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I. INTRODUCTION

This extended abstract summarizes our presentation for the
”Multicore Processors For Space - Opportunities and Chal-
lenges” workshop, at the IEEE Space Mission Challenges for
Information Technology (SMC-IT) 2009 conference. The pre-
sentation begins with an overview of the NSF Center for High-
Performance Reconfigurable Computing (CHREC) at the Uni-
versity of Florida and its research activities in reconfigurable
computing (RC) and RC applications for space. In particular,
we will focus on space applications being implemented on the
Tilera TILE64 processor. These applications include:

1) A case study of a Sum of Absolute Differences (SAD)
algorithm for a comparative analysis of the vector-based
operations provided by the TILE64

2) A steganography application for the TILE64 processor,
highlighting alternative parallelization strategies

3) A Hyper-spectral imaging (HSI) application to compare
the TILE64’s shared memory and DMA operations with
respect to memory homing

II. INTRODUCTION TO CHREC

The Center for High-Performance Reconfigurable Comput-
ing (CHREC, http://chrec.org/) is an NSF Industry/University
Cooperative Research Center (I/UCRC) comprising of more
than 30 leading organizations in this field from the academic,
industry, and government sectors with synergistic interests
and goals in adaptive and reconfigurable computing for a
broad range of missions, from satellites to supercomputers.
The university sites serve as the research base (faculty, stu-
dents, staff) for the Center. Currently, we have four university
sites: University of Florida (lead university), Brigham Young
University, George Washington University, and Virginia Tech.

At the University of Florida, the faculty and students are
working on a wide range of projects, many of which are
applicable to space applications. The on-going projects for this
year (FY2009) are summarized as follows:

A. Projects

• F1-09: System-Level Formulation and Design
This project focuses on methods for improving
developer productivity to overcome challenges and
limitations inherent in the current methods of system-
level application development on RC systems for space
and on the ground.

• F2-09: Translation and Execution Productivity
The goal of this project is to improve translation and
execution productivity for FPGA-based applications
via three major improvements to the FPGA design
flow: performance analysis techniques for automatic
analysis, rapid placement & routing (PAR), and in-circuit
debugging.

• F4-09: Virtual Architecture and Design Automation for
Partial Reconfiguration
This project focuses on methods to ease the use of partial
reconfiguration (PR) of FPGAs through the development
of a Virtual Architecture for Partially Reconfigurable
Embedded Systems (VAPRES) and a suite of software
tools for PR design automation.

• F5-09: RC Device Architecture Exploration
The goal of this project is to develop a fundamental
research foundation to explore RC and other multicore
devices and their relationships to applications. Toward
that end, we have been focusing upon metrics such
as computational performance, power consumption,
and memory limitations of different RC and multicore
devices. Furthermore, application and kernel benchmarks
have been developed and evaluated on several devices
to provide a concrete device comparison and validation
of performance projections. In particular, three space
applications that are being implemented on the Tilera
TILE64 processor will be the focus of this presentation.

• F6-09: Reconfigurable & Hybrid Fault Tolerance
This project investigates a variety of reconfigurable
fault tolerance (RFT) and hybrid fault tolerance (HFT)
techniques to enhance COTS-based, fault-tolerant system
architectures for system-level fault tolerance for space
as well as other high-performance embedded computing
(HPEC) systems.

Also, other projects that we have undertaken in recent years
that are related to RC and multicore applications for space
include:

• F3-08: Case Studies in Application Design
This project focused upon research, design, and
analysis of FPGA-based applications, with an emphasis



upon design concepts, algorithm/architecture mapping,
platform usability, and lessons learned, in terms of
optimal performance, scalability, and power consumption.
Several of the applications under study in this project
related closely to space-based computing, such as PDF
estimation for machine learning, advanced LIDAR
processing, Kalman-based target tracking, multichannel
communications, Hyper-spectral imaging, image
enhancement, and n-body simulations.

• DM: The NASA Dependable Multiprocessor
This project focused upon research and development of
reconfigurable computing to achieve the first deployable
system technology for supercomputing in space. Fault
tolerance in DM can adapt to environmental conditions,
with an array of disparate and flexible modes, including
SIFT along with a variety of modes operating underneath,
such as ABFT, TMR, SCP, CP/RB, FEMPI, etc., many
available in both spatial or temporal form. RadHard tech-
nology is featured only in the management structure of
DM, whereas a diverse set of powerful COTS technolo-
gies (PPC, AltiVec, FPGA) is featured for all data pro-
cessing on the critical path. Application-level techniques
were examined with a range of applications including
LU decomposition, 2D-FFT, synthetic aperture radar, and
Hyper-spectral imaging. The DM project is sponsored by
New Millennium Program at NASA, Honeywell is prime
contractor, and the University of Florida is lead on R&D.

For this presentation, we will focus on three space applica-
tions being implemented on the Tilera TILE64 processor, each
highlighting different aspects of the capabilities of this device:
an application based on a Sum of Absolute Differences (SAD)
algorithm, a steganography application, and a Hyper-spectral
imaging (HSI) application.

III. BENCHMARKS

A. SAD - Algorithm for Sum of Absolute Difference
SAD is an image processing kernel that is used to identify

sections of images that have changed or moved. It is used
in target detection, classification, and tracking applications
among other possible applications. The SAD algorithm in-
volves the calculation of the difference between pixels in the
comparison image and input image and the sum of these
differences compared to a threshold for classification. This
algorithm consists of additions and subtractions but no multi-
plication or division operations and can be run in parallel on
multiple tiles using a data-decomposition-based parallelization
scheme.

This application in our suite was used to compare the dif-
ferent vector operations provided by the Tilera hypervisor as
part of the TILE64 architecture. The vector operations that
were used included a vector addition, vector subtraction, and
combined SAD vector instruction. An extensive study was
performed to analyze the varying performance of each of these
instructions and their impact when differing numbers of tiles
were used.

Fig. 1. Sampled SAD Results

The SAD algorithm is used primarily for block matching.
Block matching is widely used in various fields ranging from
robotics to reconnaissance. Essentially, SAD is a correlation-
based method in which a sample image (or a section of an
image) is compared to another image, to determine a similarity
criterion. The addition of SAD to our existing benchmark suite
will provide results for a multi-pass, compute-intensive, pixel-
level algorithm. For a base-line comparison, we have also
developed the algorithm on a Freescale PowerPC (MPC7447).

In our implementation, we focused on the Tilera devel-
opment with experiments determining the optimum window
size/shape and search algorithms. We also experimented with
various tile configurations (# of tiles used vs. performance).
After applying optimizations we tabulated speedups based on
MSamples / sec; a sample is defined as a pixel operation.
For each pixel and its neighbors, using a 3x3 window, SAD
requires nine additions, nine subtractions and nine absolute
value operations.

Optimization on the Tilera platform involved using built-
in vector operations and compiler optimizations. From ex-
perimentation we observed that using more than one built-in
vector operation actually caused slow-downs (we hypothesize
that this was because compiler optimization was no longer
as effective). Parallelization was achieved using data / block
decomposition of data. We used three image sizes; 64x64,
512x512 and 1024x1024. In addition, we developed a serial
version (S), a vectorized serial version (Sv), parallel version
(P), and vectorized parallel version (Pv). Overall speedup
denoted the ratio of best serial version to that of best parallel
version. Results are shown in the tables below. Only results for
4 and 8 tiles are shown, as these were where optimal speedups
were achieved (in relation to utilization of tiles). A summary
of the result is shown in Figure 1. The result is based on an
input reference image shown in Figure 2. The corresponding
sampled SAD output from a slightly shifted input is shown in
Figure 3.



Fig. 2. Original SAD Reference Image

Fig. 3. Sampled SAD Output

B. Steganography

Steganography is a technique used to hide secret information
in some other data without leaving any apparent evidence
of data alteration. Encryption can be used to obscure the
meaning of a message, but it does not obscure the fact that
a message is there. Steganography hides the very presence
of secret data in the carrier. The Least Significant Bit (LSB)
steganography method replaces the least significant bit of a
pixel in a cover image with a bit of the hidden data that the user
wishes to embed (in our case, another image). The Bit Plane
Complexity Segmentation (BPCS) method of steganography
uses the idea that the higher order bits of a cover image
can be used for embedding hidden data, provided that they
are ”complex” enough. A complexity measure is calculated
to differentiate segments of an image from those that are

important to the human visual system to those that are noise-
like. In our implementation, the BPCS method was chosen
as a benchmark tool for the purposes of our analysis of the
TILE64.

Two different parallelization schemes were used in our anal-
ysis; block decomposition and a hybrid design that combines
data decomposition with pipelined decomposition. In the block
decomposition parallelization method, the cover image pixel
space is broken into 8x8 blocks and assigned evenly in round-
robin order to each of the worker nodes. In addition to these
worker nodes, a leader node works to distribute the images
appropriately and gather them upon completion, acting as an
intermediate layer between the I/O of files and the processing
being done on the worker nodes. Several optimizations were
made to the design that provided insight for techniques to
optimize applications on the TILE64.

The first iteration of the block decomposition program had a
best-case execution time of 170 ms on TILE64, with roughly
50 ms being taken for each of the processes of distributing
the cover image, processing the hidden requests, and gathering
the stego image. A major inefficiency of the blocking method
was that it was too granular and therefore required too much
communication. The blocks were replaced by groups, which
were structures consisting of multiple blocks. The result was
an execution time of 88 ms due to a drop of about 40 ms from
both the distribution of the cover image and gathering of the
stego image. A further general optimization was made to the
code to decrease the overall execution time to 67 ms.

Another optimization was to use TILE64 buffer channels
instead of message passing functions, since buffered channels
have less latency. After the switch, the total execution time
dropped from 67 ms to 45 ms, which was primarily the result
of the hidden request time dropping from 24 ms to about 6 ms.
This dramatic reduction in time was due to the more efficient
buffer channels being used for the sending of the conjugation
map pieces back to the leader, which was a major bottleneck
when message passing functions were being used. The buffer
channels show the most benefit over message passing when
the messages are small, which is why the larger transfers for
the cover and stego images were not that much improved.

The optimal group size and number of nodes were deter-
mined on the TILE64. Figure 4 shows the total execution times
as a function of group size and total number of tiles. The
optimal group size is 10 blocks/group, which is potentially the
case due to extra communication for smaller sizes and poorer
workload balancing for larger sizes. The optimal number of
tiles was 8, which is likely caused by this being the optimal
balance between work distribution and communication over-
head.

The hybrid design consists of two main stages, a complexity
stage and an embedding stage. Originally, this design followed
the methodologies of a pipeline more closely. Instead of al-
lowing the embedding nodes to read from the cover image
and perform their own Gray code conversion and bit plane
slicing, the embedding nodes received this information from
the complexity nodes exclusively. This method proved to be



Fig. 4. TILE64 execution time

very inefficient by creating a bottleneck between the two main
stages while this information was transmitted. For an example
using eight tiles, sending the cover image and Gray code data
for an 1152 x 768 cover image takes 25 ms. Forcing the
embedding nodes to read in their own cover image negates the
communication time and adds only 0.45 ms from reading from
the file along with a negligible addition of time to perform
the Gray code conversion before splitting the image into bit
planes.

C. HSI - Hyper-Spectral Imaging

One of many key features available on the TILE64 processor
is shared memory. Shared memory allows tiles across the
grid to access memory also being used by other tiles. This
feature allows for easier coding algorithm development. It is
not, however, without its drawbacks. Shared memory that can
be read from and written to by multiple processors has issues
when it comes to the order of writes. Coherency is needed and
in many cases it is left to the programmer to make sure that
the program does not improperly read or write when another
process is not completely done with that memory object.

The TILE64 processor has several functions that help the
developer handle these issues, including memory fences and
global barrier syncs. Shared memory also has performance
implications when used on the TILE64 chip. The shared mem-
ory system on the TILE64 processor introduces a concept
called homing. When memory that is designated to be shared
is allocated, using the malloc_shared() command for
example, whatever tile calls the allocation function becomes
the home tile for that shared memory block. This tile then
controls the accesses to this block of memory. Other tiles that
want to access this shared memory block must go through this
home tile. This has a performance impact upon an application
because it can lead to a memory bottleneck and possibly
congestion on the inter-tile networks. For this reason, tiles
that are close together can expect to see much shorter access
times to shared memory on tiles near them than to tiles that
are a greater distance across the tile grid. To explore this
issue the first and third stages of a Hyper-spectral Imaging

algorithm were developed using two different memory layout
structures. The first and third stages yield themselves well to
data decomposition based parallelization strategies and that
was the bases for the parallelization techniques.

Both techniques split the Hyper-spectral data cube into
patches and each patch is then assigned a group of tiles in
the grid to be processed. These tiles also are assigned an
additional tile to hold in memory the patch of data that is to
be processed. These memory tiles use the DMA interfaces to
acquire their patch from the origin tile (Tile 0) and then use
shared memory to allow the assigned processing tiles access
to the patch data. Once the processing is complete the origin
tile collects all the memory blocks from the memory tiles.

The first parallelization strategy that will be discussed in the
presentation is the centralized memory layout. In this layout,
the memory tiles are all close to the origin tile along the
top row of the grid. This makes access to the origin tile
faster, but the processing tiles encounter congestion during
the computation. The second strategy distributes the memory
tiles throughout the grid, making sure that the processing tiles
are as close to their associated memory tiles as possible. This
distributed method makes access to the origin tile take longer,
but the processing tiles can access the local patch data faster.

The overall performance of the second method is better than
the first for this HSI application because the high computa-
tional loads of the first and third stage means that most of the
communications are to the local memory tiles and therefore
these being closer allows for less communication overhead.
The presentation will include this analysis based on qualitative
analysis of preliminary data in addition to code examples (ie.
microbenchmarks) of DMA transfers and the processes of
shared memory allocation and their use in a TILE64 program.

IV. CONCLUSION

The fast pace of innovations in the field of computer archi-
tecture and software has pushed the industry into the multi-
core technologies. These platforms, such as the Tilera TILE64,
have many new features and challenges. This presentation
highlights how these platforms can be applied to applications
in the space and HPC sectors. In addition there are many
techniques that developers can use to improve the performance
of their applications. We have discussed data decomposition,
special vector instructions, static buffered channels, shared
memory, and algorithm mapping in respect to homing. These
techniques and others are only a few of the available options
for the TILE64 and future work will hopefully allow greater
understanding of these new technologies and how users can
easily take advantage of the innovations in multi-core devices
for space applications.
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What is CHREC?
 NSF Center for High-Performance Reconfigurable Computing

 Unique US national research center in this field, established Jan’07
 Leading ECE/CS research groups @ four major universities

 University of Florida (lead)
 Brigham Young University
 George Washington University
 Virginia Tech

 Under auspices of I/UCRC Program at NSF
 Industry/University Cooperative Research Center

 CHREC is supported by CISE & Engineering Directorates @ NSF
 CHREC is both a National Center and a Research Consortium

 University groups serve as research base (faculty, students, staff)
 Industry & government organizations are research partners, sponsors, 

collaborators, advisory board, & technology-transfer recipients

http://www.chrec.ufl.edu/index.php�
http://www.nsf.gov/�
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CHREC Mission Mission
Basic and applied R&D to advance 

S&T in advanced computing in these 3 
increasingly overlapping domains.  

Many common challenges, 
technologies, & benefits, in terms of 

performance, power, adaptivity, 
productivity, cost, size, etc.  

From device/system architectures to 
design concepts and tools.

From satellites to supercomputers!

CHREC

RC

HPC HPEC
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Objectives for CHREC
 Serve as foremost national research center in this field

 Basis for long-term partnership and collaboration amongst industry, 
academe, and government; a national research consortium

 RC, HPEC, HPC: from satellites to supercomputers!
 Directly support research needs of Center partners

 Highly cost-effective manner, addressing common research 
interests with pooled & leveraged resources, maximized synergy

 Enhance educational experience for a large set of high-
quality graduate and undergraduate students
 Ideal recruits for ORNL (interns, engineers, researchers)

 Advance knowledge & technologies in this field
 Commercial relevance ensured with rapid technology transfer

 Earn recognition as one of top NSF Centers
 Update: only 2 years young, CHREC is recognized by NSF as such!
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Research Interaction  

Basic Applied/Development

Universities Industry & 
Government

CHREC

NSF Model for I/UCRC Centers
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CHREC Members
1. AFRL Munitions Directorate 
2. AFRL Space Vehicles Directorate
3. Altera 
4. AMD
5. Arctic Region Supercomputing Center
6. Boeing Phantom Works
7. Harris
8. Hewlett-Packard 
9. Honeywell
10. Intel 
11. L-3 Communications
12. Lockheed Martin MFC
13. Lockheed Martin SSC
14. Los Alamos National Laboratory
15. Luna Innovations
16. NASA Dryden Flight Research Center
17. NASA Goddard Space Flight Center
18. NASA Marshall Space Flight Center *
19. National Instruments 
20. National Reconnaissance Office
21. National Security Agency *
22. Oak Ridge National Laboratory 
23. Office of Naval Research 
24. Raytheon *
25. Rincon Research Corp. 
26. Sandia National Laboratory NM
27. SEAKR Engineering
28. Xilinx

* Funds 
pending

Note: Many members have multiple ’09 memberships (e.g. AFRL 
Munitions, ARSC, Boeing, Honeywell, LANL, NRO, ORNL, SNL)

http://www.nsf.gov/index.jsp�


8

CHREC Research History
 8 projects completed in 2007 (2 schools)

 8 conference & journal papers approved, published

 Variety of other results (e.g. tools, codes, cores, graduates)

 All motivated by interests & tech transfer of CHREC partners

 ~20 students supported

 14 projects completed in 2008 (4 schools)
 17 conference & journal papers approved, published

 Variety of other results (e.g. tools, codes, cores, graduates)

 All motivated by interests & tech transfer of CHREC partners 

 ~40 students supported

 12 projects underway in 2009 (4 schools)
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Fault Tolerance
 Reconfigurable Fault Tolerance 

and Partial RTR (F4) 
 High-Reliability Design Tools & 

Techniques (B3)
 Reliable RC DSP/Comm Sys (B4)

Device Studies
 Device Characterization (F5)
 Heterogeneous Architectures for 

HPEC RC (B2)
 Partial RTR for HPRC (G7)
 Process-to-Core Mapping for 

Adv. Architectures (V2)

Productivity Concepts
 System-Level Formulation (F1)
 Intelligent Deployment of IP 

Cores (G6)
 Model-Based Engineering 

Framework (V1)
 Runtime Perf. Analysis (F2)

Productivity Studies
 Case Studies in Multi-FPGA 

App Design (F3)
 Core Library Framework (B1) 

Library Portability for HLL 
Acceleration Cores (G5)

(where F=Florida, B=BYU, G=GWU, V=VaTech)

CHREC 2008 Projects



Architectures
 RC Device Architecture Exploration (F5)
 Characterizing and Optimizing Emerging Devices (V1)
 An API for Autonomous Adaptive Systems (V3)

Productivity Tools
 System-level Formulation and Design (F1)
 Translation and Execution Productivity (F2)
 Reuse Tools for RC Design (B1)
 Unified Parallel Programming of Tilera using UPC (G8)

Fault Tolerance & Partial Reconfiguration
 Reconfigurable & Hybrid Fault Tolerance (F6)
 Reliability Techniques for DSP/Comm Systems (B5a)
 Virtual Architecture & Design Automation for Partial Recon (F4)
 Reliable Architectures for RC (B5b)
 Virtualizing FPGA Resources for HPRCs (G7)
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CHREC 2009 Projects

Formulation Stage

Design Stage

Performance Prediction 
and Analysis (e.g. RAT, 

simulation, etc.)

RCML Model

Coordination Library

Design-Space 
Exploration

F1: System-level 
Formulation and Design
Motivations: Improving 

development productivity 
is  #1 challenge in RC

 Early design-space 
exploration

 Performance prediction 
and analysis

 Bridge from Formulation to 
Design

F2: Translation and Execution Productivity
Initial    

Design

Executable(s)

Correct 
Design

Optimized 
Design

Translation

Verification

OptimizationIm
pr

ov
e 

Pr
od

uc
tiv

ity

 Intermediate fabrics
 Reduction in PAR times by 283x*
 Flexible, partial-reconfiguration 

regardless of device support

 ReCAP** Verification
 In-circuit assertion-based 

verification and code-coverage

 ReCAP** Optimization
 Automatic detection of 

performance problems

F4: Virtual Architecture & Design Automation for 
Partial Reconfiguration

Multi
purpose

Special 
purpose

PR System Design

VHDL
Language 
extensions

Floorplan
generator

DAPR

Design
methodology

VAPRES

Base 
architecture

 VAPRES: Virtual 
Architecture for Partially 
Reconfigurable Embedded 
Systems

 DAPR: Design Automation 
for Partial Reconfiguration 
Tool

F6: Reconfigurable & Hybrid Fault Tolerance

Reconfigurable
Fault Tolerance

Fault Tolerance 
Metrics 

Hybrid 
Fault Tolerance

 Investigate analytical modeling techniques that will 
allow for performance and reliability prediction

 Explore effectiveness of hardware-based
ABFT vs. TMR for computational structures

 Investigate software/hardware methods for 
protecting embedded and soft-core processors

 Investigate types of applications and kernels that 
would benefit most from hybrid FT approach

 Fault injection is key for obtaining good results
 Effects of placement and routing can change FT 

characteristics of design
 Explore fault-protection strategies for diverse set 

of reconfigurable multicore devices (RMC)

F5: RC Device Architecture ExplorationCHREC 2009 Projects
Architectures
 RC Device Architecture Exploration (F5)
 Characterizing and Optimizing Emerging Devices (V1)
 An API for Autonomous Adaptive Systems (V3)

Productivity Tools
 System-level Formulation and Design (F1)
 Translation and Execution Productivity (F2)
 Reuse Tools for RC Design (B1)
 Unified Parallel Programming of Tilera using UPC (G8)

Fault Tolerance & Partial Reconfiguration
 Reconfigurable & Hybrid Fault Tolerance (F6)
 Reliability Techniques for DSP/Comm Systems (B5a)
 Virtual Architecture & Design Automation for Partial Recon (F4)
 Reliable Architectures for RC (B5b)
 Virtualizing FPGA Resources for HPRCs (G7)



F5 Highlights 2009

SAD
 One data-decomposition based 

parallelization strategy
 Point-to-point reference matching

Hyperspectal Imaging
 Two data-decomposition based 

parallelization strategies
 Memory tile layout effects on performance
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Steganography
 Two data-decomposition based 

parallelization strategies
 Hybrid and block approaches

ACSM

• Integer-based image processing program
• Largest computation load in autocorrelation

Weight 
Computation

• Creates a set of weights for target detection
• Least amenable stage for data decomposition

Target 
Detection

• Data decomposition identical to ACSM
• Outputs detection matrix

CD/W
 New Devices
 TigerSHARC DSP
 TI OMAP DSP
 Blue Gene/P
 PACT XPP-3c
 EP4SE680 FPGA

Productivity Metric 
Framework

EMB

 Categories
 Learning curve
 Code examples
 Documentation quality
 Programming model
 Performance analysis methods

 Achievable memory bandwidth to off-chip 
memory

 Trends in available technologies

Device

GB/s

EMB
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SAD: Sum of Absolute Difference
 SAD

 Used to compare two sets of similar images to estimate
range of moving “targets”

 Highest correlation between stationary objects; therefore non-
stationary objects can be estimated / tracked

 Used in applications such as target tracking and in motion 
estimation (robotics)

 For each pixel and its neighbors, using a 3x3 window
 SAD: 9 additions, 9 subtractions and 9 absolute value operations

 Focus more on Tilera development
 Determine optimum window size/shape and search algorithm
 Determine best configuration (# of tiles used vs. performance)
 Re-investigate window-size effect on best configuration
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Example – 360 x 360 Image

Original ImageComparison ImageResulting Correlation Map

Dark regions 
delineate areas 
of no change 

and bright 
regions highlight  
most movement.

Actual Results from TILE64
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SAD Algorithm

Reference Image Comparison Image

 Motion estimation
Highest Correlation
(Can be multiple instances)

Scanning…..
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TILE64 SIMD Vector Types
 Some useful instructions:

 vec_byte4 vec_addb (vec_byte4 SrcA, vec_byte4 SrcB)
 Add four bytes in 1st source operand to four bytes in 2nd source operand ; has  

1-cycle latency

 uint32_t vec_sadb_u (vec_byte4 SrcA, vec_byte4 SrcB)
 Sum absolute differences between four bytes in 1st source operand and four 

bytes in 2nd source operand; has 2-cycle latency

 Many other instructions (provided in documentation).
 Following slides show results with:

 No optimization vs. optimized with –O2 and –O3 flags
 Optimized with vector instructions (with –O2 and –O3)

 vec_addb (1 vector operation)
 Vec_addb + vec_sadb_u (2 vector operations)



16

SAD - Scalar Code Results
 Using Image explicitly declared (16 x 16 matrix).

 Compiler Optimizations
 No optimization – 5,679 cycles
 Normal (-O2) – 796 cycles
 Speed over size (-O3) – 735 cycles

Scalar Code
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SAD – Vectorized Code Results

 Vector (vec_sadb_u) + compiler optimizations
 No optimization – 5,362 cycles
 Normal (-O2) – 821 cycles
 Speed over size (-O3) – 622 cycles

Vectorized Code

 Using Image explicitly declared (16 x 16 matrix)
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SAD – 2x Vectorized Code Results

 Vector (vec_sadb_u, vec_addb) + compiler optimizations
 No optimization – 5,422 cycles
 Normal (-O2) – 823 cycles
 Speed over size (-O3) – 637 cycles

Using 2 vector operations

 Using Image explicitly declared (16 x 16 matrix)
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Summary – Vector Optimization

 On average, Vector optimization performs better 
than compiler optimization
 For both sets of data, single-vector operation performs 

better than using 2-vector operations
 For small sizes, speed over size gives a better optimization 

whereas for larger sizes it is comparable
 Therefore single-vector optimizations with –O3 flag 

used for remaining results shown
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Assumptions for Multi-tile Parallelization
 Image sizes chosen to be multiples of 8
 Boundary conditions

 Instead of padding with zero’s, boundary pixels ignored
 Effective image sizes: 62x62, 510x510, and 1022x1022

 No communication overhead
 Initial set-up time and final image-writing time not accounted for in results 

 Data decomposition: Unbalanced loads exist
 Data split into blocks depending on # of tiles specified

 Tile 0 used for debugging + Last tile gets left-over data (animation in later slide)
 Reported cycles for Longest Running Tile (LRT) 

 # of tiles used for parallelization are multiples of two
 From previous loop-unrolling study, non-powers of 2 performed worse

 Window size used: only 3x3. 
 Increasing window size increases change in movement (computation)
 From paper studies, 3x3 window size is most common



21

Serial Vs. Parallel
 Comparison of different serial and parallel 

implementations using different sizes of images and 
# of tiles
 All implemented using –O3 (speed over size) optimization
 Images sizes are 512x512 and 1024x1024
 Serial version (S)
 Vectorized-serial version (Sv)
 Parallel version (P)
 Vectorized-parallel version (Pv)

 Overall speedup denotes ratio of best serial version to that of best 
parallel version

 Speedups provided for P vs. Pv, P vs. S, Pv vs. S and Pv vs. Sv



Total # of Tiles = 2
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Data decomposition Serial Version

Tile 0 is designated as debug tile, does no computation.

# of Data Blocks = 2# of Data Blocks = 3# of Data Blocks = 4

Total # of Tiles = 3Total # of Tiles = 4Total # of Tiles = 5

8x8 Tilera Grid
Image Pixels
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SAD: Actual Image Results

Increasing non-linear 
speedup with increasing # 
of tiles. 4 and 8 tiles give 
best return on speedup 

vs. utilization.

Vectorization provides 
higher speedups when 
there is enough data to 

churn through. 

The more data each tile has 
to work with, the better 

vectorization performs (as 
seen in the larger 1024 x 

1024 image results).



Hyperspectral Imaging

Distributed memory tiles allows 
localized tile-memory interaction
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Input data cube of 
pixel vectors

Output detection 
matrix

Stages 1 & 3 have been 
studied due to  their 
computational load

Centralized memory layout 
allows faster DMA transfers
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Red: Master memory tiles
Green: Memory tiles
Blue: Data processing tiles
Gray: Reserved or unused

 Hyperspectral imaging data flow
 Data-decomposition (Stage 1 & 3 are pixel-independent)
 Patch-based processing per tile
 DMA and tile shared-memory structures (Homing)

E
nhanced

D
istribution
Layouts

Data Cube Processing

Distributed Centralized

ACSM

• Integer-based image processing program
•Largest computation load in autocorrelation

Weight 
Computation

•Creates a set of weights for target detection
•Least amenable stage for data decomposition

Target 
Detection

•Data decomposition identical to ACSM
•Outputs detection matrix

Images courtesy of:



TILE64 Memory Sharing
Program Subparts
 Shared memory

 Pointer Definition
 Allocation
 Homing
 Pointer Synchronization
 Tile Access 

 DMA
 DMA channel request
 DMA wait

Code Examples
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Hyperspectral Imaging Layout
Program Subparts
 Shared memory

 Pointer Definition
 Main Allocation
 Pointer Synchronization

 Point-to-Point
 Broadcast

 Tile Access 

 DMA
 DMA channel creation and 

request

Distributed
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HSI: Results

HSI Parameters
 Image Size: 48,000 pixels
 Spectral Layers: 225
 Process to Memory Distance (Max, Min)
 Serial (0,0)
 Centralized (12,1)
 Distributed (3,1)

Key Points
 DMA used for memory tile to master 

communications 
 Shared memory used for memory tile 

to processing tile communications
 Combined speedup is limited due to 

computational dominance of Stage 1
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Average HSI Results
Execution Times (seconds) Speedup vs. PPC Speedup vs. Serial Tile64

Time (s) PPC
(Baseline)

Tile64
(Serial)

Tile64
(Centralized)

Tile64
(Distributed)

Speedup
(Serial)

Speedup
(Centralized)

Speedup
(Distributed)

Speedup
(Centralized)

Speedup
(Distributed)

Stage 1 69.01 216.02 17.22 9.46 0.32 4.01 7.29 12.54 22.82
Stage 3 69.01 2.19 0.08 0.06 0.34 9.29 11.60 26.93 33.66

Combined 69.01 218.20 17.31 9.53 0.32 4.03 7.32 12.61 22.90

22.8x
12.5x

26.9x 33.7x

12.6x

22.9x



BPCS Steganography

 Two methods for parallelization:

 Block Decomposition
 Splits data to be processed among multiple 

worker nodes
 Single leader node moderates

 Uses ilib_proc_spawn() for groups
 Baton is passed in cyclic pattern between worker 

nodes to determine num of complex regions
 Returns to leader if block was conjugated

 Hybrid Design
 Combines pipelined and data decomposition
 Complexity and Embedding stages

 Half of processors for each stage
 Uses ilib_proc_go_parallel()
 Data decomp based on rank

 Last node to embed becomes conjugation leader 
node
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Bit-level and communication-intensive 
image processing app

Embeds data in image

1 = white,  0 = black

 Gray code
 Bit plane slicing
 Complexity calc

 α = Σ xor

 Conjugation
 α < 45



Block Decomp. – Packet Optimization
 First design iteration of block decomposition best-case 

execution time of 170 ms
 Roughly 50 ms each taken for distributing cover image to workers, 

processing hidden image requests, and gathering output image
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 Blocks too small, too much 
communication, not enough 
computation
 1 block = 76 byte packets
 10 blocks/grouping = 652 byte packets
 170 ms  88 ms execution after change
 Drop of about 40 ms from both 

distribution of cover image and 
gathering of output image



Block Decomp. – Buffered Channels
 Design uses point-to-point message passing
 Buffered channels provide socket-like interface

 Better than message passing for repeated transmissions
 Send or receive requires ~50 cycles

30

 67 ms  45 ms execution switching to non-
blocking buffered channels
 Sending conjugation map pieces to leader tile 

much more efficient
 Hidden request time from 24 ms  6 ms

 Was major bottleneck with message passing
 Buffered channels shows most benefit when 

messages are small
 Larger transfers of cover and output images were 

not improved much



Hybrid – Repeated Computation
 Hybrid design followed pipeline design closely
 Embedding nodes received Gray code 

converted and bit-plane sliced data from 
complexity nodes
 Very inefficient; bottleneck between two stages 

when data transmitted
 For 8 tiles & 1152x768 cover image:

 Takes 25 ms to receive data
 When embedding nodes read in data from file 

instead, only 0.45 ms
 Gray code conversion & bit-plane slicing 

resulted in low computational intensity
 Repeated calculations can provide performance 

increase when tcommunication > tcomputation
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BPCS: Results
 Similar performance between TILE serial code and PPC baseline
 Block Decomposition uses Buffered Channels; Hybrid uses Message Passing
 Extrapolated best-case speedup = 24.2x

 Replicate design 4 times on device
 When cover image size increases 15x, Hybrid design optimal with 40 tiles

 TILE64 allows app to scale to larger # of tiles
 Due to efficient inter-chip communication network and low latency

 Not as computationally intensive as some apps
 Bottlenecked from heavy communication in algorithm and memory allocation
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 Round robin scheme used for tile 
placement for Hybrid design
 Inefficient arrangement of tile positions 

has drastic effect
 Odd continuation of trend in graph for 

Hybrid design
 Only certain tile configurations and 

number cause drastic decrease in 
performance

 Possible topic of future study

Tile layout has drastic 
effect on speed
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Conclusions
Benchmarks
 SAD
 Correlation-based kernel for image processing and target tracking
 One parallelization strategy with a max speedup of 19.2x
 The more data each tile has to work with, the better vectorization performs

 HSI
 Image processing application for target detection and recognition
 Examples of TILE64 shared memory and DMA interfaces
 Data “Homing” used to help map data to processing tiles
 Two data-decomposition-based parallelization strategies highlighting  effects 

of data location on performance

 BPCS Steganography
 Bit-op intensive application for hiding data in other digital information
 Finding balance for packet sizes to prevent communication saturation
 Buffered channels show large benefit, especially when frequent, small 

messages are sent
 Important to keep in mind general parallelization strategies to maximize 

performance
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Questions?
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