
Adaptive Software-based Fault Tolerance
for Space Multicore Processing

Adam Jacobs, Grzegorz Cieslewski, Alan D. George

NSF Center for High-Performance Reconfigurable Computing (CHREC) 1
ECE Department, University of Florida
{jacobs, cieslewski, george}@chrec.org

Increasing demand for high-performance computing in space, coupled with limitations of
device-level methods for SEU mitigation, are driving innovations in advanced space
computing with system- and application-level fault tolerance. As devices increasingly feature
multicore architectures, the space community must adapt and incorporate these devices into
future missions. These multicore devices are an increasingly attractive option for processing
in space-based systems due to their inherent advantages in performance, scalability, energy
efficiency, size, and cost, but with them come challenges in attaining optimal performability.
This presentation will highlight research activities at the University of Florida from two
recent projects on this path, the NASA Dependable Multiprocessor (DM) developed at
Florida and Honeywell, and the hybrid fault tolerance (HFT) framework of CHREC.

The NASA Dependable Multiprocessor project features a multitude of system- and
application-level techniques for fault tolerance to protect the system from SEU-induced
errors, much of which is applicable to the needs of space multicore processing. The DM
system consists of primary and secondary RadHard system controllers and a suite of COTS-
based, data-processing boards featuring PPC, AltiVec, and FPGA processors, all connected
through Gigabit Ethernet, similar to many traditional supercomputing clusters. Fault
tolerance in DM can adapt to environmental radiation conditions, with an array of disparate
and flexible modes, including SIFT at the highest level via high-availability middleware with
manager and agent processes running on RadHard and COTS microprocessor technologies,
respectively, along with a variety of modes for fault tolerance operating underneath, many
available in either spatial or temporal form. The high-availability middleware manages the
health and status of multiple concurrent jobs, taking corrective action when necessary.
Application-level communication between nodes is facilitated through the use of Fault-
Tolerant Embedded MPI (FEMPI), allowing for the recovery of a parallel job without the
need to completely restart the application. Application-level techniques for fault tolerance,
such as replication, algorithm-based fault tolerance, and checkpoint/rollback are also
featured and examined with a range of applications including LU decomposition, 2D-FFT,
synthetic aperture radar, and hyperspectral imaging.

The hybrid fault tolerance or HFT framework is a new component in an on-going research
project of CHREC entitled F6-09, Reconfigurable and Hybrid Fault Tolerance. One of the
tasks in current work on HFT that is applicable to the needs of space multicore processing is
a new method of protecting microprocessor cores from SEU-induced errors via automated
source-to-source (S2S) translation with high productivity. Replication embedded in the
application program instructs the processor to perform redundant calculations. These
calculations can then be compared and/or voted upon to detect and/or correct errors

1 This work was supported in part by the I/UCRC Program of the National Science Foundation under Grant No. EEC-0642422.

automatically. Through the use of S2S translation, we present a method of performing this
replication through a high-level language (in this case, C). A translator would take an input
program source code and output a fault-tolerant version of the same program (with very
little or no user intervention) that could then be compiled with any valid compiler.
Additionally, we are exploring methods for software-based fault injection to examine the
reliability of various microprocessor devices and the efficiency of newly proposed FT
methods for them. Our simple, portable fault injector (SPFI) allows us to emulate SEUs by
injecting errors directly into processor registers of each processor core. The injector
software can work with any system that supports the GNU debugger, making the tool highly
portable. This approach allows us to quickly inject faults, test behavior, and estimate error
rates expected without the need for expensive radiation testing at each step.

Space Multicore Workshop

July 19-21, 2009

Adaptive Software-based Fault Tolerance
for Space Multicore Processing

Adam Jacobs
Grzegorz Cieslewski

Research Students
University of Florida

Dr. Alan D. George
Professor of ECE

University of Florida

Outline
 Overview

 Taxonomy of fault tolerance
 Dependable Multiprocessor

 Hardware Infrastructure
 Software Infrastructure
 Possible DM Applications

 Hybrid Fault Tolerance (HFT)
 Goals, motivations, and challenges
 Source-to-Source Translation

 Simple, Portable, Fault Injector (SPFI)
 Conclusions

Overview
 What is advanced space computing?

 New concepts, methods, and technologies to enable and deploy high-performance computing in
space – for an increasing variety of missions and applications

 Why is advanced space computing vital?
 On-board data processing

 Downlink bandwidth to Earth is extremely limited
 Sensor data rates, resolutions, and modes are dramatically increasing
 Remote data processing from Earth is no longer viable
 Must process sensor data where it is captured, then downlink results

 On-board autonomous processing & control
 Remote control from Earth is often not viable
 Propagation delays and bandwidth limits are insurmountable
 Space vehicles and space-delivered vehicles require autonomy
 Autonomy requires high-speed computing for decision-making

 Why is it difficult to achieve?
 Cannot simply strap a Cray to a rocket!

 Hazardous radiation environment in space
 Platforms with limited power, weight, size, cooling, etc.
 Traditional space processing technologies (RadHard) are severely limited

 Potential for long mission times with diverse set of needs
 Need powerful yet adaptive technologies
 Must ensure high levels of reliability and availability

Taxonomy of Fault Tolerance
 First, let us define various possible modes/methods of providing fault tolerance (FT)

 Many other options beyond simply throwing triple-modular redundancy (TMR) at the problem
 Software FT vs. hardware FT concepts largely similar, differences only at implementation level
 Radiation-hardening not listed, falls under “prevention” as opposed to detection or correction

Detect
Correct

or
Mask

Fault-Tolerant
HLL (e.g. MPI)

FT-HLL

Concurrent Error
Detection

CED

Self-Checking
Pairs

SCP

Algorithm-Based
Fault-Tolerance

ABFT

Error Correction
Codes

ECC N-Version
Programming

NVP

Byzantine
Resilience

BR

Checkpointing
& Roll-back

CR

Software-Implemented
Fault Tolerance

SIFTN-Modular
Redundancy

NMR
Temporal and spatial

variants possible
for many techniques

Most of these FT
modes are currently
being used at UF

NASA/Honeywell/UF Project
 1st Space Supercomputer

 Funded by NASA NMP
 In-situ sensor processing
 Autonomous control
 Speedups of 100× to 1000×
 First fault-tolerant, parallel,

reconfigurable computer for space

 Infrastructure for fault-tolerant, high-
speed computing in space
 Robust system services
 Fault-tolerant MPI services
 Application services
 FPGA services
 Standard design framework
 Transparent API to resources for earth

& space scientists

NASA Dependable Multiprocessor (DM)

System
Controller

B

System
Controller

A
(RHPPC) Data

Processor
(PPC, FPGA)

#1

Spacecraft I /F Mission-Specific
Devices

Instruments

. . .
High-Speed Network A

Mission-Specific
Spacecraft Interface

Spacecraft I /F

Spacecraft I /F

High-Speed Network B

Data
Processor

(PPC, FPGA)
#N

Reconfigurable
Cluster

Computer

Dependable Multiprocessor
 DM System Architecture

 Dual system controllers
 Redundant radiation-hardened PPC

boards
 Monitor data processors’ health and

communicate with spacecraft
 Data processing engines

 High-performance, low-power COTS
SBCs running Linux

 PowerPC with AltiVec capabilities
 Optional FPGA co-processor for

additional performance
 Scalable to 20 data processing nodes

 Redundant Interconnect
 Dual GigE connections
 Automatically switch networks when error

is detected

 DM Middleware (DMM)
 FT System Services

 Manages status and health of multiple
concurrent jobs

 FT Embedded MPI (FEMPI)
 Lightweight subset of MPI
 Allows fault recovery without restarting an

entire parallel application
 Application & FPGA Services

 Commonly used libraries such as ATLAS,
FFTW, GSL

 Simplified, generic API for FPGA usage
 High-Availability Middleware

 Framework used to enable health
monitoring of cluster

DMM Components
 Mission Manager (MM)

 Controls high-level job deployment
 Facilitates replication of lower-level

jobs
 Spatial or temporal replication
 Automatically compares and validates

outputs

 Monitors real-time deadlines
 Enables roll-forward / roll-back when

faults occur
 Job Manager (JM)

 Controls low-level job deployment and
scheduling across system

 FT Manager (FTM)
 Manages low-level system faults (node

crash, job crash)

 JM Agent (JMA)
 Deploys and monitors

programs on given node
 Provides application “heartbeat” to

system controller

 Mass Data Store (MDS)
 Provides reliable centralized data services
 Enables reliable checkpointing

Hardened Processor COTS Packet-Switched Network COTS Processor

COTS OS and Drivers COTS OS and Drivers

Reliable Messaging Middleware

JM FTM

Reliable Messaging Middleware

JMA ASL

 JM – Job Manager FEMPI – Fault-Tolerant Embedded MPI
 JMA – Job Manager Agent ASL – Application Services Library
 FTM – Fault Tolerance Manager FCL – FPGA Coprocessor Library

Hardened System

COTS Data Processors

FCL FEMPI

MPI Application Process

Mission-Specific Parameters

Mission Manager

Space Applications
 Synthetic Aperture Radar (SAR)

 Used to form high-resolution images of Earth’s
surface from moving platform in space

 Patch-based processing with significant amount of
overlap between patch boundaries

 Parallelizable on multiple levels of granularity,
possible without need for any inter-processor
communication (one patch per node)

 2-dimensional data set, can range in size from
several hundred Megabytes to Gigabytes

 Data set not significantly reduced through course of
application

 Highly amenable to ABFT

Space Applications
 Hyperspectral Imaging (HSI)

 Uses traditional beamforming techniques to perform
coarse-grained classification on hyperspectral images

 Adjustable to enable real-time processing
 Mostly embarrassingly parallel, exception being weight

computation (shown in red below)
 3-dimensional data set
 Data set reduced through course of application
 Auto-correlation sample matrix (ACSM) calculation and

beamforming (detection) amenable to ABFT
 Suggest NMR for weight computation (weight)

Space Applications
 Cosmic Ray Elimination

 Uses image processing techniques to remove artifacts caused by
cosmic rays

 Image shows pre- and post-processed versions of a Hubble
Telescope observation

 Images are highly parallelizable, with minimal communication
necessary

 Main computation: median filtering
 Fault-tolerant median filter developed

 Other portions of algorithm replicated by hand or S2S translator

 Other aerospace-related application kernels
 Space-Time Adaptive Processing (STAP)
 Ground Moving Target Indicator (GMTI)
 Airborne LIDAR
 Digital Down Conversion (DDC)
 PDF Estimation

Application to Multicore Systems
 Original DM system designed around traditional single-core processors

 However, there are no limitations on architectures for data processor nodes
 Some nodes have special processing units (FPGAs, Altivec, etc.)

 Multicore data processors allow for decreased area footprint and high
performance

 Two possible use cases for multicore systems
 Use one core for communication with other processors

 “Master” core has a JMA to communicate health status to the system controller
 “Slave” cores communicate health status to “Master”

 Every core is able to communicate when needed
 Every core has a JMA for communicating with the system controller

 Necessary modifications
 Update Job Manager to enable efficient scheduling on a multicore system
 FT Manager must recognize locality

 An error on multiple cores may represent a single fault in a processor

12

Hybrid Fault Tolerance (HFT)
 Motivations for HFT

 One FT technique is not always
suitable for each application phase
 Mixing many techniques improves

performance
 Soft/hard-core processors used in

embedded need protection from
SEUs
 Radiation hardened parts are not

always the best solution
 Temporal techniques (e.g. repetition)

can be as effective as spatial

 Source-to-Source Translation
Framework
 Reliability of a program can be

significantly improved by
transforming the source code before
compilation
 Decreased overhead
 More control over FT techniques

Source-to-Source
Translation
Framework

Hybrid
Fault

Tolerance

Fault
Injection

Effectiveness of
Hardware ABFT

Improved
Metrics

Advanced ABFT
and Coding

FT Method
Transitions

 Fault Injection
 Using particle accelerators

characterize FT application during
development is expensive, lacks
coverage and is time consuming

 Portable tools are needed to
accelerate this process by emulating
faults through software fault injection

13

HFT through S2S Translation
 Most science applications are

inherently non-fault-tolerant
 Requires SIFT framework to handle

failures due to SEU
 Most of those failures can be mitigated

by properly modifying the source code
of the application

FT augmentation:
Consistency Check

FT augmentation:
Variable Replication

Automation
increases productivity

 Source-to-Source Translator
 FT S2S translator takes HLL source

code as input, outputs FT-augmented
HLL code
 Compiler-independent

 Goals of S2S Tool
 Accepts C source files as inputs
 Generates fault tolerant C source code
 Use fine- and coarse-grain NMR

approach to improve reliability and
dependability

 Provides means of control flow
checking (CFC) through software

 Minimizes number of undetected errors
 Error detection is very important do

ensure dependability of the output
 Error correction useful for performance

(error recovery) but not always necessary
 Can be used on embedded and soft-

core processors as well as on standard
platforms

S2S Tool
 Software Structure

 Code Parsing and AST Generation
 Multiple AST transformations

 Stacking multiple transformations will allow
for customizable levels of FT

 Code Generation
 Tool is currently in development

 Written in Java for portability
 Uses popular ANTLR 3.1 parser/lexer

generator for grammar generation
 Envisioned Transformation options

 Variable and function replication
 Memory duplication or memory

encoding
 Memory and Variable Consistency Checks
 Post- and pre-branch condition evaluation
 Block protection
 Advanced ABFT and coding techniques

Input Parsing

AST
Generation

FT
Augmentation

Variable Rep.
int x = 42;
int x_1 = 42;
Int x_2 = 42;

Memory Rep.
short y[21];
short y_1[21];
short *z = malloc(21*2);
short *z__1 = malloc(21*2);

Consistency Ck.
verInt2(&x, &x_1);
verShort2(&y, &y_1);

Code
Generation

15

Fault Injection Results
 Preliminary case studies

 Two algorithms which showcase
computational density and complex
control flow patterns

 10000 faults injected for each test
 LU Decomposition (SCP)

 Overhead of 130% for 500x500
size matrix

 Only 2.65% errors are undetected
 Matrix Multiply (partial TMR)

 Correction is not supported for all
constructs due to temporary tool
limitations

 Overhead of 162% for 400x400
size matrix

 Only 4.07% errors are undetected
 Adaptation for ABFT in future

Case Study Number of
Injections

Execution
Overhead

Undetected
Errors

LU Decomposition
with no FT 10000 -- 15.24%

LU Decomposition
with SCP 10000 ~130% 2.65%

Matrix Multiply
with no FT 10000 -- 10.24%

Matrix Multiply
with partial TMR 10000 ~162% 4.07%

 Testing Methodology
 Faults are randomly distributed

over runtime of the program
 Output of each run is compared to

established gold standard
 Targeted registers

 Control Register
 Floating Point Registers (F0-F31)
 Integer Registers (R0-R31)

SPFI – Simple Portable Fault Injector
 Motivations

 Alternatives to expensive radiation
testing are needed

 Current tools are rigid and tied to
specific platforms

 SPFI
 New fault injector designed with

simplicity and portability in mind
 Employs GDB to provide portable

solution for uP fault injection

APP

SPFI
Core

GDB

VP

SPFI Application
Control

Output
Data

Verification
Results

Campaign
Managment

Log
File

 SPFI System Components
 SPFI Core

 Logging Engine
 Campaign Manger
 GDB Controller
 Fault injection

 VP – Verification Program
 User plug-in to verify the

results of the injections
 GDB – GNU Debugger

 Memory and register
manipulation

 Breakpoint management
 Application control

 APP
 User provide application

subject to fault injection
 Portable

 Any system that supports
standard GDB

SPFI - Injection Modes
 Injection Modes

 Breakpoint based
 Breakpoints are set in predetermined locations in the program
 Injections occurs when breakpoint is reached
 Repeatable results
 Breakpoints can be set anywhere in writable program memory (even

shared objects)
 Timer based

 Breakpoint is issued after predetermined amount of time has elapsed
 Closely resembles how SEU’s occur
 Every test is different even if the parameters are the same due to

granularity of the timing mechanisms and communication latencies
 Knowledge where the error is injected is available through GDB

 Injections Targets
 Registers – Integer, Floating Point, Control, Altivec – More likely target

for SEU’s as registers lack protection
 Memory – Anywhere within processes space – Less likely target for

SEU’s as memory is usually protected by hardware FT schemes

Application to Multicore Systems
 Hybrid Fault Tolerance

 Multitude of FT methods are available
 Both spatial and temporal methods can be easily used
 Different cores could use different methods to compute same result

 Source-to-Source Translation
 If standard ANCI C is used on the platform S2S tool could provide

rapid way for providing FT for single and multcore applications
 Adaptations would be required in order to handle special communication

functions
 Fault Injection

 Many multicore systems use GDB derivatives as a method of
debugging

 SPFI could be adapted to provide FI capabilities
 Multicore applications
 Ability to select which or how many cores are targeted

19

Conclusions
 Fault tolerance for space should be more than RadHard

components & spatial TMR designs
 Fixed worst-case designs extremely limited in perf/Watt
 Instead, many FT methods & modes can be exploited
 Adaptive systems that react to environmental changes
 COTS featured inside critical performance path
 RadHard for FT management, outside critical perf. path

 UF active on many space-related FT issues
 NASA Dependable Multiprocessor, CHREC HFT F6-09
 Modes: SIFT, ABFT, S2S, FEMPI, CR, CED, etc.
 Devices: PPC/AV, FPGA, FPOA, Tilera, ElementCXi, etc.
 Space apps: HSI, SAR, LIDAR, GMTI, CRE, et al.

	SMCIT09-F6
	SMC-IT_Presentation_Final
	Adaptive Software-based Fault Tolerance for Space Multicore Processing
	Outline
	Overview
	Taxonomy of Fault Tolerance
	NASA/Honeywell/UF Project
	Dependable Multiprocessor
	DMM Components
	Space Applications
	Space Applications
	Space Applications
	Application to Multicore Systems
	Hybrid Fault Tolerance (HFT)
	HFT through S2S Translation
	S2S Tool
	Fault Injection Results
	SPFI – Simple Portable Fault Injector
	SPFI - Injection Modes
	Application to Multicore Systems
	Conclusions

