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ABSTRACT
Softcore processors are an attractive alternative to using
radiation-hardened processors in space-based applications.
Unlike traditional processors however, the logic and routing
of a softcore processor are vulnerable to the effects of single-
event upsets (SEUs). This paper applies two common SEU
mitigation techniques, TMR with checkpointing and DWC
with checkpointing, to the LEON3 softcore processor. The
improvement in reliabilty over an unmitigated version of the
processor is measured using three metrics: the architectural
vulnerability factor (AVF), mean time to failure (MTTF),
and mean useful instructions to failure (MuITF). Using con-
figuration memory fault injection, we found that DWC with
checkpointing improves the MTTF and MuITF by over 35×,
and that TMR with triplicated input and outputs improves
the MTTF and MITF by over 6000×.

Categories and Subject Descriptors
B.8.1 [Performance and Reliability]: Reliability, Perfor-
mance, and Fault-Tolerance
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Reliability, Softcore processors, AVF, MTTF, MuITF

1. INTRODUCTION
Microprocessors used in space-based applications must be

protected from the effects of high-energy particles. They are
usually protected through a very expensive process called
radiation-hardening. Radiation-hardened processors are built
with special design libraries and fabrication processes that
are more resilient to high-energy radiation [1]. These larger
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transistors resist high-energy particles by requiring more en-
ergy to switch. Although tolerant to radiation, rad-hard
processors are larger, slower, consume more power, and can
cost hundreds of thousands of dollars [1,2] when compared to
a commercial processor. Additionally, rad-hard processors
used in space are often one to two decades old [2].

As an alternative to an older expensive rad-hard proces-
sor, processors can be implemented in the logic of a field-
programmable gate array (FPGA). A processor implemented
in an FPGA is called a softcore processor because the logic
is reconfigurable. In contrast to rad-hard processors, soft-
core processors are fast, flexible, less expensive, and reconfig-
urable. If a softcore processor can be adequately protected
from soft-errors, softcore processors can be an attractive al-
ternative for space-based applications.

The flexibility and reprogramability that FPGAs provide
for space-based applications comes at a price – SRAM-based
FPGAs are inherently sensitive to the effects of faults caused
by high-energy particles. These single event upsets (SEUs)
can occur not only in FPGA user memory bits but also in the
FPGA configuration bits that define the logic and routing
of the softcore processor. SEUs in the FPGA configuration
memory remain until repaired with configuration scrubbing.

Although FPGA user memory is also sensitive to the ef-
fects of SEUs, there are far more configuration bits in an
FPGA device than user memory bits. For the device used
in this study (Xilinx Virtex4 FX60), there are almost 21
million configuration bits, which is over 4× more bits than
user memory bits. Configuration bits control slices (includ-
ing flip-flops, LUT-RAMs, and SRLs), IOBs, DCMs, DSPs,
BRAM interconnect, all instance attributes, and all rout-
ing. User memory bits include BRAM data bits and user
flip-flops. Thus SEUs are more likely to occur in the logic
and routing (configuration memory) than in user memory.

This paper characterizes the sensitivity of a mitigated
softcore processor in the presence of configuration SEUs us-
ing a novel fault injection technique. The mitigation tech-
niques include triple modular redundancy (TMR), and du-
plication with compare (DWC) with checkpointing. TMR is
used since it is one of the most popular FPGA design miti-
gation techniques [3], and DWC with checkpointing is used
since it is one of the most popular processor mitigation tech-
niques [4]. The metrics used to characterize the reliability
of the softcore processor designs include architectural vul-
nerability factor (AVF) [5], mean-time to failure (MTTF),
and mean useful instructions to failure (MuITF) [6].



2. SOFTCORE PROCESSOR DESIGNS
The processor used in this study is Aeroflex Gaisler’s 32-

bit LEON3 processor [7]. This processor is chosen for this
study because of its popularity in the space community, and
because it is open-source. Only the core microarchitectural
components of the LEON3 processor are included in this
study. Figure 1 shows that the core units include the 7-stage
integer pipeline, a 12 window register file, the hardware mul-
tiplier and divider, 1 Kbyte direct-mapped instruction and
data caches, interrupt controller, and on-chip main memory.

Figure 1: The LEON3 core processor units used in
this study.

The first mitigation technique used in this study to pro-
tect the LEON3 processor uses duplication with compare
(DWC) and rollback checkpointing [8]. DWC is a reliability
technique that uses a duplicate processor to detect upsets.
This study includes two versions of the DWC LEON3 pro-
cessor: one with duplicated clock and reset inputs, and one
with single clock and reset signals. Duplication is a popu-
lar processor reliability technique that can either be used in
lockstep [8] or dual-core execution (DCE) [9]. This study
uses duplicated processors in lockstep.

Softcore processors have the luxury of using strict lockstep
since any processor signal can be exposed on a cycle-by-cycle
basis. The softcore processor architecture can be changed
at any time to use any given signal for lockstep comparison.
The lockstep DWC processors compare register file outputs,
program counters, instruction registers, processor output,
and main memory input in a strict lockstep fashion.

The second LEON3 processor mitigation technique uses
TMR and roll-forward checkpointing [8]. This study uses
two versions of the TMR LEON3 processor: one with trip-
licated inputs and outputs (with off-chip voting), and one
with untriplicated inputs and outputs (with on-chip voting).
Similar to the duplicated processor design, the TMR design
keeps the triplicated processors in strict lockstep execution
using the register file outputs, program counters, instruction
registers, processor outputs, and main memory inputs. But
unlike DWC design, when one of the processors falls out of
lockstep, a rollback is not required. Instead, the state of
the two processors still in lockstep is used to correct and
resynchronize the one that is out of lockstep.

3. RELIABILITY METRICS
Traditional processor reliability is measured in terms of

mean time to failure (MTTF) or more recently, mean in-
structions to failure (MITF) [6]. This section shows how
these metrics are modified for softcore processors. The met-

rics introduced in this section can be applied to the processor
as a whole or to individual components of the processor to
compare component reliability.

Not every configuration upset in a softcore processor will
lead to erroneous processor output. The traditional met-
ric for expressing how likely it is for an upset to lead to a
processor error is called the architectural vulnerability fac-
tor (AVF) [5]. When applied to softcore processors, AVF
is used to represent the percentage of configuration mem-
ory bits that, when upset, cause the processor to execute
incorrectly.

Each of the 21 million bits in the configuration memory is
classified as being either required for architecturally correct
execution (ACE) or unnecessary for architecturally correct
execution (unACE) [5]. Upsetting an ACE bit causes a
program running on the softcore processor to produce an
incorrect output, while upsetting an unACE bit does not
hinder correct program execution. In this study the terms
ACE bits and sensitive bits are used synonymously. Like-
wise, unACE is a synonym for insensitive.

In keeping with the meaning of a sensitive bit, upsets to
ACE bits are classified as being either detected, recoverable
upsets (DRU), detected, unrecoverable errors (DUE), or
silent data corruption (SDC) bits. DUE upsets are those
which are detected by the processor, but from which the
processor cannot recover. SDC upsets are upsets which are
never detected, and which cause erroneous output. In order
to have a reliable processor, there should be as few SDCs and
DUEs as possible. SDCs are especially bad since they are
not even detected. When mitigation techniques are used, the
number of DRU bits indicate how many upsets are detected
and prevented from causing erroneous output. Mitigation
techniques attempt to reduce the number DUEs and SDCs
and increase the number of DRUs.

Processor SEU sensitivity is measured using AVF. The
AVF of a processor is the percentage of the processor area
that is sensitive to DUEs and SDCs [5]. Equation 1 shows
how AVF is computed for softcore processors. AVF is the
fraction of the configuration bits (CFGbits) that contain
SDC or DUE bits.

AVF =
# SDCs + # DUEs

CFGbits
(1)

AVF can be used to estimate the reliability in terms of
mean time to failure (MTTF). MTTF is computing using
the configuration upset rate (λ) with AVF: MTTF = 1

λ · 1
AVF .

The upset rate of the processor is equal to λbit multiplied
by the number of configuration bits used by the processor
(λproc = λbit· CFGbits). λbit depends upon the spacecraft
orbit, space environment, and device properties. For this
paper, λbit is estimated using a galactic cosmic ray (GCR)
environment at solar minimum. The estimated upset rate
is 1E-10 upsets/bit-day [10] or 1.16E-15 upsets/bit-s. The
MTTF for the processor or a component is:

MTTF =
1

λbit
· 1

CFGbits
· 1

AVF

=
1

λbit
· 1

# SDCs + # DUEs
. (2)

Although MTTF provides a reasonable reliability mea-
sure, it does not account for the processor performance costs.
Instead of measuring the time between two errors, mean in-
structions to failure (MITF) measures the amount of work



accomplished between two errors [6]. MITF expresses how
many instructions a processor commits, on average, between
two errors. When mitigation techniques are used, MITF
must also account for any performance costs (ρ) incurred
from the mitigation techniques. The performance cost repre-
sents the execution of additional unuseful instructions. Equa-
tion 3 shows how the mean useful instructions to failure
(MuITF) is computed for a processor:

MuITF =
frequency

λbit
· 1

CFGbitsmit
· IPC

AVF · ρ

=
frequency

λbit
· IPC/ρ

# SDCs + # DUEs
. (3)

4. HARDWARE FAULT-INJECTION
To evaluate the reliability of the mitigated and unpro-

tected LEON3 processor designs, hardware fault-injection
is used to identify ACE bits in the configuration memory.
Traditionally, ACE (and unACE bits) bits only occur in user
memories and registers. ACE bits are normally identified by
tracking them in the pipeline or with the use of models [11].
This section describes the hardware fault-injection proce-
dure that identifies ACE bits in the configuration memory.

Hardware fault-injection is a well-known way of evaluat-
ing the impact of SEUs on commercial SRAM-based FPGA
devices [12]. Fault-injection is performed by upsetting each
and every bit in the FPGA configuration memory, one at
a time, while a program executes on the LEON3 processor.
For the Xilinx Virtex4 FX60 FPGA used in this study, al-
most 21 million upsets and program executions are required
to test every bit in the entire configuration memory.

For each of the 21 million configuration bits in a miti-
gated LEON3 processor, a novel fault-injection procedure is
followed. Overall, the program running in the LEON3 pro-
cessor on the DUT FPGA runs four times for each of the 21
million configuration memory bits. The program runs once
to ensure that at least one checkpoint is taken. In the next
program iteration, the program runs for a random number
of clock cycles before the configuration bit is upset. After
the upset is inserted, the second program execution finishes
and then runs a third time. This gives the LEON3 ample
time to detect the upset. If the upset is detected, the upset
is immediately repaired by the fault-injector. If the upset is
detected, the DUT also attempts to recover from the upset
with a checkpoint rollback. If the upset goes undetected by
the end of the third program execution, it is repaired. Fi-
nally, the program runs for a fourth time to ensure that any
checkpoint recovery attempted by the DUT is successful. A
similar process is followed to test the configuration bits in
the unmitigated LEON3, but only the middle two program
runs are required.

The full fault-injection procedure is run for all 21 mil-
lion configuration bits for eight micro-benchmarks used in
this study. The benchmarks used in this work are limited
by the constraints of the fault injector and by the num-
ber of BRAMs available on the FPGA. Running the fault-
injection procedure on a LEON3 design with one of these
micro-benchmark programs takes up to 60 hours to com-
plete. The benchmark programs in this study test worst-
case behavior of the processor structures and instruction set
architecture. Since these benchmarks are meant to be stress
tests, it is expected that they will be pessimistic compared
to a typical workload.

5. PROCESSOR COMPARISONS
This section discusses the reliability-cost trade-off for ap-

plying mitigation to the LEON3 softcore processor. The
costs are measured in terms of area and performance with
respect to an unmitigated processor. Reliability is measured
using AVF, MTTF, and MuITF.

The area costs of the unmitigated LEON3 processor are
compared with the mitigated LEON3 designs in Table 1.
Area is compared in terms of slices, BRAMs, DSPs, and
configuration memory bits (CFGbits). The values in braces
show the area increase (in terms of configuration bits) com-
pared to the unmitigated processor. It shows that the area
cost of DWC is significantly more than double and that the
area cost of TMR is more than triple.

Area Costs
LEON3 Design Slices BRAM DSP Config Bits

(CFGbits)

Unmitigated 3058 12 4 677,065 (1.00×)

DWC (1 clock) 8628 33 8 1,834,002 (2.71×)

DWC (2 clocks) 8569 33 8 1,837,719 (2.71×)

TMR (1 in/out) 14,623 36 12 3,102,921 (4.58×)

TMR (3 in/out) 14,286 36 12 3,075,399 (4.54×)

Table 1: Area cost comparison for the LEON3 pro-
cessor designs.

The addition of checkpointing to the LEON3 processor
introduces a small performance cost (ρ). The value of this
cost is proportional to the frequency with which checkpoint-
ing occurs. In this study, checkpointing occurs once per pro-
gram execution. The performance cost incurred is reported
in terms of the additional number of clock cycles needed, on
average, to run a program compared to when running on an
unmitigated processor. On average, programs on the DWC
processors run 1.01× longer than when run on an unmiti-
gated processor. The time to record checkpoint information
accounts for the small performance penalty incurred by the
DWC designs. The performance cost for the TMR processor
is negligible since the only incurred performance cost comes
when roll-forward checkpointing corrects and resynchronizes
one of the three processors.

Hardware fault-injection is used to measure the total num-
ber of ACE and unACE bits for each of the LEON3 softcore
processor designs and with each of the benchmark programs
(Table 2). The percentage in the unACE column indicates
the percentage of used configuration bits that, when upset,
do not hinder correct program execution. The percentages
reported in the DRE, DUE, and SDC columns are with re-
spect to only the ACE bits for the given processor.

Table 2 shows that both mitigation techniques signifi-
cantly reduce the number of SDCs and DUEs of the unmit-
igated processor, but that TMR with triplicated inputs and
outputs almost eliminates SDCs and DUEs. In the TMR de-
sign with untriplicated inputs and outputs, 66% of the SDCs
and DUEs occur in the untriplicated output, 21% occur in
the clock and reset signals, and 12% occur in the voters. In
the DWC designs, a large majority of the SDCs and DUEs
occur in the top-level outputs, clock and reset signals, or in
the comparator unit.

Table 2 also shows that some of upsets are detected by
the unmitigated LEON3 processor (as shown in the DUE



HW Fault-Injection Results
LEON3 Design unACE ACE

DRU DUE SDC

Unmitigated 537,825 (79.4%) 0 (0.0%) 11,637 (8.36%) 127,603 (91.64%)

DWC & Check (1 clock) 1,378,813 (75.2%) 450,527 (98.98%) 762 (0.16%) 3900 (0.86%)

DWC & Check (2 clocks) 1,369,864 (74.5%) 463,957 (99.17%) 376 (0.08%) 3522 (0.75%)

TMR (no triplicated in/out) 2,458,337 (79.2%) 642,523 (99.68%) 73 (0.01%) 2061 (0.31%)

TMR (triplicated in/out) 2,421,376 (78.7%) 654,013 (99.996%) 13 (0.002%) 10 (0.002%)

Table 2: Full fault-injection results for the LEON3 processors.

column). Although no upset detection techniques have been
explicitly applied, the LEON3 processor pipeline has some
built-in error detection. The processor throws an error signal
when interrupts occur in an unexpected way.

The measured number of ACE bits are used to calculate
the AVF, MTTF, and MuITF of each LEON3 processor.
The reliability of each of the LEON3 processors is shown
in Table 3. The average number of instructions per clock
cycle (IPC) – required by MuITF (Equation 3) is 0.62. The
MuITF frequency value used in Equation 3 is 33 MHz, since
that is the frequency at which our fault-injection hadware
runs. The AVF values in the table show that the unmit-
igated LEON3 is almost 100× more vulnerable than the
LEON3 protected with DWC and checkpointing, and over
27,000× more vulnerable than the LEON3 protected with
full TMR and roll-forward checkpointing. The reliability re-
sults show that although full TMR provides the best protec-
tion, DWC and checkpointing may be an acceptable lower-
cost alternative.

LEON3 Processor Reliability
LEON3 AVF MTTF MuITF ×1020

Design (years) (instructions)

Unmitigated 20.6% 0.83 (1.00×) 5.36 (1.00×)

DWC (1 clock) 0.25% 24.8 (29.9×) 158.6 (29.6×)

DWC (2 clocks) 0.22% 29.7 (35.7×) 189.7 (35.4×)

TMR (1 in/out) 0.07% 55.2 (66.4×) 356.0 (66.4×)

TMR (3 in/out) 0.00075% 5032 (6058×) 32,469 (6058×)

Table 3: Comparison of AVF, MTTF, and MuITF
of an unmitigated LEON3 against the mitigated
LEON3 processors.

6. CONCLUSION
This study demonstrates the improvements in reliability

by applying DWC and TMR with checkpointing to a soft-
core processor. Three metrics were used to compare an un-
mitigated softcore processor with these two mitigated de-
signs: architectural vulnerability factor (AVF), mean time
to failure (MTTF), and mean useful instructions to fail-
ure (MuITF). The AVF, MTTF, and MuITF were mea-
sured through hardware fault-injection. The reliability of
this unmitigated processor is improved by applying DWC
with checkpointing and TMR with checkpointing to the pro-
cessor. DWC with checkpointing is shown to improve the
MTTF and MuITF by over 35×. TMR with checkpointing
improves the MTTF and MuITF by over 6000×.

This study shows that although softcore processors are
sensitive to the effects of SEUs, the faults can be character-
ized and protected with appropriate mitigation techniques.
An adequately protected softcore processor is an attractive
alternative to a rad-hard processor for space-based applica-
tions. Compared to rad-hard processors, softcore processors
are faster, flexible, less expensive, and reconfigurable.
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