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Increasing demand for high-performance computing in space, coupled with limitations of 
device-level methods for SEU mitigation, are driving innovations in advanced space 
computing with system- and application-level fault tolerance.  As devices increasingly feature 
multicore architectures, the space community must adapt and incorporate these devices into 
future missions.  These multicore devices are an increasingly attractive option for processing 
in space-based systems due to their inherent advantages in performance, scalability, energy 
efficiency, size, and cost, but with them come challenges in attaining optimal performability.  
This presentation will highlight research activities at the University of Florida from two 
recent projects on this path, the NASA Dependable Multiprocessor (DM) developed at 
Florida and Honeywell, and the hybrid fault tolerance (HFT) framework of CHREC.  

The NASA Dependable Multiprocessor project features a multitude of system- and 
application-level techniques for fault tolerance to protect the system from SEU-induced 
errors, much of which is applicable to the needs of space multicore processing.  The DM 
system consists of primary and secondary RadHard system controllers and a suite of COTS-
based, data-processing boards featuring PPC, AltiVec, and FPGA processors, all connected 
through Gigabit Ethernet, similar to many traditional supercomputing clusters. Fault 
tolerance in DM can adapt to environmental radiation conditions, with an array of disparate 
and flexible modes, including SIFT at the highest level via high-availability middleware with 
manager and agent processes running on RadHard and COTS microprocessor technologies, 
respectively, along with a variety of modes for fault tolerance operating underneath, many 
available in either spatial or temporal form.  The high-availability middleware manages the 
health and status of multiple concurrent jobs, taking corrective action when necessary.  
Application-level communication between nodes is facilitated through the use of Fault-
Tolerant Embedded MPI (FEMPI), allowing for the recovery of a parallel job without the 
need to completely restart the application.  Application-level techniques for fault tolerance, 
such as replication, algorithm-based fault tolerance, and checkpoint/rollback are also 
featured and examined with a range of applications including LU decomposition, 2D-FFT, 
synthetic aperture radar, and hyperspectral imaging.   

The hybrid fault tolerance or HFT framework is a new component in an on-going research 
project of CHREC entitled F6-09, Reconfigurable and Hybrid Fault Tolerance.  One of the 
tasks in current work on HFT that is applicable to the needs of space multicore processing is 
a new method of protecting microprocessor cores from SEU-induced errors via automated 
source-to-source (S2S) translation with high productivity.  Replication embedded in the 
application program instructs the processor to perform redundant calculations.  These 
calculations can then be compared and/or voted upon to detect and/or correct errors 
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automatically.  Through the use of S2S translation, we present a method of performing this 
replication through a high-level language (in this case, C).  A translator would take an input 
program source code and output a fault-tolerant version of the same program (with very 
little or no user intervention) that could then be compiled with any valid compiler.  
Additionally, we are exploring methods for software-based fault injection to examine the 
reliability of various microprocessor devices and the efficiency of newly proposed FT 
methods for them.  Our simple, portable fault injector (SPFI) allows us to emulate SEUs by 
injecting errors directly into processor registers of each processor core.  The injector 
software can work with any system that supports the GNU debugger, making the tool highly 
portable.  This approach allows us to quickly inject faults, test behavior, and estimate error 
rates expected without the need for expensive radiation testing at each step.   
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Overview
 What is advanced space computing?

 New concepts, methods, and technologies to enable and deploy high-performance computing in 
space – for an increasing variety of missions and applications

 Why is advanced space computing vital?
 On-board data processing

 Downlink bandwidth to Earth is extremely limited
 Sensor data rates, resolutions, and modes are dramatically increasing
 Remote data processing from Earth is no longer viable
 Must process sensor data where it is captured, then downlink results

 On-board autonomous processing & control
 Remote control from Earth is often not viable
 Propagation delays and bandwidth limits are insurmountable
 Space vehicles and space-delivered vehicles require autonomy
 Autonomy requires high-speed computing for decision-making

 Why is it difficult to achieve?
 Cannot simply strap a Cray to a rocket!

 Hazardous radiation environment in space
 Platforms with limited power, weight, size, cooling, etc.
 Traditional space processing technologies (RadHard) are severely limited

 Potential for long mission times with diverse set of needs
 Need powerful yet adaptive technologies
 Must ensure high levels of reliability and availability



Taxonomy of Fault Tolerance
 First, let us define various possible modes/methods of providing fault tolerance (FT)

 Many other options beyond simply throwing triple-modular redundancy (TMR) at the problem
 Software FT vs. hardware FT concepts largely similar, differences only at implementation level
 Radiation-hardening not listed, falls under “prevention” as opposed to detection or correction
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NASA/Honeywell/UF Project
 1st Space Supercomputer

 Funded by NASA NMP
 In-situ sensor processing
 Autonomous control
 Speedups of 100× to 1000×
 First fault-tolerant, parallel, 

reconfigurable computer for space

 Infrastructure for fault-tolerant, high-
speed computing in space
 Robust system services
 Fault-tolerant MPI services
 Application services
 FPGA services
 Standard design framework
 Transparent API to resources for earth 

& space scientists
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Dependable Multiprocessor
 DM System Architecture

 Dual system controllers
 Redundant radiation-hardened PPC 

boards
 Monitor data processors’ health and 

communicate with spacecraft
 Data processing engines

 High-performance, low-power COTS 
SBCs running Linux

 PowerPC with AltiVec capabilities
 Optional FPGA co-processor for 

additional performance
 Scalable to 20 data processing nodes

 Redundant Interconnect
 Dual GigE connections
 Automatically switch networks when error 

is detected

 DM Middleware (DMM)
 FT System Services

 Manages status and health of multiple 
concurrent jobs

 FT Embedded MPI (FEMPI)
 Lightweight subset of MPI
 Allows fault recovery without restarting an 

entire parallel application
 Application & FPGA Services

 Commonly used libraries such as ATLAS, 
FFTW, GSL

 Simplified, generic API for FPGA usage
 High-Availability Middleware

 Framework used to enable health 
monitoring of cluster



DMM Components
 Mission Manager (MM)

 Controls high-level job deployment 
 Facilitates replication of lower-level 

jobs
 Spatial or temporal replication
 Automatically compares and validates 

outputs

 Monitors real-time deadlines
 Enables roll-forward / roll-back when 

faults occur
 Job Manager (JM)

 Controls low-level job deployment and 
scheduling across system

 FT Manager (FTM)
 Manages low-level system faults (node 

crash, job crash)

 JM Agent (JMA)
 Deploys and monitors

programs on given node
 Provides application “heartbeat”   to 

system controller

 Mass Data Store (MDS)
 Provides reliable centralized data services
 Enables reliable checkpointing

Hardened Processor COTS Packet-Switched Network COTS Processor

COTS OS and Drivers COTS OS and Drivers

Reliable Messaging Middleware

JM FTM

Reliable Messaging Middleware

JMA ASL

  JM – Job Manager                          FEMPI – Fault-Tolerant Embedded MPI
  JMA – Job Manager Agent                      ASL – Application Services Library
  FTM – Fault Tolerance Manager              FCL – FPGA Coprocessor Library

Hardened System

COTS Data Processors

FCL FEMPI

MPI Application Process

Mission-Specific Parameters

Mission Manager



Space Applications
 Synthetic Aperture Radar (SAR)

 Used to form high-resolution images of Earth’s 
surface from moving platform in space

 Patch-based processing with significant amount of 
overlap between patch boundaries

 Parallelizable on multiple levels of granularity, 
possible without need for any inter-processor 
communication (one patch per node)

 2-dimensional data set, can range in size from 
several hundred Megabytes to Gigabytes

 Data set not significantly reduced through course of 
application

 Highly amenable to ABFT



Space Applications
 Hyperspectral Imaging (HSI)

 Uses traditional beamforming techniques to perform 
coarse-grained classification on hyperspectral images

 Adjustable to enable real-time processing
 Mostly embarrassingly parallel, exception being weight 

computation (shown in red below)
 3-dimensional data set
 Data set reduced through course of application
 Auto-correlation sample matrix (ACSM) calculation and 

beamforming (detection) amenable to ABFT
 Suggest NMR for weight computation (weight)



Space Applications
 Cosmic Ray Elimination

 Uses image processing techniques to remove artifacts caused by 
cosmic rays

 Image shows pre- and post-processed versions of a Hubble 
Telescope observation

 Images are highly parallelizable, with minimal communication 
necessary

 Main computation: median filtering
 Fault-tolerant median filter developed

 Other portions of algorithm replicated by hand or S2S translator

 Other aerospace-related application kernels
 Space-Time Adaptive Processing (STAP)
 Ground Moving Target Indicator (GMTI)
 Airborne LIDAR
 Digital Down Conversion (DDC)
 PDF Estimation



Application to Multicore Systems
 Original DM system designed around traditional single-core processors

 However, there are no limitations on architectures for data processor nodes
 Some nodes have special processing units (FPGAs, Altivec, etc.)

 Multicore data processors allow for decreased area footprint and high 
performance

 Two possible use cases for multicore systems
 Use one core for communication with other processors

 “Master” core has a JMA to communicate health status to the system controller
 “Slave” cores communicate health status to “Master”

 Every core is able to communicate when needed
 Every core has a JMA for communicating with the system controller

 Necessary modifications
 Update Job Manager to enable efficient scheduling on a multicore system
 FT Manager must recognize locality

 An error on multiple cores may represent a single fault in a processor
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Hybrid Fault Tolerance (HFT)
 Motivations for HFT

 One FT technique is not always 
suitable for each application phase
 Mixing many techniques improves 

performance
 Soft/hard-core processors used in 

embedded need protection from 
SEUs
 Radiation hardened parts are not 

always the best solution
 Temporal techniques (e.g. repetition) 

can be as effective as spatial

 Source-to-Source Translation 
Framework
 Reliability of a program can be 

significantly improved by 
transforming the source code before 
compilation
 Decreased overhead
 More control over FT techniques

Source-to-Source 
Translation 
Framework

Hybrid
Fault

Tolerance

Fault
Injection

Effectiveness of 
Hardware ABFT 

Improved
Metrics

Advanced ABFT 
and Coding

FT Method 
Transitions

 Fault Injection
 Using particle accelerators 

characterize FT application during 
development is expensive, lacks 
coverage and is time consuming

 Portable tools are needed to 
accelerate this process by emulating 
faults through software fault injection



13

HFT through S2S Translation
 Most science applications are 

inherently non-fault-tolerant
 Requires SIFT framework to handle 

failures due to SEU
 Most of those failures can be mitigated 

by properly modifying the source code 
of the application

FT augmentation:
Consistency Check

FT augmentation:
Variable Replication

Automation
increases productivity

 Source-to-Source Translator
 FT S2S translator takes HLL source 

code as input, outputs FT-augmented 
HLL code
 Compiler-independent

 Goals of S2S Tool
 Accepts C source files as inputs
 Generates fault tolerant C source code
 Use fine- and coarse-grain NMR 

approach to improve reliability and 
dependability

 Provides means of control flow 
checking (CFC) through software

 Minimizes number of undetected errors
 Error detection is very important do 

ensure dependability of the output
 Error correction useful for performance 

(error recovery) but not always necessary
 Can be used on embedded and soft-

core processors as well as on standard 
platforms



S2S Tool
 Software Structure

 Code Parsing and AST Generation
 Multiple AST transformations

 Stacking multiple transformations will allow 
for customizable levels of FT

 Code Generation
 Tool is currently in development

 Written in Java for portability
 Uses popular ANTLR 3.1 parser/lexer 

generator for grammar generation
 Envisioned Transformation options

 Variable  and function replication
 Memory duplication or memory 

encoding
 Memory and Variable Consistency Checks
 Post- and pre-branch condition evaluation
 Block protection
 Advanced ABFT and coding techniques

Input Parsing

AST
Generation

FT
Augmentation

Variable Rep.
int x = 42; 
int x_1 = 42;
Int x_2 = 42;

Memory Rep.
short y[21]; 
short y_1[21];
short *z = malloc(21*2);
short *z__1 = malloc(21*2);

Consistency Ck.
verInt2(&x, &x_1);
verShort2(&y, &y_1);

Code
Generation
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Fault Injection Results
 Preliminary case studies

 Two algorithms which showcase 
computational density and complex 
control flow patterns

 10000 faults injected for each test
 LU Decomposition (SCP)

 Overhead of 130% for 500x500 
size matrix

 Only 2.65% errors are undetected
 Matrix Multiply (partial TMR)

 Correction is not supported for all 
constructs due to temporary tool 
limitations

 Overhead of 162% for 400x400 
size matrix

 Only 4.07% errors are undetected
 Adaptation for ABFT in future

Case Study Number of 
Injections

Execution 
Overhead

Undetected
Errors

LU Decomposition 
with no FT 10000 -- 15.24%

LU Decomposition 
with SCP 10000 ~130% 2.65%

Matrix Multiply 
with no FT 10000 -- 10.24%

Matrix Multiply 
with partial TMR 10000 ~162% 4.07%

 Testing Methodology
 Faults are randomly distributed 

over runtime of the program
 Output of each run is compared to 

established gold standard
 Targeted registers

 Control Register
 Floating Point Registers (F0-F31)
 Integer Registers (R0-R31)



SPFI – Simple Portable Fault Injector
 Motivations

 Alternatives to expensive radiation 
testing are needed

 Current tools are rigid and tied to 
specific platforms

 SPFI
 New fault injector designed with 

simplicity and portability in mind
 Employs GDB to provide portable 

solution for uP fault injection

APP

SPFI
Core

GDB

VP

SPFI Application
Control

Output
Data

Verification
Results

Campaign
Managment

Log
File

 SPFI System Components
 SPFI Core

 Logging Engine
 Campaign Manger
 GDB Controller
 Fault injection

 VP – Verification Program
 User plug-in to verify the 

results of the injections
 GDB – GNU Debugger

 Memory and register 
manipulation

 Breakpoint management
 Application control

 APP
 User provide application 

subject to fault injection
 Portable

 Any system that supports 
standard GDB



SPFI - Injection Modes
 Injection Modes

 Breakpoint based
 Breakpoints are set in predetermined locations in the program
 Injections occurs when breakpoint is reached
 Repeatable results
 Breakpoints can be set anywhere in writable program memory (even 

shared objects)
 Timer based 

 Breakpoint is issued after predetermined amount of time has elapsed
 Closely resembles how SEU’s occur
 Every test is different even if the parameters are the same due to 

granularity of the timing mechanisms and communication latencies 
 Knowledge where the error is injected is available through GDB

 Injections Targets
 Registers – Integer, Floating Point, Control, Altivec – More likely target 

for SEU’s as registers lack protection 
 Memory – Anywhere within processes space – Less likely target for 

SEU’s as memory is usually protected by hardware FT schemes



Application to Multicore Systems
 Hybrid Fault Tolerance

 Multitude of FT methods are available
 Both spatial and temporal methods can be easily used
 Different cores could use different methods to compute same result

 Source-to-Source Translation
 If standard ANCI C is used on the platform S2S tool could provide 

rapid way for providing FT for single and multcore applications
 Adaptations would be required in order to handle special communication 

functions
 Fault Injection

 Many multicore systems use GDB derivatives as a method of 
debugging

 SPFI could be adapted to provide FI capabilities
 Multicore applications 
 Ability to select which or how many cores are targeted
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Conclusions
 Fault tolerance for space should be more than RadHard 

components & spatial TMR designs
 Fixed worst-case designs extremely limited in perf/Watt
 Instead, many FT methods & modes can be exploited
 Adaptive systems that react to environmental changes
 COTS featured inside critical performance path
 RadHard for FT management, outside critical perf. path

 UF active on many space-related FT issues
 NASA Dependable Multiprocessor, CHREC HFT F6-09
 Modes: SIFT, ABFT, S2S, FEMPI, CR, CED, etc.
 Devices: PPC/AV, FPGA, FPOA, Tilera, ElementCXi, etc.
 Space apps: HSI, SAR, LIDAR, GMTI, CRE, et al.
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