
SEU Mitigation and Validation of the LEON3 Soft Processor
Using Triple Modular Redundancy for Space Processing

Michael Wirthlin, Andrew Keller,
Chase McCloskey and Parker Ridd

NSF Center for High-Performance
Reconfigurable Computing (CHREC)

Deptartment of Electrical and Computer
Engineering

Brigham Young University
Provo, UT 84606, USA

David S. Lee1 and Jeffrey Draper2
1Sandia National Laboratories
Albuquerque, NM 87123, USA
Information Sciences Institute

2Ming Hsieh Department of Electrical
Engineering

University of Southern California
Marina del Ray, CA, USA

ABSTRACT

Programmable processors are an essential component in most
satellite payload electronics and handle a variety of functions
including command handling and data processing. There
is growing interest in implementing programmable proces-
sors within satellites on commercial FPGAs because of their
reconfigurability, large logic density, and I/O bandwidth.
Commercial FPGAs, however, are sensitive to ionizing ra-
diation and systems developed for space must implement
single-event upset mitigation to operate reliably. This pa-
per investigates the improvements in reliability of a LEON3
soft processor operating on a SRAM-based FPGA when us-
ing triple-modular redundancy and other processor-specific
mitigation techniques. The improvements in reliability pro-
vided by these techniques are validated with both fault in-
jection and heavy ion radiation tests. The fault injection
experiments indicate an improvement of 51× and the radi-
ation testing results demonstrate an average improvement
of 10×. Orbit failure rate estimations were computed and
suggest that the TMR LEON3 processor has a mean-time
to failure of over 70 years in a geosynchronous orbit.

Categories and Subject Descriptors

B.8.1 [Performance and Reliability]: Reliability, Test-
ing, and Fault-Tolerance; B.7.2 [Design Aids]: Automated
TMR, Manual Mitigation

Keywords

FPGA; Soft-core Processor; LEON3; TMR; Fault-Tolerance

1. INTRODUCTION
Modern satellite systems depend on reliable, radiation-

hardened (rad-hard) processors to perform various mission-

ACM acknowledges that this contribution was authored or co-authored by an em-
ployee, or contractor of the national government. As such, the Government retains
a nonexclusive, royalty-free right to publish or reproduce this article, or to allow oth-
ers to do so, for Government purposes only. Permission to make digital or hard copies
for personal or classroom use is granted. Copies must bear this notice and the full ci-
tation on the first page. Copyrights for components of this work owned by others than
ACM must be honored. To copy otherwise, distribute, republish, or post, requires prior
specific permission and/or a fee. Request permissions from permissions@acm.org.

FPGA’16, February 21-23, 2016, Monterey, CA, USA

c© 2016 ACM. ISBN 978-1-4503-3856-1/16/02. . . $15.00

DOI: http://dx.doi.org/10.1145/2847263.2847278

critical operations such as payload processing, command
handling, and satellite control. These rad-hard processors,
however, are extremely expensive and are often based on
architectures that are much older and slower than com-
mercially available processors. A soft processor can be an
attractive alternative to a rad-hard processor by providing
processor-specific customization, the ability to add custom
reliability techniques, and the ability to provide customized
FPGA logic [1]. Further, modern FPGAs provide a sig-
nificant amount of configurable logic and access to a large
amount of serial I/O bandwidth.

Any design operating in an SRAM-based FPGA, including
soft processors, are susceptible to ionizing radiation [2]. The
presence of high energy protons, heavy ions, and galactic
cosmic rays in the space orbits cause a number of problems
for electronics, including FPGAs. This radiation can induce
a number of negative effects including upsets in the inter-
nal state of the device. These upsets, known as single-event
upsets or SEUs, can cause several problems in FPGA-based
systems. First, SEUs can corrupt the configuration memory
of the device causing the design configured on the device
to operate incorrectly. Second, the internal state of the de-
sign’s flip-flops or block memories may be corrupted result-
ing in data corruption. Third, the internal state of custom
hardware blocks within the FPGA may be corrupted (PLLs,
clock managers, DSPs, etc.).

Fortunately, a number of mitigation techniques have been
developed to address these concerns. One of the most com-
mon ways of applying structural mitigation is using triple-
modular redundancy or TMR [3]. TMR provides masking of
single errors by triplicating the circuit and providing major-
ity voters (see Figure 1). As long as two of the three copies
of the circuit are operating correctly, the system will toler-
ate a failure in any of the three copies. Systems that employ
TMR must also provide a mechanism for repairing the fail-
ures and resynchronizing the state of the three circuit copies.
This repair and resynchronization is usually done through a
technique called configuration scrubbing [4, 5]. TMR has
been shown to provide significant improvements in FPGA
reliability in harsh radiation environments [6].

While TMR along with scrubbing have been shown to im-
prove reliability, applying TMR to the entire system may
not be the most effective SEU mitigation approach. Com-
plex systems with a variety of resources and different de-

205

D Q D Qlogic

D Q D Qlogic

voter

voter

voterD Q D Qlogic

voter

voter

voter

Figure 1: Triple Modular Redundancy (TMR).

sign approaches may respond more reliably to a variety of
SEU mitigation approaches. This work investigates hybrid
mitigation approaches that are targeted specifically for soft
processors operating within an FPGA. In particular, this pa-
per will describe a processor SEU mitigation technique that
involves TMR, custom memory mitigation, and custom con-
trol structures.

This paper describes a SEU mitigation strategy applied
to the LEON3 soft processor core operating on the Xilinx
Kintex-7 FPGA. This mitigation strategy is validated using
both fault injection and radiation testing with heavy ions.
The results of this validation effort demonstrate that the
techniques used to improve SEU reliability are improved by
a factor of 51× using fault injection and 10× in radiation
testing. Estimation of orbit failure rates suggest that at a
minimum, these techniques will increase the mean-time to
failure of this processor from 1.4 years to 76 years.

This paper will begin by reviewing related efforts in de-
veloping reliable soft processors within FPGAs. Next, the
LEON3 soft processor core will be described along with
the configuration used in this testing and the software used
during the validation of the mitigation techniques. Next,
the mitigation approaches applied to the LEON3 are de-
scribed along with the increase in size and reduction in
clock speed. The approach for validating the mitigation
techniques are presented using fault injection and radiation
testing. The impact of these techniques are compared with
the non-mitigated processor and suggestions for future work
are provided.

2. RELATED WORK
A number of projects have investigated methods for im-

proving the reliability of soft processors operating in com-
mercial SRAM FPGAs. A variety of both structural and
temporal redundancy are used to improve soft processor re-
sponse to single-event upsets. The LEON2 soft processor
core was mapped to the Virtex II architecture and tested
using fault injection [7]. This work compared three different
version of the processor: the standard processor, the pro-
cessor with TMR, and a “fault tolerant” architectural varia-
tion. A custom 16-bit “configurable fault-tolerant processor
(CFTP)” was created for an FPGA-based computing satel-
lite and uses TMR and scrubbing to mitigate against config-
uration upsets [8]. This platform was designed for use in the
U.S. Naval Academy’s MidSTAR-l satellites and launched in
March of 2003.

A NIOS-II soft processor [9] was implemented on an Al-
tera Cyclone-II device and implements time redundancy to
address the effects of soft errors and fault injection. Ex-

periments were completed to validate the benefits of this
technique. A general approach for lock-step processing with
dual soft processors has been proposed [10, 11] which uses
traditional software reliability techniques such as lockstep,
checkpointing, and rollback. This work was tested using
the LEON processor with three variants: the default LEON
processor, a TMR LEON processor, and the proposed dual-
lockstep core with software fault tolerant techniques.

A triple modular small Xilinx PicoBlaze soft processor
was tested on the Xilinx Virtex 5 architecture using a tile-
based approach and resynchronization through partial re-
configuration [12]. A duplicated LEON3 was implemented
with a special bus monitor to detect processor failures at
run time [13]. The reliability of a TMR version of the Mi-
croblaze processor was tested with fault injection [14] and a
related effort tested the reliability of the microblaze proces-
sor operating on the radiation hardened by design (RHBD)
Virtex V5QV FPGA [15].

3. LEON3 PROCESSOR ARCHITECTURE
The LEON3 is an open-source soft processor core dis-

tributed by Cobham Gaisler AB as part of their GRLIB
IP Library. It conforms to the IEEE Standard for a 32-bit
Microprocessor Architecture and Version 8 of the Scalable
Processor Architecture (SPARC V8) [16, 17]. It features a
7-stage integer pipeline with a Harvard architecture. The
LEON3 is a popular option for processing in space environ-
ments. First, the LEON3 core utilizes a very small portion of
available resources on a commercial FPGA such as the Xil-
inx Kintex-7 XC7K325T. The remaining resources are avail-
able for use in SEU mitigation techniques and for additional
IP. Second, additional peripherals may be easily incorpo-
rated into a LEON3 system due to its bus centric system-on-
chip design. As part of the GRLIB IP Library, the LEON3
connects to additional IP cores via an on-chip bus. The
GRLIB IP library supports the AMBA-2.0 AHB/APB bus
– a widely used royalty free industry standard. Third, the
LEON3 is well documented and supported by a large user
group. Fourth, the processor is independent of any FPGA
architecture and has been ported to several different FPGA
architectures. Fifth, the processor is available as a radiation-
hardened custom circuit to facilitate migration from a soft
implementation to a higher-performance, more reliable cus-
tom implementation [18].

The LEON3 used in this experiment originated from the
LEON3/GRLIB Release 1.4.0-b4154. For this test a mini-
mal configuration was given to the “leon3-xilinx-kc705” de-
sign – which targets the Xilinx Kintex-7 KC705 development
board. A stripped-down configuration of the LEON3 proces-
sor was chosen for this experiment to test the sensitivity of
the core internal architecture and to simplify the construc-
tion of the test. This simplified configuration excluded the
following default architectural components:

• Instruction and Data Caches
• Interrupt Controller
• Memory Management Unit (MMU)
• Debug Support Unit
• External Memory Controllers

All unnecessary I/O peripherals were excluded and all in-
struction and data memory was held in internal BRAM re-
sources to avoid the need for an external memory controller.
In addition, the PLL clock controllers were removed and

206

a 200 MHz external clock was internally divided by four to
create a 50 MHz global clock. Figure 2 reflects the final con-
figuration of both the LEON3 processor core and connected
peripherals via the on-chip bus.

7-Stage
Integer Pipeline

3-Port Register File

AMBA AHB Interface

Hardware
MUL/DIV

Data PathInstruction Path

LEON3

AHB Controller

Master In Master Out

AHBROM

AHBRAM

AHB/APB Bridge

Slave Out

Slave In

APBO
APBI

Timer Unit

UART

Figure 2: LEON3 System Architecture Under Test

The LEON3 processor is programmed to execute the Dhry-
stone Version 2.1 benchmark. Dhrystone is designed to test
integer performance of a processor like that of the 7-stage
integer pipeline found in the LEON3. The benchmark is
composed of common instructions surveyed in system-level
software such as operating systems and compilers [19]. This
program assists in validation of functional correctness under
testing when compared against another processor core run-
ning the same benchmark program in parallel. Once Dhry-
stone is loaded into RAM the LEON3 begins execution at
the decompressed address. In this experiment Dhrystone is
run for 10,000 iterations in a continuous loop.

The LEON3 processor begins the boot process by ac-
cessing a read only memory (AHBROM) composed of on-
board BRAMs that contains a boot loader and the com-
pressed application program.The boot loader sets the sys-
tem clock and the baud-rate for UART and then decom-
presses the benchmark from AHBROM to the AHBRAM
peripheral.The Dhrystone C code was cross-compiled for
the SPARC V8 architecture and integrated into the LEON3
boot loader using GRTools-20150121 [20].

The Dhrystone output is sent across UART for external
monitoring. The benchmark executes continuously to guar-
antee that the LEON3 processor remains active throughout
the test. The caches are disabled to force the processor to
communicate more frequently on the bus and facilitate more
frequent error checking.

4. LEON3 SEU MITIGATION STRATEGY
The SEU mitigation strategy used in this work involves

the combination of several different techniques. The pri-
mary mitigation technique used is triple modular redun-
dancy (TMR). Automated tools are used to triplicate the
LEON3 netlist and insert voters strategically throughout the
design. In addition to TMR, the internal memories of the
processor are manually replaced with hand-designed mem-
ories that include scrubbing to prevent the accumulation
of errors within the memory. These techniques are aug-
mented with configuration scrubbing which occurs in the
background to prevent the accumulation of configuration
errors. Each of these mitigation techniques used will be
described in detail below.

4.1 Automated TMR
Triple Modular Redundancy uses redundant hardware to

mask SEUs by triplicating the original module and inserting
majority synchronizer voters (see Figure 1). If at least two
of the circuit copies are correct, the output of the system
will be correct as well. To avoid single point failures, voters
themselves are often triplicated as well [21]. The granularity
of TMR affects the amount of SEUs a design can tolerate
before failure; fine grain TMR (i.e., TMR of the smallest
components) is able to withstand more faults at the cost
of additional area and delay due to increased voter inser-
tion [22]. There are a number of automated CAD tools that
are capable of applying TMR to an FPGA design such as:
Xilinx XTMR tool [23], Mentor Graphics Precision Rad-
Tolerant Synthesis [24], and an open source tool called BL-
TMR [25]. For this test, TMR will be leveraged as much
as possible to increase reliability by applying full TMR at a
fine granularity to the final LEON3 system configuration of
Figure 2.

The BL-TMR open-source tool was used to perform fine
granularity TMR of the LEON3 system architecture. It
achieved this by manipulating the Xilinx ISE 14.7 generated
EDIF netlist of the design allowing for Xilinx 7-series prim-
itives, (e.g., LUT6, FDRE, MUXF8, etc.), to be triplicated
with majority voters placed throughout the design. This
tool places voters in feedback paths so as to resynchronize
the triplicated processor when repaired through configura-
tion scrubbing [21]. The resulting netlist is then instantiated
in the test design harness for validation.

All components of the LEON3 system were triplicated ex-
cept for the AHB memories as indicated by their dashed
outline in Figure 2. The global clock was triplicated us-
ing three independent clock buffers enabling each LEON3
TMR domain to have its own unique clock. All ports of the
LEON3 system module were triplicated and are utilized in
the test design harness for validation.

4.2 Internal Memory Mitigation
Internal memories that contain large amounts of state

pose a unique challenge when faced with SEUs. Although
a number of memory coding techniques can be used, these
techniques do not adequately protect the memory from the
accumulation of multple upsets in memory words. This
problem is especially prevalent on memories whose contents
do not change very often (such as read only memories). Af-
fected memories in Xilinx 7-series FPGAs include: BRAMS,
LUTRAMs, SRLs, DRP registers, etc. In order to prevent
accumulation of upsets that may invalidate TMR and other

207

memory reliability techniques, such as ECC, some form of
memory scrubbing is needed [26]. The memories in this
processor are manually modified to implement both fault
masking and memory scrubbing.

Although the 7 series BRAMs offer ECC support [27], this
ECC is not used in this processor for several reasons. First,
the ECC is only available when the BRAM is configured in
64-bit mode. The memory used in the LEON3 is configured
with a data width that is smaller than 64 bits. Second, the
use of a single BRAM with ECC introduces single-point fail-
ures in the memory. For example, there are several signals
such as the “write enable” that could be corrupted by a sin-
gle SEU and completely break the operation of the single,
ECC-enabled BRAM. While ECC can mask a single bit er-
ror when reading from BRAM, it does not actually repair
the error within the BRAM. Therefore, ECC is not able to
handle the accumulation of SEUs in BRAM unless the cor-
rected data is written back into the memory. To ensure there
are no single-point failures in the memory architecture and
to prevent accumulation of upsets, triplicated BRAMs with
self-scrubbing will be used.

By providing memory scrubbing, memories affected by
SEUs will not accumulate upsets and TMR can be used
to mask single errors that occur in the memories. The two
memories that were protected in this processor are a single-
port read only BRAM configuration for the AHBROM pe-
ripheral and a single-port BRAM read/write configuration
for the AHBRAM peripheral. In each case scrubbing logic
is added that takes advantage of the unused second BRAM
memory port (see Figure 3). This scrubber “cleans” the
memory contents by alternating between a read and write
operation through each address of the memory. The com-
plete contents of the BRAM are scrubbed every 400 µs.
Data reads from the triplicated memories are voted upon
to obtain a corrected value for the current address. This
value is then written back to the memory. Scrubbing is dis-
abled in the AHBRAM while it is being written to by the
processor to avoid memory conflicts.

P
o

rt
 0

P
o

rt
 1

BRAM_0 V

V

V

P
o

rt
 0

P
o

rt
 1

BRAM_1

SCRUBBER_0

SCRUBBER_1

V

V

TMR Memory BanksBackground Scrubbing

SCRUBBER_2
V P

o
rt

 0

P
o

rt
 1

BRAM_2

Figure 3: Memory Mitigation with TMR and Mem-
ory Scrubbing.

These scrubbing memories were created manually in HDL
using inferred BRAMs. The BL-TMR tool merged the netlist
of the manually mitigated scrubbing memories with the trip-
licated netlist of the LEON3 system.

4.3 Configuration Scrubbing
An important component of the mitigation strategy used

in this system is configuration scrubbing [4, 5]. Configura-

tion scrubbing involves the rapid and continuous writing of
the configuration memory to repair upsets. The reliability of
a system can be significantly improved when both configu-
ration scrubbing (repair) and TMR (fault masking) are used
together. Without configuration scrubbing, the benefits of
TMR are limited (especially for long missions).

Configuration scrubbing is usually performed external to
the FPGA and does not impact the design of the mitigated
LEON3 processor. A JTAG configuration scrubbing mech-
anism is used for this experiment and will be described in
more detail in Section 6.

4.4 Testing Infrastructure
Two different versions of the LEON3 processor were de-

veloped. The first is the unmitigated version which imple-
ments the LEON3 processor without any modification. This
unmitigated version will serve as a reference to identify base-
line reliability. The second is a mitigated version and imple-
ments the TMR and memory mitigation described above.
The improvements in reliability will be compared against
the baseline unmitigated processor.

Both the unmitigated and mitigated LEON3 processors
were tested under fault injection and a heavy ion radiation
beam. In order to validate the LEON3 processor under these
tests a mechanism must be put in place to identify when the
LEON3 processor fails. One common approach is to provide
a “golden” copy of the design and compare the “golden” copy
of the processor with the design under test or “DUT”. While
this is an effective mechanism, it is difficult to synchronize
two separate systems making it a cumbersome strategy to
implement.

The strategy used for detecting failures in this experi-
ment is to instance two copies of the LEON3 system inside
a test design harness and provide an internal cycle-by-cycle
comparison of the processors from within the FPGA. Fault
tolerant detection circuitry is added to detect when the two
processors disagree (see Figure 4). When a failure occurs
in one of the two processors, the faulty processor will not
match the non-faulty processor and the detection circuitry
will identify the error. Once an error is identified a tripli-
cated register is set and remains set so external monitoring
methods may record the failure.

Vote

and

Compare

Vote

and

Compare

Bus
Signals

Vote
and

Compare

Vote

and

Reduce

Vote

and

Reduce

Bus
Signals

Vote
and

Reduce

Clock

and

Reset

Manager

Clock

and

Reset

Manager

Clock
and

Reset
Manager

LEON3

Core1

LEON3

Core2

UART

JTAG
and

Physical
I/O

Interface

Processor

Under Test

Figure 4: Internal Testing Infrastructure.

The following signals were used to compare the processor
execution state and monitor the health of the test design
harness:

208

• Global system clock heartbeat and a heartbeat for each
of the triplicated clock domains

• Triplicated disagreement signals set only when proces-
sors disagree

• Triplicated failure detection signals asserted if any dis-
agreement occurred

• Triplicated activity signals for each processor core indi-
cating that the bus signals being compared are chang-
ing over time (i.e., that the processor is active).

• UART output of the Dhrystone (2.1) benchmark for
monitoring correct behavior.

Each bit of the bus signal state was compared between the
two processors using triplicated comparison circuitry giving
a total of 104 bits of comparison status. Triplicated reduc-
tion circuitry reduced these 104 bits to a single triplicated
bit. If ever two or more copies of this triplicated bit go high
(i.e., the bus signals of the processors do not agree across
two or more copies of the comparison logic), an additional
register is set and remains set to catch the disagreement so
that the failure may be recorded externally from the chip.

Two methods of off chip status retrieval were incorporated
into this test. First, the status signals were made available
via JTAG using an instanced Xilinx Boundary Scan primi-
tive (BSCAN). This allows the status to be queried as part
of the configuration scrubbing or fault injection, enabling
dynamic control of the test (e.g., automated recording and
full device reconfiguration upon failure for fault injection).
Second, the triplicated status signals were tied to physical
I/O ports and monitored via Xilinx FPGA Mezzanine Card
XM105 Debug Cards using an additional Xilinx KC705 Eval-
uation Board. A Xilinx Virtual I/O Module was instanced
on this out-of-beam monitor device and Xilinx ChipScope
was used to allow real time monitoring of the DUT during
radiation testing. Figure 8 shows the physical configuration
of the DUT with the monitoring board. Once off chip the
triplicated status signals may be voted upon to determine
the correct status of the design under test (i.e., one of the
three failures signals may erroneously be set due to an SEU
in the comparison logic and should not be considered as a
LEON3 system failure).

4.5 Design Implementation Results
Both the unmitigated and mitigated designs were mapped

to the Xilinx XC7K325T device on the KC705 evaluation
board. The FPGA utilization of both designs is summarized
in Table 1. The mitigated version of the LEON3 uses 3.3×
more slices than the unmitigated version. The mitigated
dual LEON version uses roughly 30% of the FPGA resources
suggesting that up to six mitigated LEON3 processors could
fit within the XC7K325T device. The internal FPGA layout
of both designs is shown in Figure 5.

Although both processors operate at 50 MHz during the
tests, the unmitigated processor has a higher maximum clock
rate than that of the mitigated processor. The maximum op-
erating frequency of the two designs is shown in Table 2. To
understand the effect of the detection logic on maximum op-
erating speed, both designs are implemented in two forms:
with and without the detection circuitry. In both cases, the
unmitigated circuit operates faster than the mitigated cir-
cuit. With detection circuitry added, the mitigated circuit
is much slower than that of the unmitigated circuit (.55×)
suggesting that the critical path is within the detection cir-
cuitry.

Resource Testing LEON3 LEON3 Total Device
Utilization Overhead Core 1 Core 2 NonTMR/TMR
Slices 1753 1383 1410 4546 50950
(TMR) 1960 6567 6767 15294 8.9%/30.0%
Slice Reg 2726 1950 1950 6626 407600
(TMR) 2726 6165 6165 15056 1.6%/3.7%
LUTS 3324 4077 4069 11470 203800
(TMR) 3265 18046 18051 39362 5.6%/19.3%
LUTRAM 1 15 15 31 64000
(TMR) 1 45 45 91 .048%/.142%
BRAM 0 50 50 100 445
(TMR) 0 150 150 300 22.5%/67.4%
DSP48E1 0 1 1 2 840
(TMR) 0 3 3 6 .238%/.714%
BUFG 4 0 0 4 32
(TMR) 4 0 0 4 12.5%/12.5%

Table 1: Dual-LEON3 Design Utilization

NonTMR TMR

No Detection 164 MHz (6.10 ns) 140 Mhz (7.15 ns)
Detection 132 MHz (7.56 ns) 73.7 MHz (13.56 ns)

Table 2: Post-PAR Timing Summary

5. FAULT INJECTION
A useful way of learning more about the SEU sensitiv-

ity of an FPGA design and to understand the benefits of
a mitigation technique is to apply artificial fault injection
within the configuration memory [29]. Fault injection in-
volves intentionally inserting corrupt data into the configu-
ration memory by partially configuring FPGA frames with
configuration data in which one or more configuration bits
are opposite from their original values (faults are usually in-
jected one at a time). After the faulty configuration data
has been applied, the behavior of the circuit is monitored to
detect deviations from the expected output. If the circuit de-
viates from its expected value, then the corresponding upset
configuration bit is labeled as sensitive. Those configuration
bits that do not impact the circuit behavior are labeled in-
sensitive. Fault injection can be used to measure the relative
sensitivity of various designs to upsets in the configuration
memory.

Fault injection has its limitations and does not model all
of the negative behavior of FPGAs operating in the presence
of ionizing radiation (flip-flops or upsets in the proprietary
internal state of an FPGA). As such, a number of failure
modes seen in radiation testing will not appear in fault in-
jection. In spite of these limitations, fault injection is a very
helpful tool that provides important, preliminary informa-
tion on the effectiveness of a given mitigation scheme. The
goals of fault injection for this work are first, estimate the
configuration sensitivity of both the unmitigated LEON3
processor and the mitigated processor. second, validate the
ability of the test infrastructure to detect processor errors,
and validate the testing infrastructure and software before
radiation testing.

5.1 Fault Injection Setup
The fault injection tool used for this project is based on

custom tool called the “JTAG Configuration Manager” or
JCM. The JCM is a Linux-based embedded system that
provides the ability to generate high-speed JTAG sequences

209

Figure 5: FPGA Layout of Unmitigated Design
(left) and the Mitigated design (right)

for FPGA configuration, readback, and configuration scrub-
bing. The JCM is capable of configuring an individual frame
through JTAG in under 85 µs. The injection of faults can
be controlled programmatically by the host Linux system to
customize the fault injection campaign to the goals of the
experiment. A picture of the JCM fault injection system
and the KC705 board is shown in Figure 6.

The fault injection campaign applied to the LEON3 was
designed to emulate the random nature of configuration up-
sets that are expected in a radiation beam. The fault injec-
tor is programmed to upset a single configuration bit at a
random location and to continue inserting upsets until the
processor system fails. The specific steps of this fault injec-
tion campaign are as follows:

1. Randomly select a configuration bit and invert the
value of the configuration bit through partial config-
uration.

2. Wait 1ms to allow the effects of the upset to propagate
through the system.

3. Monitor the behavior of the two processor comparator
circuit through the JTAG BSCAN interface.

• If the processor is unaffected by the upset, repair
the configuration bit and proceed.

• If the processor behavior is affected by the up-
set, reconfigure the FPGA to restore the correct
operating state.

The JCM injects faults at an average rate of 120 faults per
second.

5.2 Fault Injection Results
The fault injection system was applied to both LEON3 de-

signs: the unmitigated design and the SEU mitigated design.

Figure 6: JTAG Configuration Manager. The board
at the bottom is the Xilinx KC705 which contains
the Kintex DUT. The small board on the top is the
Linux-based JTAG Configuration Manager. A stan-
dard 14-wire JTAG cable connects the JCM to the
KC705.

The results from this fault injection campaign are summa-
rized in Table 3. This table lists the number of faults injected
into each design (n) and the number of observed failures on
the design (k). From these results the mean-upsets to failure
(MUTF) can be estimated as n/k.

Unmitigated Mitigated
Faults Injected (n) 1,831,859 29,443,885
Observed Failures (k) 6,501 2,037
MUTF 282 14,455
Sensitivity .355% .00692%
(95% Conf. Interval) (.346%,.363%) (.00662%,.00722%)
Est. Sensitive Bits 240,539 4,689

Improvement 1.0 51.3

Table 3: Fault Injection Results.

The sensitivity of the design or the estimated percentage
of configuration bits with each FPGA design that are sensi-
tive to upsets, is estimated by using the maximum likelihood
estimator, r̂, of the Binomial distribution:

r̂ =
k

n
,

The standard deviation of the maximum likelihood estima-
tor is:

σ =

√

k

n2

(

1−
k

n

)

.

The standard deviation of the estimator can be used to de-
termine the 95% confidence interval bounds of the sensitivity
estimate. The number of total sensitive bits in the design
can be estimated by multiplying the sensitivity estimate,
r̂, by the total number of configuration bits (67,779,264) in

210

block 0 of the configuration bitstream (i.e., the configuration
bits associated with the logic and routing).

These results suggest that the mitigated LEON3 design is
51.3× less sensitive to upsets than the unmitigated design
in spite of the fact that the mitigated design is 3.4× larger
than the unmitigated design. These results indicate that
the mitigation techniques described in Section 4 significantly
reduce the sensitivity of the LEON3 processor to upsets in
the configuration memory.

In spite of these mitigation techniques, however, there are
a number configuration bits in the mitigated design that
are still sensitive to single-event upsets. This suggests that
the design still contains a number of single points of failure.
There are several known single points of failure including the
clock network and external I/O. In addition to these known
single points of failure, it is possible that some configuration
bits in the routing may corrupt more than one net associated
with different TMR domains as suggested by [30]. Future
work will investigate the cause of these remaining single-
points of failure to further improve the reliability.

6. HEAVY ION RADIATION TEST
The results from the fault injection campaign suggest that

the mitigation approaches are working and the configura-
tion sensitivity is significantly reduced. The next step in
the validation of the mitigated LEON3 processor is to test
the processor with a high energy radiation beam. Radiation
testing provides a number of advantages over fault injec-
tion. First, a radiation beam can upset any internal state
of the FPGA including that states not tested by fault injec-
tion (user flip-flops, block memory, and internal proprietary
FPGA state). Second, radiation testing will induce other
faults such as single-event transients, multi-cell upsets, and
possibly single-event latch-up. Because of these additional
failure modes, it is expected that the improvements of the
mitigation design will be lower with radiation testing than
with fault injection.

Figure 7: Delidded and Thinned XC7K325T Die.

6.1 Radiation Test Setup
A radiation test was performed on both the mitigated

and non-mitigated LEON3 designs with heavy ions at the
Texas A&M K500 Cyclotron in August of 2015. A sample
XC7K325T device was prepared for the test by removing

the lid and thinning the substrate to allow the ions to pen-
etrate the substrate and reach the active region of silicon
(see Figure 7). During radiation testing many configura-
tion bits (and other state) will be upset and configuration
scrubbing must be employed to rapidly restore the configu-
ration memory to its proper state. The JTAG Configuration
Manager described in Section 5 was used to provide active,
high-speed configuration scrubbing during the test. Figure 8
shows the KC705 test board mounted on a base plate along
with the configuration scrubber, power monitor, and exter-
nal I/O connector. Next to the base plate is a second KC705
board that receives the I/O signals for review by the test op-
erator. The base plate mounted in front of the beam cap is
shown in Figure 9.

Figure 8: Experiment setup for radiation testing.
The radiation test setup is on the left and the remote
monitor is on the right.

The organization of the radiation test is very similar to the
fault injection testing. The FPGA is configured with either
the mitigated or non-mitigated LEON3 design and executes
the Dhrystone benchmark. The correctness of the processor
execution is monitored through the external I/O signals as
well as the standard UART output of the processor. There
are a few minor modifications to the radiation test. First,
the configuration scrubber is enabled to actively repair con-
figuration upsets when the beam is turned on. Second, a
secondary processor correctness interface is added to detect
processor failure in the event that the JTAG interface is dis-
abled by radiation. This interface involves several digital
I/O signals that are sent to a remote data acquisition board
for manually monitoring the processor status.

The procedure for each test is as follows. First, the FPGA
is configured and the scrubber initialized to make sure the
system is running properly without the radiation beam. Sec-
ond, the shutter for the radiation beam is removed to enable
the radiation beam and induce faults in the circuit. Once
the beam is enabled, upsets will occur throughout the FPGA
and the configuration scrubber is repairing and logging these
upsets. At some point, the radiation will cause the proces-
sor to fail. When this failure is detected by the operator,
the operator closes the beam shutter and records the beam
fluence that accumulated during the beam run. The accu-
mulated fluence is the primary data associated with each
run (fluence to failure) and multiple runs are performed to
provide an average fluence to failure with greater confidence.

To obtain an accurate estimate of the failure rate of the

211

Figure 9: Heavy Ion Radiation Test Setup in Beam.

LEON3 processors in a space environment, the heavy ion
radiation test must be performed at multiple energies as the
space environment is a complex environment with a range
of particle flux and energies (see Figure 11). The param-
eter used in this type of testing is Linear Energy Trans-
fer or LET which describes the amount of energy that an
ionizing particle transfers to the material per unit distance
(MeV cm2/mg). Different values of LET can be obtained
by changing the ion used in the beam and inserting degrader
material into the beam path.

6.2 Radiation Test Results
Both the unmitigated and mitigated designs were tested

at six different LET values as shown in Table 4. As described
above, multiple runs were performed at each LET to mea-
sure the accumulated beam fluence to failure. The average
cross section at each LET was determined by dividing the
number of failures observed by the total fluence at the given
LET. As shown in the fourth column, the mitigated designs
tolerated on average ten times as much fluence as the un-
mitigated design suggesting that the mitigation techniques
provided significant, measurable improvements in radiation
tolerance over the unmitigated design.

LET (Ion) Unmitigated Mitigated Improv.
(MeV-cm2/mg) (cm2/proc.) (cm2/proc.)

3.4 (Ne) 2.40E-5 3.65E-4 15.2
4.7 (Ne) 2.76E-5 2.58E-4 9.4
6 (Ne) 5.07E-5 5.38E-4 10.6
9 (Ne) 5.75E-5 5.59E-4 9.7

11.9 (Ar) 6.94E-5 5.43E-4 7.8
18.5 (Ar) 3.13E-5 2.69E-4 8.6

Table 4: Measured SEU Sensitive Cross Section.

Unlike fault injection where thousands of runs can be per-
formed automatically in a relatively short amount of time
(see k in Table 3), it is very labor intensive to perform a run
with radiation testing and only a dozen or so runs can be per-
formed at each LET. The low number of runs produces much
larger confidence intervals than the fault injection runs.

6.3 Radiation Test Challenges
Although the radiation test successfully demonstrated an

order of magnitude improvement in radiation tolerance for
the mitigated design, there were a number of significant
problems that occurred at the test. First, the scrubbing
hardware was incorrectly configured to the wrong FPGA de-
vice and was only scrubbing the first third of the configura-
tion memory. With much of the FPGA not being scrubbed,
it is likely that the TMR mitigation scheme failed due to
the accumulation of upsets (i.e., more than one TMR do-
main failing). Second, the scrubbing hardware ran relatively
slowly in comparison to the configuration upset rate. In a de-
ployed system, the scrub rate is set to operate at several or-
ders of magnitude greater than the individual configuration
upset rate. In radiation testing, however, this is not possible
since the upset rate is many orders of magnitude higher than
the rate in a space environment. For this experiment, the
FPGA experienced an average of 5.11 configuration upsets
per second in the first third of configuration memory that
was scrubbed. The configuration scrubber operated at 2.88
seconds per scrub allowing about 14.72 configuration upsets
to accumulate before completing a scrub cycle. Future ra-
diation tests will be conducted to address these issues and
hopefully achieve improved reliability results.

7. ORBIT FAILURE RATE ESTIMATES
The radiation test results were used to estimate the fail-

ure rate in a near-earth interplanetary/geosynchronous orbit
under “solar minimum” solar conditions (maximum cosmic-
ray conditions). This estimate is made by first estimating a
cross-section curve (or failure probability curve) as a func-
tion of LET. It is customary to use the Weibull distribu-
tion to model cross-section curves. The parameters of the
Weibull distribution are estimated by using the data sam-
ples at each LET from the radiation test. Figure 10 shows a
Weibull cross-section curve (in green) based on the size LET
test samples. The test samples are shown with blue circles
and the corresponding error bars.

Once cross-section curve estimates are created, the orbit
error rate is estimated using a tool called CREME-96 [31].
This tool begins by estimating the particle flux of the given
orbit based on previous orbit measurements – the GEO or-
bit particle flux is shown in Figure 11. This tool adjusts the
radiation environment seen by the spacecraft due to shield-
ing and then convolves the design cross section (Figure 10)
with this modified environment (as a function of LET).

The estimated failure rate and the corresponding mean-
time to failure (MTTF) of both designs is shown in Table 5.
The estimated failure rate of the mitigated LEON3 processor
is roughly 76 years. This estimate suggests that the imple-
mented mitigation methods provide sufficient reliability for
many space applications. It is important to emphasize that
the estimated orbital failure rates are not exact and that
much of the uncertainty is based on the parameters chosen
for the Weibull cross section curves More radiation testing

212

Figure 10: Weibull Cross Section Curve for Miti-
gated Processor.

is needed at other LET values to increase the accuracy of
the Weibull curve fit.

Design Failure Rate (λ) MTTF
(failures/processor/s) (days/years)

Unmitigated 2.77E-8 501/1.4
Mitigated 4.15E-10 27,889/76

Table 5: Estimated Failure Rate of LEON3 in the
GEO Orbit.

8. CONCLUSION
This work investigated the improvements in reliability of

the soft core LEON3 processor operating on a commercial
Xilinx Kintex 7 FPGA. TMR, internal memory scrubbing,
and configuration scrubbing were all used to mitigate against
single-event upsets that occur in the configuration memory,
user flip-flops, and other FPGA state. Fault injection tests
indicated a 51× reduction in SEU cross section, and rough
orbit failure rate estimates suggest a MTTF of over 76 years
in space. All of these results suggest that the collection of
mitigation techniques used to improve the LEON3 reliability
were successful and that the mitigated LEON3 processor
may be reliable enough to consider for use in space.

Although improvements in reliability were seen in both
fault injection and radiation testing, the amount of improve-
ment was not as high as expected. The results suggest that
additional SEUmitigation may provide even higher improve-
ments in reliability. A number of single-points of failure
still exist in the design (clocking and some I/O) and not
all memory structures of the processor were improved with

Figure 11: GEO Orbit LET Spectra Expected at
Device After Shielding.

scrubbing. In addition, significant improvements in the ra-
diation testing procedure will likely provide additional im-
provements in the radiation validation. These obvious op-
portunities for additional improvements in reliability suggest
that the reliability estimates in this work can be significantly
improved.

To integrate a processor in a complex system, additional
features and processor architecture within the LEON3 must
be tested. Future work will investigate the reliability of a
complex LEON3 system with caches, memory controllers,
and other essential I/O peripherals. With this architecture
support, complex operating systems like Linux can be used
and complex software systems can be deployed. The success
of this future work will facilitate the adoption of soft core
processors operating in commercial FPGAs in future space
systems.

9. ACKNOWLEDGEMENTS
This work was supported by the I/UCRC Program of the

National Science Foundation under Grant No. 1265957.

10. REFERENCES

[1] J.G. Tong, ID.L. Anderson, and M.AS. Khalid.
Soft-core processors for embedded systems. In
Microelectronics, 2006. ICM ’06. International
Conference on, pages 170–173, Dec 2006.

[2] R. Katz, K. LaBel, J.J. Wang, B. Cronquist, R. Koga,
S. Penzin, and G. Swift. Radiation effects on current
field programmable technologies. IEEE Transactions
on Nuclear Science, 44(6):1945–1956, December 1997.

[3] F. Lima Kastensmidt, L. Sterpone, L. Carro, and
M. Sonza Reorda. On the optimal design of triple
modular redundancy logic for SRAM-based FPGAs.
In Proceedings of the Conference on Design,
Automation and Test in Europe - Volume 2, DATE
’05, pages 1290–1295, Washington, DC, USA, 2005.
IEEE Computer Society.

[4] Carl Carmichael, Michael Caffrey, and Anthony
Salazar. Correcting single-event upsets through Virtex

213

partial configuration. Technical report, Xilinx
Corporation, June 1, 2000. XAPP216 (v1.0).

[5] I. Herrera-Alzu and M. Lopez-Vallejo. Design
techniques for Xilinx Virtex FPGA configuration
memory scrubbers. Nuclear Science, IEEE
Transactions on, 60(1):376–385, Feb 2013.

[6] L. Sterpone and M. Violante. Analysis of the
robustness of the TMR architecture in SRAM-based
FPGAs. Nuclear Science, IEEE Transactions on,
52(5):1545 – 1549, oct. 2005.

[7] M.A. Aguirre, J.N. Tombs, F. Muoz, V. Baena,
H. Guzman, J. Napoles, A. Torralba,
A. Fernandez-Leon, F. Tortosa-Lopez, and
D. Merodio. Selective protection analysis using a SEU
emulator: Testing protocol and case study over the
Leon2 processor. Nuclear Science, IEEE Transactions
on, 54(4):951–956, Aug 2007.

[8] C.A. Hulme, H.H. Loomis, A.A. Ross, and Rong
Yuan. Configurable fault-tolerant processor (CFTP)
for spacecraft onboard processing. In Aerospace
Conference, 2004. Proceedings. 2004 IEEE, volume 4,
pages 2269–2276 Vol.4, March 2004.

[9] J. Perez Acle, M.S. Reorda, and M. Violante.
Implementing a safe embedded computing system in
SRAM-based FPGAs using IP cores: A case study
based on the Altera NIOS-II soft processor. In
Circuits and Systems (LASCAS), 2011 IEEE Second
Latin American Symposium on, pages 1–5, Feb 2011.

[10] F. Abate, L. Sterpone, C.A. Lisboa, L. Carro, and
M. Violante. New techniques for improving the
performance of the lockstep architecture for SEEs
mitigation in FPGA embedded processors. Nuclear
Science, IEEE Transactions on, 56(4):1992–2000, Aug
2009.

[11] M. Violante, C. Meinhardt, R. Reis, and M.S. Reorda.
A low-cost solution for deploying processor cores in
harsh environments. Industrial Electronics, IEEE
Transactions on, 58(7):2617–2626, July 2011.

[12] C. Gauer, B.J. LaMeres, and D. Racek. Spatial
avoidance of hardware faults using FPGA partial
reconfiguration of tile-based soft processors. In
Aerospace Conference, 2010 IEEE, pages 1–11, March
2010.

[13] Frederico Ferlini, Felipe A. da Silva, E.A. Bezerra, and
Djones V. Lettnin. Non-intrusive fault tolerance in
soft processors through circuit duplication. In Test
Workshop (LATW), 2012 13th Latin American, pages
1–6, April 2012.

[14] Gregory Miller, Carl Carmichael, and Gary Swift.
Mitigation, design flow and troubleshooting a soft
processor in a complex FPGA. In Military and
Aerospace Programmable Logic Devices (MAPLD)
Workshop, 2008.

[15] Gregory Miller, Carl Carmichael, Gary Swift, Mike
Pratt, and Gregory R. Allen. Preliminary analysis of a
soft-core processor in a Rad Hard by Design Field
Programmable Gate Array. In Military and Aerospace
Programmable Logic Devices (MAPLD) Workshop,
2009.

[16] IEEE standard for a 32-bit microprocessor
architecture. IEEE Std 1754-1994, pages 1–, 1995.

[17] Aeroflex gaisler LEON3 processor.
http://www.gaisler.com/index.php/products/processors/leon3.

[18] Luo Pei and Zhang Jian. A high reliable SOC
on-board computer based on Leon3. In Computer
Science and Automation Engineering (CSAE), 2012
IEEE International Conference on, volume 1, pages
360–363, May 2012.

[19] Michael R. Gardiner. An evaluation of soft processors
as a reliable computing platform. Master’s thesis,
Brigham Young University, 2015.

[20] GRTools.
http://www.gaisler.com/index.php/downloads/grtools.

[21] Jonathan M. Johnson and Michael J. Wirthlin. Voter
insertion algorithms for FPGA designs using triple
modular redundancy. In Proceedings of the 18th
Annual ACM/SIGDA International Symposium on
Field Programmable Gate Arrays, FPGA ’10, pages
249–258, New York, NY, USA, 2010. ACM.

[22] M. Niknahad, O. Sander, and J. Becker. A study on
fine granular fault tolerance methodologies for
FPGAs. In Reconfigurable Communication-centric
Systems-on-Chip (ReCoSoC), 2011 6th International
Workshop on, pages 1–5, June 2011.

[23] Brendan Bridgford, Carl Carmichael, and Chen Wei
Tseng. Single-event upset mitigation selection guide.
Technical Report 1, Xilinx Corporation, 2008. Xilinx
Application Note XAPP987.

[24] R. Do. The details of triple modular redundancy: An
automated mitigation method of I/O signals. In The
prooceedings of the Military and Aerospace
Programmable Logic Devices, 2011.

[25] BL-TMR and BYU Edif Tools.
http://sourceforge.net/projects/byuediftools/.

[26] N. Rollins, M. Fuller, and M.J. Wirthlin. A
comparison of fault-tolerant memories in SRAM-based
FPGAs. In Aerospace Conference, 2010 IEEE, pages
1–12, March 2010.

[27] Xilinx Coproration. 7 Series FPGAs Memory
Resources: User Guide. UG473 (v1.11), November 12,
2014.

[28] Daniel P. Siewiorek and Robert S. Swarz. Reliable
Computer Systems. A. K. Peters, 1998.

[29] F. Lima, C. Carmichael, J. Fabula, R. Padovani, and
R. Reis. A fault injection analysis of Virtex FPGA
TMR design methodology. In Proceedings of the 6th
European Conference on Radiation and its Effects on
Components and Sysemts (RADECS 2001), 2001.

[30] M.S. Reorda, L. Sterpone, and M. Violante. Multiple
errors produced by single upsets in FPGA
configuration memory: a possible solution. In Test
Symposium, 2005. European, pages 136–141, May
2005.

[31] A.J. Tylka, J.H. Adams, P.R. Boberg, B. Brownstein,
W.F. Dietrich, E.O. Flueckiger, E.L. Petersen, M.A.
Shea, D.F. Smart, and E.C. Smith. Creme96: A
revision of the cosmic ray effects on micro-electronics
code. Nuclear Science, IEEE Transactions on,
44(6):2150–2160, Dec 1997.

214

