
Adaptive Software-based Fault Tolerance
for Space Multicore Processing

Adam Jacobs, Grzegorz Cieslewski, Alan D. George

NSF Center for High-Performance Reconfigurable Computing (CHREC) 1
ECE Department, University of Florida
{jacobs, cieslewski, george}@chrec.org

Increasing demand for high-performance computing in space, coupled with limitations of
device-level methods for SEU mitigation, are driving innovations in advanced space
computing with system- and application-level fault tolerance. As devices increasingly feature
multicore architectures, the space community must adapt and incorporate these devices into
future missions. These multicore devices are an increasingly attractive option for processing
in space-based systems due to their inherent advantages in performance, scalability, energy
efficiency, size, and cost, but with them come challenges in attaining optimal performability.
This presentation will highlight research activities at the University of Florida from two
recent projects on this path, the NASA Dependable Multiprocessor (DM) developed at
Florida and Honeywell, and the hybrid fault tolerance (HFT) framework of CHREC.

The NASA Dependable Multiprocessor project features a multitude of system- and
application-level techniques for fault tolerance to protect the system from SEU-induced
errors, much of which is applicable to the needs of space multicore processing. The DM
system consists of primary and secondary RadHard system controllers and a suite of COTS-
based, data-processing boards featuring PPC, AltiVec, and FPGA processors, all connected
through Gigabit Ethernet, similar to many traditional supercomputing clusters. Fault
tolerance in DM can adapt to environmental radiation conditions, with an array of disparate
and flexible modes, including SIFT at the highest level via high-availability middleware with
manager and agent processes running on RadHard and COTS microprocessor technologies,
respectively, along with a variety of modes for fault tolerance operating underneath, many
available in either spatial or temporal form. The high-availability middleware manages the
health and status of multiple concurrent jobs, taking corrective action when necessary.
Application-level communication between nodes is facilitated through the use of Fault-
Tolerant Embedded MPI (FEMPI), allowing for the recovery of a parallel job without the
need to completely restart the application. Application-level techniques for fault tolerance,
such as replication, algorithm-based fault tolerance, and checkpoint/rollback are also
featured and examined with a range of applications including LU decomposition, 2D-FFT,
synthetic aperture radar, and hyperspectral imaging.

The hybrid fault tolerance or HFT framework is a new component in an on-going research
project of CHREC entitled F6-09, Reconfigurable and Hybrid Fault Tolerance. One of the
tasks in current work on HFT that is applicable to the needs of space multicore processing is
a new method of protecting microprocessor cores from SEU-induced errors via automated
source-to-source (S2S) translation with high productivity. Replication embedded in the
application program instructs the processor to perform redundant calculations. These
calculations can then be compared and/or voted upon to detect and/or correct errors

1 This work was supported in part by the I/UCRC Program of the National Science Foundation under Grant No. EEC-0642422.

automatically. Through the use of S2S translation, we present a method of performing this
replication through a high-level language (in this case, C). A translator would take an input
program source code and output a fault-tolerant version of the same program (with very
little or no user intervention) that could then be compiled with any valid compiler.
Additionally, we are exploring methods for software-based fault injection to examine the
reliability of various microprocessor devices and the efficiency of newly proposed FT
methods for them. Our simple, portable fault injector (SPFI) allows us to emulate SEUs by
injecting errors directly into processor registers of each processor core. The injector
software can work with any system that supports the GNU debugger, making the tool highly
portable. This approach allows us to quickly inject faults, test behavior, and estimate error
rates expected without the need for expensive radiation testing at each step.

Space Multicore Workshop

July 19-21, 2009

Adaptive Software-based Fault Tolerance
for Space Multicore Processing

Adam Jacobs
Grzegorz Cieslewski

Research Students
University of Florida

Dr. Alan D. George
Professor of ECE

University of Florida

Outline
 Overview

 Taxonomy of fault tolerance
 Dependable Multiprocessor

 Hardware Infrastructure
 Software Infrastructure
 Possible DM Applications

 Hybrid Fault Tolerance (HFT)
 Goals, motivations, and challenges
 Source-to-Source Translation

 Simple, Portable, Fault Injector (SPFI)
 Conclusions

Overview
 What is advanced space computing?

 New concepts, methods, and technologies to enable and deploy high-performance computing in
space – for an increasing variety of missions and applications

 Why is advanced space computing vital?
 On-board data processing

 Downlink bandwidth to Earth is extremely limited
 Sensor data rates, resolutions, and modes are dramatically increasing
 Remote data processing from Earth is no longer viable
 Must process sensor data where it is captured, then downlink results

 On-board autonomous processing & control
 Remote control from Earth is often not viable
 Propagation delays and bandwidth limits are insurmountable
 Space vehicles and space-delivered vehicles require autonomy
 Autonomy requires high-speed computing for decision-making

 Why is it difficult to achieve?
 Cannot simply strap a Cray to a rocket!

 Hazardous radiation environment in space
 Platforms with limited power, weight, size, cooling, etc.
 Traditional space processing technologies (RadHard) are severely limited

 Potential for long mission times with diverse set of needs
 Need powerful yet adaptive technologies
 Must ensure high levels of reliability and availability

Taxonomy of Fault Tolerance
 First, let us define various possible modes/methods of providing fault tolerance (FT)

 Many other options beyond simply throwing triple-modular redundancy (TMR) at the problem
 Software FT vs. hardware FT concepts largely similar, differences only at implementation level
 Radiation-hardening not listed, falls under “prevention” as opposed to detection or correction

Detect
Correct

or
Mask

Fault-Tolerant
HLL (e.g. MPI)

FT-HLL

Concurrent Error
Detection

CED

Self-Checking
Pairs

SCP

Algorithm-Based
Fault-Tolerance

ABFT

Error Correction
Codes

ECC N-Version
Programming

NVP

Byzantine
Resilience

BR

Checkpointing
& Roll-back

CR

Software-Implemented
Fault Tolerance

SIFTN-Modular
Redundancy

NMR
Temporal and spatial

variants possible
for many techniques

Most of these FT
modes are currently
being used at UF

NASA/Honeywell/UF Project
 1st Space Supercomputer

 Funded by NASA NMP
 In-situ sensor processing
 Autonomous control
 Speedups of 100× to 1000×
 First fault-tolerant, parallel,

reconfigurable computer for space

 Infrastructure for fault-tolerant, high-
speed computing in space
 Robust system services
 Fault-tolerant MPI services
 Application services
 FPGA services
 Standard design framework
 Transparent API to resources for earth

& space scientists

NASA Dependable Multiprocessor (DM)

System
Controller

B

System
Controller

A
(RHPPC) Data

Processor
(PPC, FPGA)

#1

Spacecraft I /F Mission-Specific
Devices

Instruments

. . .
High-Speed Network A

Mission-Specific
Spacecraft Interface

Spacecraft I /F

Spacecraft I /F

High-Speed Network B

Data
Processor

(PPC, FPGA)
#N

Reconfigurable
Cluster

Computer

Dependable Multiprocessor
 DM System Architecture

 Dual system controllers
 Redundant radiation-hardened PPC

boards
 Monitor data processors’ health and

communicate with spacecraft
 Data processing engines

 High-performance, low-power COTS
SBCs running Linux

 PowerPC with AltiVec capabilities
 Optional FPGA co-processor for

additional performance
 Scalable to 20 data processing nodes

 Redundant Interconnect
 Dual GigE connections
 Automatically switch networks when error

is detected

 DM Middleware (DMM)
 FT System Services

 Manages status and health of multiple
concurrent jobs

 FT Embedded MPI (FEMPI)
 Lightweight subset of MPI
 Allows fault recovery without restarting an

entire parallel application
 Application & FPGA Services

 Commonly used libraries such as ATLAS,
FFTW, GSL

 Simplified, generic API for FPGA usage
 High-Availability Middleware

 Framework used to enable health
monitoring of cluster

DMM Components
 Mission Manager (MM)

 Controls high-level job deployment
 Facilitates replication of lower-level

jobs
 Spatial or temporal replication
 Automatically compares and validates

outputs

 Monitors real-time deadlines
 Enables roll-forward / roll-back when

faults occur
 Job Manager (JM)

 Controls low-level job deployment and
scheduling across system

 FT Manager (FTM)
 Manages low-level system faults (node

crash, job crash)

 JM Agent (JMA)
 Deploys and monitors

programs on given node
 Provides application “heartbeat” to

system controller

 Mass Data Store (MDS)
 Provides reliable centralized data services
 Enables reliable checkpointing

Hardened Processor COTS Packet-Switched Network COTS Processor

COTS OS and Drivers COTS OS and Drivers

Reliable Messaging Middleware

JM FTM

Reliable Messaging Middleware

JMA ASL

 JM – Job Manager FEMPI – Fault-Tolerant Embedded MPI
 JMA – Job Manager Agent ASL – Application Services Library
 FTM – Fault Tolerance Manager FCL – FPGA Coprocessor Library

Hardened System

COTS Data Processors

FCL FEMPI

MPI Application Process

Mission-Specific Parameters

Mission Manager

Space Applications
 Synthetic Aperture Radar (SAR)

 Used to form high-resolution images of Earth’s
surface from moving platform in space

 Patch-based processing with significant amount of
overlap between patch boundaries

 Parallelizable on multiple levels of granularity,
possible without need for any inter-processor
communication (one patch per node)

 2-dimensional data set, can range in size from
several hundred Megabytes to Gigabytes

 Data set not significantly reduced through course of
application

 Highly amenable to ABFT

Space Applications
 Hyperspectral Imaging (HSI)

 Uses traditional beamforming techniques to perform
coarse-grained classification on hyperspectral images

 Adjustable to enable real-time processing
 Mostly embarrassingly parallel, exception being weight

computation (shown in red below)
 3-dimensional data set
 Data set reduced through course of application
 Auto-correlation sample matrix (ACSM) calculation and

beamforming (detection) amenable to ABFT
 Suggest NMR for weight computation (weight)

Space Applications
 Cosmic Ray Elimination

 Uses image processing techniques to remove artifacts caused by
cosmic rays

 Image shows pre- and post-processed versions of a Hubble
Telescope observation

 Images are highly parallelizable, with minimal communication
necessary

 Main computation: median filtering
 Fault-tolerant median filter developed

 Other portions of algorithm replicated by hand or S2S translator

 Other aerospace-related application kernels
 Space-Time Adaptive Processing (STAP)
 Ground Moving Target Indicator (GMTI)
 Airborne LIDAR
 Digital Down Conversion (DDC)
 PDF Estimation

Application to Multicore Systems
 Original DM system designed around traditional single-core processors

 However, there are no limitations on architectures for data processor nodes
 Some nodes have special processing units (FPGAs, Altivec, etc.)

 Multicore data processors allow for decreased area footprint and high
performance

 Two possible use cases for multicore systems
 Use one core for communication with other processors

 “Master” core has a JMA to communicate health status to the system controller
 “Slave” cores communicate health status to “Master”

 Every core is able to communicate when needed
 Every core has a JMA for communicating with the system controller

 Necessary modifications
 Update Job Manager to enable efficient scheduling on a multicore system
 FT Manager must recognize locality

 An error on multiple cores may represent a single fault in a processor

12

Hybrid Fault Tolerance (HFT)
 Motivations for HFT

 One FT technique is not always
suitable for each application phase
 Mixing many techniques improves

performance
 Soft/hard-core processors used in

embedded need protection from
SEUs
 Radiation hardened parts are not

always the best solution
 Temporal techniques (e.g. repetition)

can be as effective as spatial

 Source-to-Source Translation
Framework
 Reliability of a program can be

significantly improved by
transforming the source code before
compilation
 Decreased overhead
 More control over FT techniques

Source-to-Source
Translation
Framework

Hybrid
Fault

Tolerance

Fault
Injection

Effectiveness of
Hardware ABFT

Improved
Metrics

Advanced ABFT
and Coding

FT Method
Transitions

 Fault Injection
 Using particle accelerators

characterize FT application during
development is expensive, lacks
coverage and is time consuming

 Portable tools are needed to
accelerate this process by emulating
faults through software fault injection

13

HFT through S2S Translation
 Most science applications are

inherently non-fault-tolerant
 Requires SIFT framework to handle

failures due to SEU
 Most of those failures can be mitigated

by properly modifying the source code
of the application

FT augmentation:
Consistency Check

FT augmentation:
Variable Replication

Automation
increases productivity

 Source-to-Source Translator
 FT S2S translator takes HLL source

code as input, outputs FT-augmented
HLL code
 Compiler-independent

 Goals of S2S Tool
 Accepts C source files as inputs
 Generates fault tolerant C source code
 Use fine- and coarse-grain NMR

approach to improve reliability and
dependability

 Provides means of control flow
checking (CFC) through software

 Minimizes number of undetected errors
 Error detection is very important do

ensure dependability of the output
 Error correction useful for performance

(error recovery) but not always necessary
 Can be used on embedded and soft-

core processors as well as on standard
platforms

S2S Tool
 Software Structure

 Code Parsing and AST Generation
 Multiple AST transformations

 Stacking multiple transformations will allow
for customizable levels of FT

 Code Generation
 Tool is currently in development

 Written in Java for portability
 Uses popular ANTLR 3.1 parser/lexer

generator for grammar generation
 Envisioned Transformation options

 Variable and function replication
 Memory duplication or memory

encoding
 Memory and Variable Consistency Checks
 Post- and pre-branch condition evaluation
 Block protection
 Advanced ABFT and coding techniques

Input Parsing

AST
Generation

FT
Augmentation

Variable Rep.
int x = 42;
int x_1 = 42;
Int x_2 = 42;

Memory Rep.
short y[21];
short y_1[21];
short *z = malloc(21*2);
short *z__1 = malloc(21*2);

Consistency Ck.
verInt2(&x, &x_1);
verShort2(&y, &y_1);

Code
Generation

15

Fault Injection Results
 Preliminary case studies

 Two algorithms which showcase
computational density and complex
control flow patterns

 10000 faults injected for each test
 LU Decomposition (SCP)

 Overhead of 130% for 500x500
size matrix

 Only 2.65% errors are undetected
 Matrix Multiply (partial TMR)

 Correction is not supported for all
constructs due to temporary tool
limitations

 Overhead of 162% for 400x400
size matrix

 Only 4.07% errors are undetected
 Adaptation for ABFT in future

Case Study Number of
Injections

Execution
Overhead

Undetected
Errors

LU Decomposition
with no FT 10000 -- 15.24%

LU Decomposition
with SCP 10000 ~130% 2.65%

Matrix Multiply
with no FT 10000 -- 10.24%

Matrix Multiply
with partial TMR 10000 ~162% 4.07%

 Testing Methodology
 Faults are randomly distributed

over runtime of the program
 Output of each run is compared to

established gold standard
 Targeted registers

 Control Register
 Floating Point Registers (F0-F31)
 Integer Registers (R0-R31)

SPFI – Simple Portable Fault Injector
 Motivations

 Alternatives to expensive radiation
testing are needed

 Current tools are rigid and tied to
specific platforms

 SPFI
 New fault injector designed with

simplicity and portability in mind
 Employs GDB to provide portable

solution for uP fault injection

APP

SPFI
Core

GDB

VP

SPFI Application
Control

Output
Data

Verification
Results

Campaign
Managment

Log
File

 SPFI System Components
 SPFI Core

 Logging Engine
 Campaign Manger
 GDB Controller
 Fault injection

 VP – Verification Program
 User plug-in to verify the

results of the injections
 GDB – GNU Debugger

 Memory and register
manipulation

 Breakpoint management
 Application control

 APP
 User provide application

subject to fault injection
 Portable

 Any system that supports
standard GDB

SPFI - Injection Modes
 Injection Modes

 Breakpoint based
 Breakpoints are set in predetermined locations in the program
 Injections occurs when breakpoint is reached
 Repeatable results
 Breakpoints can be set anywhere in writable program memory (even

shared objects)
 Timer based

 Breakpoint is issued after predetermined amount of time has elapsed
 Closely resembles how SEU’s occur
 Every test is different even if the parameters are the same due to

granularity of the timing mechanisms and communication latencies
 Knowledge where the error is injected is available through GDB

 Injections Targets
 Registers – Integer, Floating Point, Control, Altivec – More likely target

for SEU’s as registers lack protection
 Memory – Anywhere within processes space – Less likely target for

SEU’s as memory is usually protected by hardware FT schemes

Application to Multicore Systems
 Hybrid Fault Tolerance

 Multitude of FT methods are available
 Both spatial and temporal methods can be easily used
 Different cores could use different methods to compute same result

 Source-to-Source Translation
 If standard ANCI C is used on the platform S2S tool could provide

rapid way for providing FT for single and multcore applications
 Adaptations would be required in order to handle special communication

functions
 Fault Injection

 Many multicore systems use GDB derivatives as a method of
debugging

 SPFI could be adapted to provide FI capabilities
 Multicore applications
 Ability to select which or how many cores are targeted

19

Conclusions
 Fault tolerance for space should be more than RadHard

components & spatial TMR designs
 Fixed worst-case designs extremely limited in perf/Watt
 Instead, many FT methods & modes can be exploited
 Adaptive systems that react to environmental changes
 COTS featured inside critical performance path
 RadHard for FT management, outside critical perf. path

 UF active on many space-related FT issues
 NASA Dependable Multiprocessor, CHREC HFT F6-09
 Modes: SIFT, ABFT, S2S, FEMPI, CR, CED, etc.
 Devices: PPC/AV, FPGA, FPOA, Tilera, ElementCXi, etc.
 Space apps: HSI, SAR, LIDAR, GMTI, CRE, et al.

	SMCIT09-F6
	SMC-IT_Presentation_Final
	Adaptive Software-based Fault Tolerance for Space Multicore Processing
	Outline
	Overview
	Taxonomy of Fault Tolerance
	NASA/Honeywell/UF Project
	Dependable Multiprocessor
	DMM Components
	Space Applications
	Space Applications
	Space Applications
	Application to Multicore Systems
	Hybrid Fault Tolerance (HFT)
	HFT through S2S Translation
	S2S Tool
	Fault Injection Results
	SPFI – Simple Portable Fault Injector
	SPFI - Injection Modes
	Application to Multicore Systems
	Conclusions

