors receive 2 particles each, showing a much better
workload distribution. In Section IV-C, we evaluate and predict
the efficiency of these two approaches.

IV. PERFORMANCE PREDICTIONS

A. Experimental Setup

We evaluate our performance prediction framework on
Hele-Shaw simulation case-study. In Hele-Shaw simulation,
a large number of particles initially are packed at the bottom
of a three dimensional cylinder specified by the computational
domain. Beneath the particle bed, there is a high pressurized
gas separated by a diaphragm. At the beginning of simulation,
the diaphragm bursts, releasing a high pressurized gas into the
particle bed, causing a shock wave. Consequently, the particles
are displaced due to the shock loading. Koneru et al. [21]
provides more details on the Hele-Shaw simulation.

To generate CMT-nek performance models, we instru-
mented the application and benchmarked for multiple param-
eter combinations to collect the training data. To generate
single-parameter performance models, we used linear regres-
sion. Multi-parameter performance models are generated using
symbolic regression. We collected particle trace by sampling
particle location for every 100 iterations. The trace is ob-
tained by running CMT-nek on 1024 processors. We generated
workload for element-based and bin-based algorithms. We
used Quartz as the target system for benchmarking and trace
collection. Quartz [22] is a supercomputer from Lawrence
Livermore National Laboratory(LLNL). Quartz contains 3018



Fig. 5: Maximum number of particles per processor for
different processor configurations.

Intel Xeon E5 nodes connected through Intel OmniPath with
a peak performance of 3,200 TFLOP/s.

In subsequent sections, we demonstrate how our perfor-
mance prediction framework can be used for scalability pre-
diction, algorithm evaluation, and performance tuning.

B. Scalability Prediction

Figure 5 shows the prediction of the maximum number of
particles in a processor during the entire simulation for differ-
ent processor configurations, as outputted from our Dynamic
Workflow Generator. The processor with largest workload rep-
resents the critical path in the system execution. It is interesting
to note that the workload does not scale while increasing
the processor count. For the first 7800 iterations, the peak
particle workload per processor remains same while running
the application on 1044, 2088, 4176, and 8352 processors.
Upon closer inspection, we found out that it is due to bin
size threshold. As mentioned in Section III-C, in bin-based
mapping approach, particle domain is recursively decomposed
into bins until it reaches either a threshold bin-size or the
number of bins equal the processor count. In our problem
case-study, the threshold bin-size is reached at a maximum
of 1012 bins during the first 7800 iterations. Hence the
bins are distributed to at most 1012 processors. As a result,
increasing the processor count would not improve workload
distribution. Using our Dynamic Workflow Generator, we were
able to predict the workload distribution on different processor
counts without actually having to physically run the code.
Such predictions would be highly useful in identifying an
optimal processor count for a given problem configuration,
thereby optimizing resource allocation. Note that we also have
validated our predictions shown in Figure 5 by comparing
the output of our Dynamic Workload Generator with actual
workload, obtained by running the Hele-Shaw simulation case-
study on 1044, 2088, 4176 and 8352 processors.

Figure 5 also shows that after the first 7800 iterations, there
is a dip in the peak processor workload when using more
than 1044 processors. In Hele-Shaw simulation, particles move
from the bottom of cylinder due to shock loading, and a result,
particle boundary expands during the course of execution. As

Fig. 6: Particle bins generated during the application run.
Number of particle bins increase during the simulation as the
particle boundary expands.

Fig. 7: Mean Absolute Percentage Error (MAPE) of key
kernels of CMT-nek for different processor configurations

the particle boundary becomes bigger, it can be decomposed
into further bins before reaching the threshold bin-size.

Figure 6 shows the maximum number of particle bins gen-
erated before reaching threshold bin size. Using our Dynamic
Workflow Generator, we have relaxed the processor count
limitation, thereby calculating the maximum number of bins
that can be generated irrespective of system configuration.
This provides an upper limit on the processor count to
obtain optimal workload distribution for bin-based mapping
algorithm. As shown in the figure, the maximum number of
bins generated throughout the simulation run is 1104. Hence,
optimal processor count for given problem configuration is
1104. As a result, you see a dip in peak particle workload
in figure 5, when increasing the processor count from 1044
to 2088. However, subsequent increase in processor count has
no effect on workload distribution due to bin-size threshold.

Currently our coarse-grained simulation platform, BE-SST
does not support trace-based simulations. Trace-based simula-
tion capability is currently being added to the simulator and
will be available in the next version. In order to demonstrate
the accuracy of our performance models, we developed a
python script which takes the generated performance models
and the output of workload generator as inputs, and predicts
the kernel performance across all processors during the entire
execution. Figure 7 shows our prediction accuracy of key



CMT-nek kernels on different processor counts. On average,
our performance models had an 8.42% MAPE error with a
peak error of 17.7%. Figure 7 is a representative result of
what it would be if we use a system-level simulator to perform
end-to-end performance prediction.

Note that element workload, i.e., the number of spectral
elements per processor (Nel), is scaled uniformly. Hence,
even though there is no change in the particle workload
when increasing the processors from 2088 to 4176 and 8352
processors, element workload per processor is halved every
time the processor count is doubled. As the irregular workload
is generated due to particles, we would be considering the
impact of particle workload alone in this paper.

C. Algorithm evaluation

One of the key advantages of our prediction framework
is to evaluate the efficiency of different mapping algorithms
without having to run the application. Figure 8 shows peak
particle workload distribution of Hele-Shaw simulation on
two different particle mapping strategies. Bin-based mapping
algorithm has a better workload distribution, in fact a couple
of orders reduction in peak particle workload compared to
element-based mapping. As mentioned before, in element-
based mapping, particles are assigned to processor based on
the residing element. In Hele-Shaw simulation, large number
of the particles initially reside in a relatively smaller area
in the computational domain. Hence, only the processors
assigned to these elements has the majority of particles as
shown in the figure. As the processor count is increased, the
elements containing the majority of particles are distributed to
other processors resulting in reduced peak particle workload.
However, due to this tight particle-element coupling, a small
number of processors share the entire particle workload.
Figure 9 shows the percentage of processors containing at least
one particle per processor during the entire simulation. Bin-
based mapping algorithm results in 584 processors sharing
the particle workload out of 1044 processors, resulting in
56% processor utilization. In comparison, only 4 processors
in element-based approach share the entire particle workload,
resulting in 0.68% of processor utilization. In general, bin-
based mapping algorithm does a better job in mapping the
particle workload onto the processors.

D. Performance tuning

Certain parameters have a significant impact on applica-
tion performance in a derived way. In CMT-nek, one such
parameter is projection filter size. Projection filter size denotes
the spread of particle influence on the neighboring grid. It
determines the total number of ghost particles per processor.
Projection filter is also used as the threshold bin-size for
particle bin generation. Figure 10(a) shows the maximum
number of particle bins generated for different values of
projection filter. Smaller values of projection filter ensures
lower threshold, which results in generating more bins. On
the other hand, higher filter values results in more ghost
particles per processor as the particle influence is spread

much further. Figure 10(b) shows the execution time of one
of CMT-nek kernels, create ghost particles, which generates
ghost particles at each processor. As expected, there is a
significant increase in the execution time for larger filter
sizes. By predicting the impact of application performance
with respect to various projection filter sizes, the application
developers would be in a better position to evaluate the trade-
off between simulation accuracy and application performance.

Note that varying the projection filter-size may effect the
particle movement. In most mapping algorithms, such changes
in particle movement are minor and does not significantly
affect processor workload.

V. RELATED RESEARCH

Trace-driven simulation approaches are widely used for
system-level predictions when the application behavior cannot
be comprehensibly described using analytical models. In this
section, we briefly discuss different trace-based simulation
approaches for performance prediction of large-scale systems.
We also discuss about different load-balancing algorithms pro-
posed to optimize workload distribution in PIC applications.

Scalable workload distribution in PIC applications is a com-
plex task. While grid-based decomposition results in computa-
tional load-imbalance due to moving particles, particle-based
decomposition causes communication and memory overheads
in order to store and synchronize redundant grid data across
processors. Many particle-based decomposition strategies have
been proposed for scalable workload decomposition of PIC
applications on large-scale systems. Zwick et al. [12] proposes
a particle decomposition based on binning. Particle bins are
constructed by recursive planar cutting of particle domain at
each iteration. Zhai et al. [11] presents a load-balanced par-
titioning strategy where the computational load is calculated
based on the number of grid points and particles residing on
each processor. Particle-grid locality is maintained and the
elements are distributed in a way to ensure all processors
share similar computational load. Re-partitioning occurs once
a processor exceeds a threshold workload. Liao et al. [10]
uses two different partition strategies for grid and particle
distribution. For particle distribution, the author assigns a
unique global number to the particles based on hilbert ordering
of spectral elements. Upon generating the indices, particles are
distributed based on the increasing order of global number
to preserve the particle-grid locality, while optimizing the
workload distribution. Our work does not propose a new
particle mapping algorithm but rather provides a framework
to quickly generate workload distribution for various particle
mapping algorithms using a low-cost implementation.

Trace-based simulations are primarily used when applica-
tion behavior cannot be completely captured in analytical
models. In such scenarios, a trace is collected, either from
an application run or through synthetic execution, in order to
accurately capture the application performance on large-scale
systems [23], [24]. Carothers et al. [23] generates scalable
synthetic workloads from real applications. The workload is
fed into a trace-driven simulation environment, CODES, along
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Fig. 8: Peak particle workload distribution of Hele-Shaw simulation on different processor configurations using (a) bin-based
and (b) element-based mapping algorithms.

Fig. 9: Processor utilization depicting the percentage of pro-
cessors containing non-zero particle workload

with the application description specified in an analytical per-
formance modeling language [25]. Our approach is similar in
that both use a workload generator and analytical performance
models to perform accurate large-scale performance predic-
tions. However, our workload generator is customized to PIC
workloads. Many synthetic workload generation approaches
have been proposed to calculate the application workload on
large-scale HPC systems [26]–[28]. However, most of these
approaches calculate the communication load by detecting and
subsequently scaling up the communication pattern on target
systems. These approaches assumes static distribution of com-
putational workload across processors while scaling synthetic
workload, which is inaccurate for irregular applications such
as PIC. To the best of our knowledge, our proposed Dynamic
Workload Generator is the first in generating accurate work-
load distribution of PIC applications on large-scale systems.

VI. CONCLUSIONS

Scalable performance prediction of large-scale applications
on HPC systems is crucial to accelerate the application time

to solution and to optimize the system resources. In order to
predict the performance, it is crucial to capture the application
workload and behavior in terms of workload distribution and
performance models, respectively. Irregular applications, such
as those which employs the PIC method, are notorious for their
dynamic workload distribution across the processors due to
constantly moving particles. In this paper, we propose a novel
trace-driven performance prediction framework to reliably
predict the application performance of PIC applications. The
framework provides multiple advantages in terms of scalability
prediction, algorithm evaluation, and performance tuning. For
scalability prediction, our performance prediction framework
demonstrated an average MAPE of 8.42% while predicting
CMT-nek performance on Quartz. For a given problem case-
study involving 599,257 particles and 216,225 elements, we
are able to predict the ideal processor count to achieve opti-
mal performance. For algorithm evaluation, we evaluated the
impact of two different mapping algorithms, namely element-
based and bin-based mapping, on application performance,
demonstrating that using the latter approach would reduce the
peak particle workload by two orders of magnitude. Finally,
to demonstrate performance tuning, we performed a parameter
study to quantify and validate the performance impact of a key
problem parameter in the CMT-nek.

Going forward, we are in the process of adding trace-
based simulation capability to our system-level simulation
platform, BE-SST. This will allow us to demonstrate end-to-
end capabilities of the performance prediction platform for
evaluating applications with dynamic workloads. To overcome
the challenge of expensive trace collection, we are working
on incorporating trace extrapolation feature to our Dynamic
Workload Generator to generate representative high-scale par-
ticle trace from a low-fidelity execution. This will help in
reducing the trace collection cost, especially for large-scale
application runs which usually involve a billion particles and
millions of spectral elements. Finally, we will be adding addi-
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Fig. 10: (a) Maximum number of particle bins generated for different project filter sizes. Total number of bins provides an
upper limit on particle distribution (b) Execution time of create ghost particles kernel for different projection filter sizes.

tional particle mapping algorithms to our Dynamic Workload
Generator so application users can evaluate and select an
optimal mapping strategy for their application needs.
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