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Abstract—Recent advancements in deep learning present
new opportunities for enhanced scientific methods, autonomous
operations, and intelligent applications for space missions.
Semantic segmentation is a powerful computer-vision process
using convolutional neural networks (CNNs) to classify ob-
jects within an image. Semantic segmentation has numerous
space-science and defense applications, from semantic label-
ing of Earth observations for insights about our changing
planet, to monitoring natural disasters for damage control,
to gathering intelligence for national defense and security.
Despite these advantages, CNNs can be computationally
expensive and prohibited on traditional radiation-hardened
space processors, which are often generations behind their
commercial-off-the-shelf counterparts in terms of performance
and energy-efficiency. FPGA-based hybrid System-on-Chips
(SoCs), which combine fixed-logic CPUs with reconfigurable-
logic FPGAs, present numerous architectural advantages well-
suited to address the computational capabilities required for
high-performance, intelligent spacecraft. To enable semantic
segmentation for on-board space processing, we propose a
hybrid (hardware/software partitioned) approach using our
reconfigurable CNN accelerator (ReCoN) for accelerating CNN
inference on hybrid SoCs. When evaluated on the Xilinx Zynq
SoC and Xilinx Zynq UltraScale+ MPSoC platforms, our
hybrid approach demonstrates an improvement in performance
and energy-efficiency up to two orders of magnitude compared
to a software-only baseline on the hybrid SoC. Furthermore,
fault injection and wide-spectrum neutron beam-testing was
performed to characterize the ReCoN architectural response
to injected errors and susceptibility to neutron irradiation.

Keywords-Deep Learning; Convolutional Neural Networks;
Semantic Segmentation; Hybrid System-on-Chip; Hybrid
Space Computing; Fault Injection; Radiation-beam Testing

I. INTRODUCTION

Recent advancements in deep learning present new op-

portunities to enhance scientific methods, autonomous oper-

ations, and intelligent applications for space missions. The

National Academies’ Space Studies Board (SSB) issued a

report for the 2017-2027 decadal strategy on Earth science

and applications from space, providing recommendations

for NASA, NOAA, and USGS. In their survey, the SSB

highlighted the need for advanced methodologies to ana-

lyze and convert data from Earth observations (EO) into

scientific knowledge [1]. The SSB also identified machine

learning as a scientific and technological opportunity to

extend the reach of Earth science through more efficient

uses of limited resources. Semantic segmentation is a deep-

learning algorithm, based on convolutional neural networks

(CNNs), that learns to infer dense labels for every pixel

of an image. Semantic segmentation has numerous space

applications, from semantic labeling of Earth’s features for

insights about our changing planet, to monitoring natural

disasters, to gathering intelligence for national security.

Due to ongoing innovations in both sensor technology and

spacecraft autonomy, on-board space processing continues

to be outpaced by the computational demands required for

future missions. The application of deep-learning concepts

for on-board processing can enable spacecraft to efficiently

process immense volumes of raw sensor-data into actionable

data to overcome limitations in downlink communication.

However, spacecraft designers are challenged to create high-

performance, intelligent space computers subject to unique

requirements, with stringent constraints in size, weight,

power, and cost (SWaP-C), and unique hazards, includ-

ing radiation, thermal, vibration, and vacuum. Spacecraft

often employ radiation-hardened (rad-hard) processors to

satisfy reliability constraints and overcome space radia-

tion challenges. However, rad-hard processors are often

generations behind their commercial-off-the-shelf (COTS)

counterparts, which tend to offer superior performance

and energy-efficiency but are more susceptible to space

radiation. Despite the high-applicability of deep learning

for spaceflight, advanced deep-learning algorithms, such as

semantic segmentation, are computationally expensive and

prohibited on traditional rad-hard processors. Currently, the

application of deep-learning for space missions rely on

high-performance computing (HPC) resources, such as GPU

clusters, to analyze downlinked data.

Small satellites (SmallSats) and CubeSats are small form-

factor spacecraft emerging as high-risk, low-cost platforms

enabled by the miniaturization of electronics, sensors, and

instruments. In their 2016 report, the SSB identified Cube-

Sats as a disruptive innovation for space-science technology

and concluded that CubeSat missions were already meeting
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valuable science objectives [2]. SmallSats have proliferated

substantially in the academic, commercial, and government

sectors, and several missions for a wide variety of science

and technology applications have launched or are planned.

SmallSat technology is also emerging in future defense mis-

sions. DARPA recently released a Broad Agency Announce-

ment for the Blackjack program. In this program, DARPA

seeks to develop a next-generation avionics unit, called

Pit Boss, which will leverage commodity and commercial

technology to enable advanced on-orbit edge computing and

mission autonomy. Blackjack will demonstrate that a con-

stellation of autonomous, low-cost, replenishable SmallSats

residing in low-Earth orbit can compete with monolithic

spacecraft residing in geosynchronous orbit [3].

As both high-risk and low-cost platforms, SmallSats

and CubeSats often employ commercial technology, such

as embedded system-on-chip (SoC) devices, providing an

advantage for improved on-board processing. Hybrid SoCs

combine two or more distinct computing architectures (e.g.,

CPUs, FPGAs, GPUs) into one device to attain the ad-

vantages of each. FPGA-based hybrid SoCs, such as the

Xilinx Zynq SoC (Zynq7) and Zynq UltraScale+ MPSoC

(ZynqMP), combine fixed-logic CPUs with reconfigurable-

logic FPGAs. Hybrid SoCs enable hardware/software parti-

tioning of applications, where sequential, control-flow parts

are executed in software on the CPU and parallel, data-

flow parts are accelerated in hardware on the FPGA. The

hardware/software co-design of these hybrid applications

can enable significant improvements in performance and

energy-efficiency. Hybrid SoCs present numerous architec-

tural advantages that make them well-suited to address the

on-board processing challenges for space missions [4].

In this article, we propose a hybrid approach to semantic

segmentation for on-board processing. Our hybrid approach

combines an adaptive framework and reconfigurable CNN

accelerator, called ReCoN, to accelerate semantic segmen-

tation on hybrid SoCs [5]. When evaluated on the Xilinx

Zynq SoC and Xilinx Zynq UltraScale+ MPSoC platforms,

our hybrid approach demonstrates a substantial improvement

in performance and energy-efficiency up to two orders of

magnitude compared to a single-threaded, software-only

baseline executed on the hybrid SoC. Fault-injection and

radiation-beam experiments were also performed to charac-

terize the ReCoN architectural response to injected errors

and susceptibility to neutron radiation.

The remainder of this article is organized as follows.

Section II provides an overview of hybrid SoC technology

for space applications, CNN basics, semantic segmentation,

and related works. Section III describes our hybrid approach,

which includes a system framework, control-flow software,

and ReCoN accelerator architecture. Section IV evaluates

our hybrid approach for semantic segmentation in terms

of prediction accuracy, resource utilization, performance,

and energy-efficiency. Section V provides a description and

analysis of fault-injection and radiation-beam test experi-

ments conducted for ReCoN. Finally, Section VI provides

concluding statements and insights for future work.

II. BACKGROUND

This section provides a cursory overview of space com-

puting challenges, hybrid SoCs and their application to

space computing, space radiation effects, fundamentals of

convolutional neural networks, and semantic segmentation.

Finally, we summarize related works that inspired this re-

search effort.

A. Hybrid SoCs for Space Systems

The Xilinx Zynq SoC (Zynq7) and Xilinx Zynq Ul-

traScale+ MPSoC (ZynqMP) are two commercial families

of hybrid SoCs [6], [7]. The Zynq7 devices feature up

to dual-core ARM Cortex-A9 CPU and 28-nm Artix or

Kintex 7-Series FPGA fabric, and the ZynqMP devices

feature up to quad-core ARM Cortex-A53 CPU and 16-

nm UltraScale architecture FPGA fabric. Platforms for the

Zynq7 include the Xilinx ZC706 (Z7040), TUL PYNQ-

Z2 (Z7020), and Digilent ZedBoard (Z7020), and for the

ZynqMP include the Xilinx ZCU102 (ZU9EG) and Avnet

UltraZed-EG (ZU3EG). Within each family, these devices

share similar characteristics (e.g., performance, power con-

sumption, and susceptibility to radiation) because they have

the same architecture and process technology, but varied

quantities of available resources. In our evaluation, we use

a diverse set of platforms, but the experimental results can

be used interchangeably with other devices of the same

family. In both families of hybrid SoCs, the CPU and

FPGA subsystems can interact over general-purpose and

high-performance Advanced eXtensible Interconnect (AXI)

interfaces. Both devices are capable of dynamic partial

reconfiguration (PR), which enables predefined partitions of

the FPGA, called PR regions (PRRs), to be reconfigured

with other compatible modules, called PR modules (PRMs),

at run-time without interrupting the remainder of the system

(e.g., CPU and other FPGA subsystems).

Hybrid SoCs are becoming increasingly adopted for space

missions. One example is the CHREC Space Processor v1

(CSPv1), a multifaceted-hybrid space computer developed at

the NSF Center for Space, High-performance, and Resilient

Computing (SHREC) with close collaboration with NASA

Goddard Space Flight Center (GSFC) [8]. The CSPv1 space

computer features the Z7020 and combines a novel mix of

commercial technology (processor and memory for perfor-

mance and energy-efficiency benefits), rad-hard technology

(monitoring and managing circuits for reliability), and sup-

plementary fault-tolerant computing for extended reliability

enhancements. CSPv1 has flight heritage as part of two U.S.

Department of Defense Space Test Program (STP) - Houston

missions to the International Space Station (ISS). These

missions include the STP-H5 CHREC Space Processor
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(STP-H5-CSP) and STP-H6 Spacecraft Supercomputing for

Image and Video Processing (STP-H6-SSIVP) [9] experi-

ments. CSPv1 was flown on the NASA CeREs heliophysics-

science CubeSat and will be featured on the Lockheed-

Martin LunIR lunar-flyby CubeSat, the NASA Mass Spec-

trometer observing lunar operations (MSolo) instrument, and

several other planned missions. Other space computers based

on the Zynq7 devices include Innoflight’s Compact Flight

Computer (CFC-300), GomSpace’s Nanomind Z7000, and

Xiphos’ Q7. Space computers based on the ZynqMP devices

include Innoflight’s Compact Heterogeneous-processor Ar-

ray for Multi-Parametric Sensing (CHAMPS), and Xiphos’

Q8.

In [10], a framework was developed for analyzing poten-

tial processor architectures for on-board space computing.

Using this framework, the computational density (CD),

measured in giga operations per second (GOPS), and com-
putational density per Watt (CD/W) were calculated for the

Z7020 and several state-of-the-art rad-hard processors. In

this comparison, the Z7020 demonstrated significant im-

provements versus the rad-hard processors in both metrics.

Due to the immense computation demands required for deep-

learning algorithms, which are not achievable by currently

available rad-hard processors, semantic segmentation is only

viable on space platforms by leveraging the performance

benefits of SoCs and relying on fault-tolerant mitigation

techniques for radiation effects.

B. Radiation Effects

In the near-Earth space environment, radiation sources in-

clude galactic cosmic rays, solar particle events, and charged

particles trapped within the Van Allen radiation belts. Radi-

ation presents numerous challenges for electronic devices in

space [11]. Radiation effects include long-term cumulative

effects, such as total ionizing dose and displacement dam-

age dose, and transient single-event effects (SEEs). Non-

destructive SEEs include upsets, transients, and functional

interrupts. These effects are extensively covered in [12].

Radiation-beam testing is often exercised to characterize

device susceptibility to radiation, and to determine whether

the device is suitable for the space radiation environment.

C. Convolutional Neural Networks (CNNs)

Convolutional neural networks (CNNs) have become in-

creasingly popular in the computer-vision community for

classification, detection, localization, and segmentation ap-

plications. CNNs are a form of classical supervised learning

algorithms with a feed-forward process for inference and

a backpropagation process for training [13]. CNNs typi-

cally contain convolutional, activation, pooling, and fully

connected layers. Convolutional layers are used for extract-

ing features in the input and producing feature maps for

subsequent layers. Each convolution operation contains a

set of learnable weights, the kernel and bias, which are
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Figure 1. SegNet model.

formulated during training. The initial convolutional layers

detect low-level features (e.g., lines, corners, etc.) and the

deeper layers extract more complex structures and patterns.

Activation layers are used to introduce nonlinearity into the

network to allow for the approximation of nonlinear patterns.

Examples of activation functions include sigmoid, tanh, and

rectified linear unit (ReLU), with ReLU often preferred for

faster training [14]. Pooling layers are used to downsample

the spatial resolution of the input to reduce the number of

parameters and amount of processing. Examples of pooling

functions include max-pooling and average-pooling. The

fully connected layer, often at the end of the CNN, performs

classification and maps features extracted from previous

layers into an output vector of classes. The arguments of the

maxima (argmax) specify the most probable classification of

the input and a class label is assigned. CNNs may append

a softmax layer to convert the output vector into a discrete

probability distribution vector specifying the confidence of

the classification. Batch normalization (batch-norm) is an-

other layer that may be inserted between convolutional and

activation layers to accelerate training by normalizing and

scaling the inputs to reduce the covariate shift [15].

D. Semantic Segmentation

Semantic segmentation is a computer-vision process that

learns to label each pixel of an image, where pixels with

the same label share semantic characteristics. We selected

SegNet [16] as the baseline model for evaluating our hy-

brid approach. SegNet uses pooling indices obtained from

max-pooling layers for upsampling feature maps in max-

unpooling layers, removing the need for fully connected

layers. As a result, the SegNet model substantially reduces

the number of weights and functions to be accelerated, which

is desirable to resource-constrained systems. The SegNet

model has been applied to semantic segmentation of EO

imagery in [17], which we leverage as a case-study to

facilitate the evaluation of our hybrid approach.

SegNet uses an encoder-decoder network architecture, as

illustrated in Figure 1. SegNet is symmetrical and contains

five encoder and decoder blocks, each with two or three

convolutional layers followed by batch-norm and a ReLU

operation. Each encoder block is followed by a max-pooling

layer which produces two outputs: discretized feature-maps

and pooling indices. Each decoder block begins with a
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max-unpooling layer which uses the pooling indices of the

corresponding encoder block to upsample smaller feature-

maps back to the original spatial resolution. An optional

softmax layer can be appended at the end of the network to

convert the output volume of the final convolution layer into

a volume where each pixel contains decimal probabilities

about its classification. The argmax of the output layer can

also be used to assign the most probable label for each pixel.

E. Related Works

The acceleration of CNNs on FPGAs has been explored

extensively in the literature [18], [19], [20], [21]. Prior works

explored data-path optimizations, approximate computing,

and batch computing techniques to accelerate CNN func-

tions. CNNs are highly parallelizable, however, they cannot

be fully unrolled on FPGAs due to resource limitations [18].

Instead of loop unrolling, the alternative is to map a reusable

subset of the CNN operations into the FPGA, and iteratively

stream data through them. Finding the optimal accelera-

tor configuration can be reduced into a loop optimization

problem [19]. In [19], a roofline model was proposed to

explore the design space for possible solutions for a CNN

architecture on an FPGA platform, subject to computational

resource and memory bandwidth constraints, using loop

optimization techniques such as loop unrolling, tiling, and

interchange. Batch computing involves processing multiple

images in a batch. In [20], batch processing was employed

to reuse convolution weights on multiple images to reduce

memory accesses for improved bandwidth at the cost of

increased latency for each image in the batch. Approximate

computing techniques involve quantizing feature maps and

trained weights into fixed-point representations for improved

performance and energy-efficiency at the minimal cost of

decreased CNN accuracy [18].

III. HYBRID APPROACH

This section provides a system description for our hybrid

approach to accelerating semantic segmentation on hybrid

SoCs for on-board processing. The system includes an en-

vironmentally adaptive framework and the hybrid semantic

segmentation application. The hybrid application includes

the ReCoN accelerator and direct memory access (DMA)

controller, for accelerating data-flow parts, and the ReCoN

control-software, which performs the control-flow parts.

A. Reconfigurable Framework

Our hybrid approach leverages the Hybrid Adaptive

Reconfigurable Fault Tolerance (HARFT) architecture, an

environmentally adaptive framework for hybrid SoCs, as

illustrated in Figure 2. The HARFT architecture provides

an infrastructure for system-configuration management and

hardware acceleration [22]. HARFT uses PR to dynamically

reconfigure between various accelerators at run-time without
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Figure 2. HARFT architecture.

interrupting system uptime. For space applications, the sub-

systems in the static region are protected with triple-modular

redundancy (TMR), which triplicates circuits in the FPGA

with majority voting for fault masking. The configuration

memory (CRAM), which stores the configuration bitstream

at run-time to realize the FPGA design, is also protected with

CRAM scrubbing, which periodically scans static CRAM

bits to correct and prevent the accumulation of errors. The

PRRs can be configured with simplex, high-performance or

TMR, low-performance accelerators, both also protected by

CRAM scrubbing.

The acceleration framework provides a full hard-

ware/software stack enabling userspace software applica-

tions with shared access to FPGA hardware accelerators. The

FPGA hardware portion of this framework includes DMAs

residing in the static region, and accelerators residing in

the PRRs. The software portion includes the Linux device

drivers for the DMA, libaccel (custom userspace library for

interfacing with DMA), and userspace applications. For our

hybrid semantic segmentation application, ReCoN resides

in a single PRR and interfaces with a custom scatter-

gather DMA (SGDMA) via AXI-Stream interconnects. The

ReCoN control-software runs on the CPU and interfaces

with libaccel to operate the SGDMA.

B. ReCoN Accelerator Architecture

ReCoN is designed for scalability and parameterization to

accommodate various hybrid SoC platforms and application

domains. ReCoN is a streaming accelerator that interfaces

to the SGDMA to accelerate CNN functions on multi-

dimensional data in parallel and also integrates multiple

CNN functions into one accelerator.

1) Scalability and Parameterization: ReCoN supports

numerous pre-synthesis and run-time parameters to accom-

modate various target platforms and application domains.

Pre-synthesis parameters include the scale and quantization.

The scale parameter specifies the parallelization factor of the

accelerator, which refers to the number of parallel channels

packed into the stream and the number of parallel accelerator

functions. Increasing the scale parameter improves perfor-

mance and energy-efficiency but increases the area overhead.
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For the remainder of this article, we use the subscript

notation (ReCoNN ) to denote that the ReCoN accelerator is

scaled by a factor of N . The quantization parameter specifies

the data-type representation used by ReCoN, which includes

single-precision floating-point or arbitrary-precision fixed-

point. Arbitrary-precision fixed-point provides substantial

improvements in area for a minimal trade-off in inference

accuracy. Quantization optimizations are discussed later

in this section. ReCoN is generated using Vivado High-

Level Synthesis (HLS), which is a high-productivity tool

for translating synthesizable functions written in high-level

programming languages (such as C or C++) into a register-

level transfer (RTL) representation for FPGAs. Using Vivado

HLS, numerous compiler directives are available to further

tune ReCoN, such as trading between resource sharing,

improved timing, and area.

ReCoN is also designed to support numerous run-time

parameters to accommodate various network shapes, trained

weights, and data volumes. ReCoN operates on AXI-Stream

packets. The packet structure includes three sections: an

accelerator header, with arguments for input resolution and

accelerator function, a function-specific section, with trained

weights for convolution and batch-norm functions only, and

finally the data section containing feature maps.

2) Accelerator Functions: ReCoN consolidates multiple

functions into one accelerator, with each one having equal

data-widths for both input and output streaming interfaces.

ReCoNN includes:

• One N×N convolution function with N single-pixel

input and N single-pixel output channels

• N
2 vector-sum functions, each with two single-pixel

input and one double-pixel output channels

• N batch-norm and ReLU functions, each with one

single-pixel input and one single-pixel output channels

• N
2 max-pool functions, each with one double-pixel

input and two single-pixel output channels

• N
2 max-unpool functions, each with two single-pixel

input and one double-pixel output channels
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3) Convolutional Layer: Each convolutional layer con-

verts an input volume (H×W×Din) into an output volume

(H×W×Dout), with Din×Dout convolutions are required to

produce Din×Dout intermediate convolution outputs. Next,

each output dimension (of Dout) requires Din−1 vector

sums to add Din convolution outputs and produce one

complete output, so each convolutional layer also requires

Dout×(Din−1) vector sums.

The convolution function contains N×N convolutions,

operates on N inputs, and produces N outputs, as illustrated

in Figures 3(a) and 4. The convolution function reuses each

of the N input channels across N convolutions, each with

a different set of trained weights (convolution kernel and

bias), to produce a total of N2 intermediate outputs. For

each of the N output channels, the intermediate outputs

are added to produce N partial vector-sums. Next, the

vector-sum function, as illustrated in Figure 3(b), is used

to add all partial vector-sums to produce the complete

convolutional layer output. Since each convolutional layer

requires Din×Dout convolutions and Dout×(Din−1) vector

sums, the convolution and vector-sum functions must be

invoked
⌈
Din

N

⌉×⌈
Dout

N

⌉
and

⌈
2Dout

N

⌉ × (
⌈
Din

N

⌉ − 1) times,

respectively, to process one convolutional layer.

The N×N convolution function design has a quadratic

relationship between the number of channels and the number

of convolutions. When N doubles, the number of chan-

nels doubles and the number of convolutions quadruples,

or equivalently, the number of invocations is quartered.

Therefore, when N doubles, the processing capability of the

convolution function improves by a factor of four. However,

this improvement only holds if the interconnect bandwidth

can satisfy the doubled bandwidth requirement.

4) Batch Normalization and ReLU Layers: The batch-

norm and ReLU operations each convert an input volume

(H×W×D) into an output volume (H×W×D). Both op-

erations are merged into one function, as illustrated in

Figure 3(c), because both have the same access-pattern and

one always precedes the other. This function requires four

additional weights: running mean (E[x]), running variance

(Var[x]), scale (γ), and shift (β), for the batch-norm opera-

tion. Since the batch-norm and ReLU function depends on

a single dimension of the input volume, the N instances of

the function can run in parallel to use the full input and

output interconnect bandwidths. This function requires
⌈
D
N

⌉

invocations to perform all operations.

5) Pooling Layers: The pooling layer performs max-

pooling with a filter size of 2×2 and converts an input

volume (H×W×D) into two output volumes: the maxima

(H4 ×W
4 ×D) and the pooling indices (H4 ×W

4 ×D). Max-

pooling quarters the input spatial-resolution and produces a

combined output volume that is half the input volume. The

max-pooling function, as illustrated in Figure 3(d), contains
N
2 instances of the max-pool operation. Each max-pool

operation converts one input (as two channels packed into

the input stream) into two outputs. Collectively, the max-

pool function uses the full input bandwidth but can only use

half the output bandwidth because the output stream size is

half the input stream size.

6) Unpooling Layers: The unpooling layer performs

max-unpooling with a filter size of 2×2 and converts

two input volumes, feature maps (H×W×D) and indices

(H×W×D), into one output volume (4H×4W×D). Max-

unpooling quadruples the input spatial-resolution and pro-

duces an output volume that is double the combined input

volume. The max-unpooling function, as illustrated in Figure

3(e), contains N
2 instances of the max-unpool operation.

Each max-unpool operation converts two inputs (feature

maps and pooling indices) into one output (as two channels

packed into the output stream). Collectively, the max-unpool

function uses the full output bandwidth but can only use half

the input bandwidth because the input stream size is half the

output stream size.

7) Quantization Optimizations: ReCoN supports two

data-type representations: single-precision floating-point and

arbitrary-precision fixed-point. When configured to use

floating-point, the ReCoN output is identical to the software

output. However, floating-point arithmetic incurs a high area

overhead and may require resource sharing to fit ReCoN

into resource-constrained FPGAs at the cost of decreased

performance. To improve performance, quantization can

be used to constrain feature map and trained weights to

arbitrary-precision fixed-point values. Generally, fixed-point

arithmetic is substantially more area-efficient than floating-

point arithmetic, and can allow for a greater scaling factor.

Quantization also has the benefit of reducing the storage size

of trained weights, which is useful for resource-constrained

systems. However, due to loss of precision in arbitrary-

precision fixed-point, the ReCoN output may deviate slightly

compared to the software output as the precision error

accumulates. However, the average error is negligible and

may justify the trade-off for area, performance, and energy-

efficiency benefits.

The digital signal processing (DSP) slices in the Zynq7

(DSP48E1) feature 25-bit×18-bit multipliers. ReCoN uses

the 25-bit operand for feature maps using the Q9.16 (9

signed-integer bits and 16 fractional bits) fixed-point format

and the 18-bit operand for trained weights. The fixed-point

format for trained weights varies by type (e.g., convolutional

weights, convolutional bias, etc.) and is selected by fitting

the minima and maxima of each type to an arbitrary-

precision fixed-point format that maximizes precision. In the

ZynqMP, the DSP slices (DSP48E2) feature 27-bit×18-bit

multipliers and can use the Q9.18 fixed-point format for a

slight improvement in precision.

8) Scatter-Gather Streaming Data-Flow Optimizations:
Although ReCoN will accelerate the processing of CNN lay-

ers, the communication cost associated with streaming data

between the CPU and FPGA subsystems is also essential for
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reducing the overall execution time. We developed a scatter-

gather DMA (SGDMA) to facilitate the parallel streaming

of multi-dimensional data through ReCoN. The SGDMA

provides three major functions: scatter-gather streaming,

stream-size parameterization, and decoupling logic for PR.

The SGDMA is full-duplex and converts an AXI interface

into two AXI-Stream interfaces: one for DMA-to-accelerator

(D2A) streaming and one for accelerator-to-DMA (A2D)

streaming. For each direction, the SGDMA supports three

run-time parameters: the number of channels to use, the data-

width of the channels, and the length of the stream. The

stream-size parameterization capability allows the SGDMA

to interface to each accelerator function in ReCoN.

The scatter-gather streaming data-flow provided by the

SGDMA has the advantage of creating an interleaving

architecture. During a scatter-gather transfer, the SGDMA

will rotate between AXI descriptors and complete one AXI

burst transfer per channel before proceeding to the next

one. Each AXI descriptor points to a DMA buffer, allow-

ing the SGDMA to access multiple DMA buffers. Since

the SGDMA effectively rotates between DMA buffers, the

scatter-gather flow will seamlessly interleave buffer data in

the D2A direction and deinterleave stream data in the A2D

direction. The principal benefit is that multi-dimensional

data can remain deinterleaved in DMA buffers, and the

SGDMA will automatically perform the data-interleaving

preprocess and data-deinterleaving postprocess in hardware.

As a result, the SGDMA completely eliminates the overhead

of software memory interleaving and deinterleaving.

Furthermore, since all accelerator functions operate on

data streams, the AXI descriptors can be configured to reuse

DMA buffers to perform the accelerator functions in-place.

This access pattern has the advantage of reducing the mem-

ory overhead required for DMA buffers and significantly

reduces the amount of software memory copies. The only

software memory copies required are those that specify the

header and function-specific section of the stream packet,

which are negligible in terms of size compared to the data.

C. ReCoN Control-Software

The ReCoN control-software provides the control-flow

operations required for hybrid semantic segmentation. The

control software allocates DMA buffers, loads input image

data and trained weights, and invokes the SGDMA to

asynchronously stream buffer data through ReCoN.

The control software is parameterizable to support ar-

bitrary image volumes (spatial-resolution and dimension)

and network shapes of the SegNet model to accommodate

various space applications and imaging sensors (e.g., mul-

tispectral, hyperspectral, etc.). When initialized, the control

software references two resources: the network definition,

which specifies the network shape and the arrangement

of layers, and the corresponding trained weights. Both

resources are obtained after network development (testing,

Table I
EVALUATION PLATFORMS.

Xilinx ZC706 (Z7045) Xilinx ZCU102 (ZU9EG)

Processing System (PS)

CPU
ARM Cortex-A9 ARM Cortex-A53

(dual-core) (quad-core)
L1 cache 32KB/32KB I/D per core 32KB/32KB I/D per core
L2 cache 512KB unified 1MB unified
Frequency 667MHz 1.2GHz

Programmable Logic (PL)

FPGA
Kintex 7 UltraScale architecture
(28 nm) (16 nm)

LUTs 218600 274080
FFs 437200 548160
BRAM 545 912
DSPs 900 2520
Frequency 100MHz/200MHz 100MHz/300MHz

PS-PL Interface

Interface
AXI3 AXI4

(64-bit/16-beat burst) (128-bit/256-beat burst)
Acceleration Framework
DMA 8-channel SGDMA 8-channel SGDMA
Accelerator ReCoN2/2-TMR/4/8 ReCoN2/2-TMR/4/8

Quantization fixed-point (Q9.16) fixed-point (Q9.18)

analysis, and training) and are uploaded to the spacecraft

for deployment. For training, the dataset can be constructed

using downlinked sensor data or approximated by using or

modifying existing datasets.

IV. EVALUATION

To evaluate our hybrid approach for semantic segmenta-

tion, we experimentally recorded accuracy, resource utiliza-

tion, performance, and energy-efficiency metrics by running

our hybrid architecture on two hardware platforms at various

configurations. In this section, we describe our experimen-

tal setup, target platforms, and application case-study, and

analyze our results.

A. Platforms

Our framework was realized on two hardware platforms,

including the Xilinx ZC706 (Z7045) and Xilinx ZCU102

(ZU9EG). The system specifications for these platforms are

detailed in Table I [6], [7]. For both platforms, Vivado

2018.2 was used to synthesize ReCoN and generate sys-

tem bitstreams (using default synthesis and implementation

settings), and Petalinux 2018.2 was used to deploy an

embedded Linux operating system.

For our semantic segmentation application, we selected

the Potsdam dataset from the ISPRS commission II/4 bench-

mark for 2D semantic labeling [23]. This dataset provides

EO imagery in RGB (red-green-blue) and IRRG (infrared-

red-green) formats, with ground-truth labels including six

classes: roads, buildings, low vegetation, trees, automobiles,

and clutter. We resized the dataset to 512×512 images,

and then partitioned this dataset into 70% for training

and 30% for testing. We trained three different network

shapes: Net (86 layers, 7376806 weights), Net1⁄2 (86 layers,
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Table II
INFERENCE ACCURACY.

Inference Accuracy/Error Net Net1⁄2 Net1⁄4

Inference Accuracy (RGB) 90.17% 89.63% 88.30%
Inference Accuracy (IRRG) 90.00% 89.95% 88.92%
Accelerator Error (floating-point) 0.00% 0.00% 0.00%
Accelerator Error (Q9.16) 0.73% 0.40% 0.30%
Accelerator Error (Q9.18) 0.72% 0.39% 0.29%

Table III
RESOURCE UTILIZATION.

Xilinx ZC706 (Z7045)
Subsystem Slices FFs BRAM DSPs

(218600) (437200) (545) (900)

Framework 3.87% 1.14% 6.33% 0.00%
ReCoN2 1.62% 2.03% 1.84% 4.44%
ReCoN2-TMR 6.78% 6.05% 5.50% 13.33%
ReCoN4 3.81% 5.94% 3.49% 16.89%
ReCoN8 12.02% 20.39% 6.79% 65.78%

Xilinx ZCU102 (ZU9EG)
Subsystem Slices FFs BRAM DSPs

(274080) (548160) (912) (2520)

Framework 4.23% 1.00% 7.57% 0.04%
ReCoN2 0.93% 1.24% 1.09% 1.59%
ReCoN2-TMR 4.59% 3.70% 3.29% 4.76%
ReCoN4 2.14% 3.57% 2.08% 6.03%
ReCoN8 6.45% 11.64% 4.05% 23.49%

1849814 weights), and Net1⁄4 (86 layers, 465262 weights),

where Net1⁄2 and Net1⁄4 halves or quarters the dimension of

each layer in Net, respectively. We use the single-threaded,

software-only results as the baseline for our comparisons.

B. Accuracy

In the context of semantic segmentation, accuracy refers to

the prediction rate in which pixels of an image are assigned

the correct label. Accuracy depends on several factors (e.g.,

network shape, training method, dataset, etc.). Using the test

set, we calculated the accuracy for all three sample networks

for each image format (RGB and IRRG), as shown in Table

II. As noted previously, the floating-point version produces

an output identical to the software version, but the fixed-

point version has minor deviations due to accumulation of

precision error. The average error for ZynqMP platforms

using the Q9.18 format is slightly improved compared to

Zynq7 platforms using the Q9.16 format.

C. Resource Utilization

The resource utilization of the HARFT framework and

ReCoN are separately shown in Table III. These num-

bers were obtained using the Vivado design tools post-

implementation using default synthesis and implementation

settings. When configured for efficient quantization, the

scalability of ReCoN is bounded by the number of DSP

slices available in the FPGA. ReCoNN requires 9N2 + 2N

DSP slices. The ZC706 and ZCU102 platforms provide

enough DSP slices to support the 8-channel SGDMA and

ReCoN8 accelerator. Our CSPv1 space computer (Z7020)

provides enough DSP slices for the 4-channel SGDMA and

ReCoN4 accelerator.

D. Performance

For performance, the average execution times were mea-

sured for several configurations of the software and hy-

brid versions of the semantic segmentation application.

The software-only version was compiled using GCC with

O2 optimizations and NEON single-instruction, multiple-

data intrinsics enabled. For multi-threading, OpenMP, an

application programming interface for shared-memory mul-

tiprocessing, was used to parallelize all CNN functions.

For the hybrid version, the performance was measured for

varied scaling factors and the FPGA operating frequencies,

as detailed in Table I. Table IV lists the execution times and

the performance improvements compared to the baseline. In

all situations, the hybrid version outperforms the software

version by up to two orders of magnitude, depending on the

network and system configuration.

E. Energy Efficiency

Power and energy consumption are essential metrics for

space systems. For a fair comparison, the FPGA was not

programmed when running the software versions to assume

a CPU-only system. Using a power meter, the overall system

power was measured when idled (7.13W for the ZC706 and

21.60W for the ZCU102) and when actively processing the

application. The dynamic-power and dynamic-energy con-

sumption can be calculated by using the following equations:

Dynamic Power = Active Power − Idle Power

Dynamic Energy = Execution Time × Dynamic Power

Table IV lists the dynamic-power and dynamic-energy con-

sumptions, and the energy-efficiency improvements com-

pared to the baseline. Although the hybrid versions often

have a higher peak power-consumption, the reduced exe-

cution times result in significant improvements in overall

dynamic-energy consumption, up to two orders of magnitude

compared to the baseline. To accommodate space applica-

tions with stricter power requirements, the FPGA operating

frequency and ReCoN configuration can be reduced at the

cost of decreased performance.

V. RELIABILITY EXPERIMENTS

This section describes the fault-injection and radiation-

beam experiments performed to analyze the architectural

response of ReCoN to both injected and radiation-induced

errors. The objective of these experiments was to analyze the

vulnerability of two designs: simplex, quad-channel ReCoN4

and TMR, dual-channel ReCoN2-TMR. Both accelerators

have similar resource utilizations but introduce a trade-off
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Table IV
PERFORMANCE AND ENERGY-EFFICIENCY.

Xilinx ZC706 (Z7045)
Version Performance Energy-Efficiency

(configuration) Execution Time [s] Improvement Dynamic Dynamic Energy [J] Improvement
Net Net1⁄2 Net1⁄4 Net Net1⁄2 Net1⁄4 Power [W] Net Net1⁄2 Net1⁄4 Net Net1⁄2 Net1⁄4

Software
1 thread 2345.1 543.2 115.7 1.0 1.0 1.0 1.46 3423.9 793.1 169.0 1.0 1.0 1.0
2 threads 900.9 184.6 40.6 2.6 2.9 2.9 1.51 1360.3 278.8 61.3 2.5 2.8 2.8

Hybrid (100MHz)
ReCoN2 66.0 16.8 4.6 35.5 32.3 25.3 1.60 105.3 26.9 7.3 32.5 29.5 23.2
ReCoN2-TMR 66.3 17.1 4.9 35.4 31.8 23.6 1.70 112.7 29.1 8.3 30.4 27.3 20.3
ReCoN4 27.6 7.3 2.1 85.0 73.7 54.5 1.62 44.8 12.0 3.4 76.4 66.2 49.0
ReCoN8 13.3 3.7 1.2 175.8 145.1 96.2 1.86 24.8 7.0 2.2 138.0 113.9 75.5

Hybrid (200MHz)
ReCoN2 46.3 12.1 3.3 50.7 45.1 35.2 2.18 100.9 26.3 7.2 34.0 30.2 23.6
ReCoN4 18.1 5.0 1.5 129.3 109.5 76.8 2.28 41.2 11.3 3.4 83.0 70.3 49.2
ReCoN8 8.5 2.5 0.9 275.8 215.3 129.4 2.70 23.0 6.8 2.4 148.9 116.2 69.9

Xilinx ZCU102 (ZU9EG)
Version Performance Energy-Efficiency

(configuration) Execution Time [s] Improvement Dynamic Dynamic Energy [J] Improvement
Net Net1⁄2 Net1⁄4 Net Net1⁄2 Net1⁄4 Power [W] Net Net1⁄2 Net1⁄4 Net Net1⁄2 Net1⁄4

Software
1 thread 1973.4 370.5 70.7 1.0 1.0 1.0 2.65 5229.6 981.9 187.3 1.0 1.0 1.0
2 threads 526.2 112.1 28.7 3.8 3.3 2.5 2.79 1468.2 312.8 80.2 3.6 3.1 2.3
4 threads 274.3 57.8 14.9 7.2 6.4 4.8 3.20 879.0 185.2 47.6 6.0 5.3 3.9

Hybrid (100MHz)
ReCoN2 55.2 13.5 3.8 35.7 27.5 18.8 2.70 148.8 36.3 10.1 35.1 27.1 18.5
ReCoN2-TMR 55.1 14.3 3.9 35.8 25.9 18.3 2.78 153.1 39.7 10.7 34.1 24.7 17.5
ReCoN4 16.6 4.7 1.5 118.9 78.7 46.6 2.88 47.8 13.6 4.4 109.4 72.4 42.9
ReCoN8 8.4 2.6 1.0 236.1 141.2 72.1 2.97 24.8 7.8 2.9 210.6 126.0 64.3

Hybrid (300MHz)
ReCoN2 23.9 6.6 2.0 82.4 56.5 35.7 3.29 78.8 21.6 6.5 66.4 45.5 28.8
ReCoN4 8.7 2.7 1.0 227.8 137.2 68.6 3.49 30.2 9.4 3.6 173.0 104.2 52.1
ReCoN8 4.6 1.7 0.7 427.2 220.5 95.0 3.70 17.1 6.2 2.8 306.0 157.9 68.1

in performance and reliability. For both experiments, we

used a reconfigurable-system design, with TMR-protected 4-

channel SGDMA and CRAM scrubber residing in the static

region, and either ReCoN4 or ReCoN2-TMR residing in the

PRR. The BL-TMR tool, a highly user-configurable tool for

selective replication of FPGA designs, was used to apply

low-level TMR [24]. The SGDMA was modified to compute

XOR-based checksums on both the D2A and A2D streams.

Since the execution of the SegNet model is deterministic, the

output and intermediate checksums can be compared against

golden checksums to determine the execution outcome and

to identify exactly which layers were affected due to injected

or radiation-induced errors, respectively.

A. Fault Injection

Fault injection was performed to observe the architectural

response of each design to errors injected into CRAM.

For this experiment, the objective was to measure the

architectural vulnerability factor (AVF) and mean-work-to-

failure (MWTF) metrics for each design, and the tolerance of

erroneous outputs. In this context, the AVF is the probability

that an injected error will manifest into an erroneous output

[26], and MWTF describes the average number of correct

executions until an erroneous output is expected, capturing

the trade-off between performance and reliability [27]. AVF

and MWTF are calculated as follows:

AVF =
Number of Erroneous Executions

Number of Fault Injections

MWTF =
Number of Correct Executions

Number of Erroneous Executions

To avoid modifying the design, the Processor Configura-

tion Access Port (PCAP) is used for injecting faults into the

CRAM. The CRAM scrubber is inactive for this experiment

because the fault-injection procedure is controlled (i.e., one

error per iteration). In our fault-injection procedure, each

iteration begins with the random selection of a layer and

CRAM bit location (frame address, word, and bit). Next,

the application is executed until it reaches the randomly

selected layer, where the execution is halted, the fault is

injected via the PCAP, and the execution is resumed. When

the randomly selected layer is complete, the execution is

halted, the fault is repaired, and the execution is resumed

until completion. The error is restricted to the execution of

the selected layer to focus on the vulnerability of that layer,

as well as to represent the behavior of the CRAM scrubber
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Table V
FAULT INJECTION AND WIDE-SPECTRUM NEUTRON-BEAM TEST RESULTS.

Fault-Injection Results for TUL PYNQ-Z2 (Z7020)
Accelerator CRAM [bits] Injections Errors Hangs MWTF AVF 95% Confidence Interval

ReCoN4 2785403 9542673 2633904 58509 2.60 27.772% [27.738%, 27.805%]
ReCoN2-TMR 3513869 4124570 3362 2167 1225.18 0.082% [ 0.079%, 0.084%]

Improvement 471.08 340.71

Wide-Spectrum Neutron-beam Test Results for Digilent ZedBoard (Z7020)
Accelerator Effective Fluence

[n · cm−2]
Total

Executions
Errors Hangs MWTF Cross-section

[cm2]
95% Confidence Interval

ReCoN4 9.91×1011 76459 2769 165 26.55 2.79×10−9 [2.69×10−9 , 2.90×10−9 ]

ReCoN2-TMR 1.73×1011 5882 53 14 109.72 3.06×10−10 [2.24×10−10, 3.89×10−10]

Improvement 4.13 9.12

Wide-Spectrum Neutron-beam Test Results for Avnet UltraZed-EG (ZU3EG)
Accelerator Effective Fluence

[n · cm−2]
Total

Executions
Errors Hangs MWTF Cross-section

[cm2]
95% Confidence Interval

ReCoN4 3.49×1011 75527 25 1 3020.04 7.17×10−11 [4.65×10−11, 1.06×10−10]

ReCoN2-TMR 1.27×1011 14782 01 0 14781.00 7.84×10−12 [7.84×10−13, 4.39×10−11]

Improvement 4.89 9.14

1 Assuming one error when no errors were detected [25].

Figure 5. Percentage of tolerable outputs from ReCoN4 accelerator for
varied error-tolerance thresholds.

present in the actual flight system which would correct

the error. To accelerate our fault-injection procedure, only

essential CRAM bits are targeted. Essential CRAM bits are

the set of bits that are actively used in the FPGA design, and

errors in these bits will affect the design. The Xilinx design

tools can generate the locations of these essential CRAM bits

[28]. Eight PYNQ-Z2 (Z7020) devices-under-test (DUTs)

were used to parallelize the fault-injection procedure.

The fault-injection results are detailed in Table V. The

AVF and MWTF improvements indicate that the fault toler-

ance provided by ReCoN2-TMR allows this design to reliably

execute more inferences than ReCoN4, despite reduced

performance and energy-efficiency. The AVF of ReCoN4 can

be improved if some error can be tolerated. For example, a

few erroneous pixels may be tolerable, but severe distortions

may not be. An error-tolerance threshold, which denotes

tolerable percentage of erroneous pixels compared to the

golden output, can be used to determine the percentage

of tolerable outputs throughout the entire fault-injection

procedure. Using the XOR-based checksums generated by

the SGDMA, the error tolerance can be analyzed at the layer

granularity. Figure 5 illustrates the percentage of tolerable

outputs by convolutional layer, and the encoder or decoder

block it resides in, for varied error-tolerance thresholds.

As evident in Figure 5, errors in the inner convolutional-

layers are more susceptible to producing intolerable outputs,

compared to the outer layers. This architectural response

may be due to the inner layers of the SegNet model operating

on high-dimensional and highly discretized feature maps

representing complex abstractions, which may facilitate the

propagation of errors. The reconfigurable-system architec-

ture can alternate between both versions of ReCoN (e.g.,

simplex for outer layers, and TMR for inner layers) to

maximize performance subject to reliability constraints.

B. Radiation-beam Testing

ReCoN was irradiated by a wide-spectrum neutron beam

at the Los Alamos Neutron Science Center (LANSCE)

Weapons Neutron Research (WNR) facility, using the

4FP30R/ICE-II instrument [29]. In this experiment, the

neutron-induced, application-error cross-section and MWTF

metrics were calculated for both designs. In this context,

the cross-section is the sensitive area of the DUT in which

neutron-induced errors will manifest into an erroneous out-

put (i.e., silent data-corruption). Four Digilent ZedBoard

(Z7020) and two Avnet UltraZed-EG (ZU3EG) DUTs were

placed in the beam to parallelize the fluence each design was

exposed to. The experimental setup is shown in Figure 6.

Because the error rate is uncontrolled, the CRAM scrubber
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Figure 6. Experimental setup at LANSCE 4FP30R/ICE-II.

was used to prevent the accumulation of errors in CRAM.

However, the radiation beam can expose the DUTs to error

modes that cannot be directly compared with our fault-

injection procedure (e.g., multi-bit upsets, CPU or memory

errors, overwhelmed scrub-rate, etc.).

In our radiation-beam test procedure, the DUTs contin-

uously ran semantic segmentation on either version of Re-

CoN. DUT-management software was used to automate the

power-cycling of DUTs when it was detected that the DUT

had hanged (failed to signal a heartbeat before timeout), re-

ported consecutive errors (counted as one error), or detected

a failure of the CRAM scrubber. Golden checksums were

used to test the execution outcomes (correct, error, or hang),

which were recorded with timestamps. The 4FP30R/ICE-II

instrument contains a dosimeter that records the integrated

neutron flux (above 10 MeV) with timestamps. The neutron

fluence (above 10 MeV) can be calculated by integrating

the neutron flux over the time interval that the DUT was

active. The cross-section and corresponding 95% confidence

interval are calculated as specified in [25]:

Cross-section =
Number of Erroneous Executions

Effective Fluence

For the ZedBoard DUTs, the DDR memory was config-

ured with ECC enabled and the unified L2 caches were

disabled to prevent the high neutron-flux from overwhelming

the DUTs and to minimize CPU-related errors and failures.

For the UltraZed-EG DUTs, the DDR memory was also

configured with ECC enabled but the caches were kept

enabled as the ZynqMP CPU demonstrates high resilience to

SEUs [30]. The designs were alternated between DUTs and

the recorded fluence was adjusted to account for the distance

between the DUT and beam source. The experimental results

are detailed in Table V. For both sets of DUTs, the cross-

section and MWTF improvement reaffirms the advantage

of ReCoN2-TMR to reliably execute more inferences than

ReCoN4, despite performance and energy-efficiency trade-

offs. The dissimilarity in the cross-section magnitudes be-

tween both sets of DUTs can be attributed to architecture and

process-technology differences between both sets of DUTs.

VI. CONCLUSIONS

Despite the high-applicability of deep learning for space-

flight, deep-learning algorithms such as CNNs are com-

putationally expensive and prohibited on traditional rad-

hard processors. Commercial hybrid SoCs present numerous

architectural advantages that address on-board processing

challenges. However, effective use of both the CPU and

FPGA subsystems is required to reliably maximize the

benefits provided by the hybrid architecture.

In this article, we introduced our hybrid approach for

semantic segmentation on hybrid SoCs. When evaluated on

the Xilinx Zynq SoC and Xilinx Zynq UltraScale+ MPSoC

platforms, our hybrid approach demonstrates an improve-

ment in performance and energy-efficiency up to two orders

of magnitude compared to a software-only baseline on the

hybrid SoC. Due to significant performance speedup and

reduced energy consumption, our hybrid approach can be an

enabling technology for applying semantic segmentation and

other CNN algorithms to future space missions. For future

work, we will investigate new optimizations in ReCoN to

further enhance performance and energy-efficiency.

Additionally, fault-injection and radiation-beam testing

was performed to characterize the architectural response

of two versions of ReCoN (one simplex, high-performance

and one TMR, low-performance) to injected and neutron-

induced errors. In our CRAM fault-injection experiment,

we measured the AVF and MWTF of both designs, and

identified a pattern in error tolerance across layers of the

SegNet model. In our radiation-beam test, we measured

the cross-section and MWTF for both designs under wide-

spectrum neutron irradiation. These experiments are the

basis for future work in adaptive CNNs, which alternate

between high-performance and high-reliability versions of

ReCoN across layers with varied susceptibilities, to maxi-

mize inference performance subject to reliability constraints.

The HARFT SoC reliability framework is currently in-

tegrated into the STP-H6-SSIVP experiment on board the

ISS [9]. Using EO imagery captured by SSIVP, a dataset

can be constructed or approximated, and a CNN based on

the SegNet model can be developed and trained using the

new dataset. Finally, the network definition, trained weights,

and ReCoN (PR bitstream) can be uploaded to flight-qualify

hybrid semantic segmentation for on-board processing.
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