
Performance Analysis of GPU Accelerators with
Realizable Utilization of Computational Density

Justin W. Richardson, Alan D. George, Herman Lam
NSF Center for High-Performance Reconfigurable Computing (CHREC)

ECE Department, University of Florida, Gainesville, FL, USA
{richardson,george,hlam}@chrec.org

Abstract—With the rising number of application accelerators,
developers are looking for ways to evaluate new and competing
platforms quickly, fairly, and early in the development cycle. As
high-performance computing (HPC) applications increase their
demands on application acceleration platforms, graphics process-
ing units (GPUs) provide a potential solution for many developers
looking for increased performance. Device performance metrics,
such as Computational Density (CD), provide a useful but limited
starting point for device comparison. The authors developed the
Realizable Utilization (RU) metric and methodology to quantify
the discrepancy between theoretical device performance shown by
CD and the performance developers can achieve. As the RU score
increases, the application is achieving a larger percentage of the
computational power the device can provide. The authors survey
technical publications about GPUs and use this data to analyze
the RU scores for several arithmetic application kernels that
are frequently accelerated in GPUs. The RU concepts presented
in this paper are a first step towards a formalized comparison
framework for diverse devices such as CPUs, FPGAs, GPUs and
other novel architectures. GPU kernels for matrix multiplication,
matrix decomposition, and N-body simulations show RU scores
ranging from almost 0% to approaching 99% depending on the
application, but all kernel areas show a significant decrease in
RU as the computational capacities increase. Additionally, the RU
scores show the higher realized performance of the GeForce 8
Series GPUs versus newer GPU architectures. This paper shows
that applications running on GPUs with higher computational
density report significantly lower RU scores than more mature
GPUs with lower computational density. This trend implies that
while the raw performance available is still increasing with newer
GPUs, the achieved performance is not keeping pace with the
theoretical capacities of the devices.

I. INTRODUCTION

As the computational demands of modern applications in-
crease, many developers are looking for ways to accelerate
their applications beyond the speed that conventional central
processing units (CPUs) can provide. Commodity graphics
processing units (GPUs) provide a possible option for ac-
celerating application kernels in high-performance computing
(HPC) environments. This growth of GPU technology has
driven continual development in GPUs both in terms of
hardware and software. As the feature size used for GPUs de-
creases and the device architectures become more complex, the
computational power of GPUs is rapidly expanding, but even
with this expansion of technology developers are not achieving
the theoretical performance that GPUs are providing.

For applications on all types of hardware, including GPUs,
many different factors limit the achieved application perfor-

mance such as developer experience, available tools, applica-
tion characteristics, architecture bottlenecks, etc. These varied
factors make exhaustive device benchmarking for every appli-
cation unrealistic. Even though the computational power and
popularity of GPUs is increasing, arithmetic applications are
not keeping pace with the performance theoretically available
from the GPU-based accelerators. Device performance metrics
provide insight into device capabilities, but do not account for
any application-specific factors effecting performance.

Fig. 1. Concept Diagram of Realizable Utilization

This paper outlines a methodology to use the Computa-
tional Density (CD) metric from [1] and data from technical
publications to analyze and compare application accelerators.
Figure 1 outlines the conceptual approach, by showing that
the theoretical computational capacity, represented by CD, is
reduced by various application and implementation dependant
factors. This Realizable Utilization (RU) metric, which we
introduce in this paper, formally quantifies the percentage
of the available performance an application is achieving.
Using the CD values, we analyze a set of matrix and n-
body application kernels from published technical papers and
observe an important trend in RU as the CD of GPUs increase.

II. BACKGROUND

One of the most important aspects of accelerator comparison
is having a fair and balanced set of metrics for the devices
being compared. By necessity, these will be calculated in
different ways for each device type. In [2], the authors outline



a computational-based metric, CD, for both fixed-logic de-
vices (FLDs), such as GPUs and reconfigurable-logic devices
(RLDs), such as field-programmable gate arrays (FPGAs). CD
is a measure of a device’s theoretical computational capacity.
Further publications, [1], and [3], expand on this concept
showing how this metric can be used across a wide range
of devices and architectures. The developed CD metric forms
a strong basis upon which the RU metric is built.

III. REALIZABLE UTILIZATION

This section defines and illustrates the RU concept, outlines
how to use the CD metric as the basis for the RU metric, and
demonstrates the insights that can be gained from using the
RU methodology. The following sections show the RU concept
applied to GPUs and CPUs and the results of the analysis.

A. RU Concepts

There are many factors that can reduce a device’s perfor-
mance including application characteristics, tools, and user
experience. The concept of realizable utilization is a method
to quantify the approximate difference between a device’s
theoretical performance and the actual performance a user can
expect to achieve. Since benchmarking every device with every
application is not practical, RU allows developers to estimate
their application’s projected performance on a particular de-
vice.

In Figure 1, illustrating the RU concept, the theoretical
computational capacity, represented by CD, is reduced by
various factors such as developer experience, tools used, ap-
plication characteristics, etc. The application throughput from
the technical data and benchmarks shows, for the specific
platform, application, and implementation, the performance
achieved.

RU starts with the CD metric representing the theoretical
computational capacity of a device. Performance data is then
collected from either scholarly publications or benchmarking
experience (Figure 1). Data from technical papers is used
to compare observed throughput with CD yielding the RU
score. Benchmarking information requires more development
time and effort, but because benchmarking can use more
hardware and is closer to the desired application, it provides
more accurate data. Using data acquired during benchmarking
provides even more revealing RU scores when the developer
tunes the application to the hardware or conversely tunes the
hardware to the application, as in FPGAs.

B. Calculating CD

The first step in computing the RU for a given device
is to find out what the CD value is for that device at the
precision level of the application. To determine the single-
precision floating-point (SPFP) CD for FLD and coarse-
grained RLD devices, Equation 1 is used, where Ni is the
number of floating point execution units or the number of
floating point instructions that can be issued simultaneously
of element type i, CPIi is the average number of clock
cycles per integer instruction for element type i (such as DSPs

{digital signal processors}, ALUs {arithmetic logic units},
or LUT {lookup table} resources), and f is the operating
frequency of the device. The subscript i represents the type
of computational element within the device that is under
analysis. The summation over i, in this equation, takes into
account architectures that support single-instruction multiple-
data (SIMD) instructions by including different types of com-
putational components. We assume that only addition and
multiplication operations are considered, and the number of
parallel operations is maximized while keeping the number
of additions and multiplications equal. When calculating the
number of parallel operations supported by a device, we
consider a hardware-supported multiply-accumulate operation
as only one operation.

CDSPFP = f ×
∑
i

Ni

CPIi
(1)

C. Calculating RU

Once CD is determined, the RU metric is calculated by
dividing the observed throughput (Rthroughput) in OPS (oper-
ations per second) by the relative CD of the device (Equation
2). The relative CD is the value of a device’s CD multiplied by
a scaling factor representing the fraction of the device used.
The factor α is necessary because some applications have not
been parallelized, and without adjusting the available CD the
comparison between applications would not be as insightful.

Urealized =
Rthroughput

α · CDdevice
(2)

The developer’s knowledge of their application and its
implementation allows α to be calculated easiest during bench-
marking. When the information found in publication sources
does not provide enough data to reliably determine α, then
a ratio of 1 is assumed. This assumption is based on the
hypothesis that most developers who are publishing their
work and having it peer-reviewed will be trying to maximize
performance of their application. If the application is not using
all of the main resources of the device, the developer generally
includes enough information to calculate α.

Since the CD value represents the theoretical maximum
throughput, Equation 2 shows that the RU metric (Urealized) is
bounded below by zero and above by one. While RU is a ratio,
it is expressed as a percentage. From this alternate perspective,
RU is the percentage of the theoretical performance of a device
an application is achieving. This information provides insight
for developers, not only before coding their application, but
also during the development cycle.

D. Using RU

Once the RU metric has been calculated, it provides useful
insight into various applications. RU provides developers a
method of device comparison before choosing their platform.
During the development cycle, it provides feedback on kernel
development and optimization.



The applications of RU start during the device design
process before a device is manufactured. Novel device ar-
chitectures can be compared to similarly structured existing
devices. The RU score then shows what application areas are
most likely to fit well on a future device and that information
can be incorporated into the device development process. By
targeting an application area that will score well on a novel
device, further resources can be freed for optimization and
debugging.

Secondly, from a developer’s standpoint RU can be used
to help select an appropriate acceleration platform before
significant costs are expended on cutting edge hardware. Ap-
plications with similar structure or kernels could be analyzed
to see what platforms are making the most of the available
resources. This insight helps to mitigate some of the risk with
developing applications on new platforms and helps developers
narrow the possibilities among many application accelerators.

Finally, developers can use RU to gain feedback while
developing their applications. During the optimization cycle of
development, it can be difficult to judge when the maximized
performance from the optimizations has been reached, and
how much more optimization performance you can expect.
RU allows developers to compare their kernels or applications
that are undergoing optimization to similar applications and
kernels. The developer can then decide if additional perfor-
mance is worth the time and cost.

IV. RESULTS

Section III defined the concepts and outlined the methodol-
ogy for computing the RU metric. This section reports the
CD results of the survey of GPU and CPU devices, then
applies the RU methodology to matrix multiplication, matrix
decomposition, and n-body simulation kernels from scholarly
publications and benchmarks and finally analyzes the RU
metric results.

A. RU Results

For this paper, the authors searched for scholarly publica-
tions on GPU-based arithmetic benchmarks. The first step in
reviewing the published data was to calculate the CD metric
for each of the GPUs and CPUs found during our survey. This
was done using the methodology presented in [1], [2], and [3].

Next, the publications and benchmarks were analyzed to
discover which sources provided enough detail to calculate a
RU score. Papers and books tended to report their results in
one of two ways. The first type reported their application’s
achieved performance in terms of operations performed over
a unit of time. Dividing the observed, or actual, operations by
the units of time yielded the throughput needed to calculate
RU. The second type reported their performance in terms
of speedup over some baseline. When the performance is
reported in terms of speedup, analysis of the algorithm is
necessary. For well known algorithms, such as matrix multiply,
the throughput value can be calculated if a finite processing
time is given. From the algorithm, the necessary operations can
be determined and dividing by the time shows the throughput

needed for RU. If no definite time is given, or if the algorithm
was too complex, then the paper was not suitable for the
RU analysis without contacting the author for additional
information.

This paper separates the RU results into three key kernel
types, matrix multiplication, matrix decomposition, and n-
body simulations. The results from each type of kernel are
discussed separately and then collectively. Figure 2 shows the
results for publications and benchmarks focused on matrix
multiplication.

Fig. 2. Realized Utilization for Matrix Multiplication

For the matrix-multiplication kernels, Figure 2 shows the
best RU scores for GPU devices are found in the GeForce
8 Series GPUs. Matrix-multiplication kernels were the most
frequently found and due to the well known features of the
matrix-multiplication operations they provide significant RU
results. The peak matrix-multiplication RU scores highlight
an obvious trend, significantly decreasing as the CD range
increases. This trend implies that while on average the raw
performance is still increasing with more powerful chips, the
performance is not keeping pace with the theoretical capacities
of the devices. A decreasing RU trend, with increasing CD,
points to an application related issue limiting the achieved
performance. In the CPU’s case, the use of the advanced Math
Kernel Library (MKL) from Intel shows they can achieve more
of their computational capacities. The CPU’s high RU scores
and lower CD scores further strengthen the trend of reduced
RU performance with higher computational capacity.

The highest scoring GPU device in the second kernel area,
matrix decomposition (Figure 3), is the GeForce 8800 GTX
with a RU score of 55.56%. This device has the same basic
architecture as the Tesla C870, the highest scoring GPU in
matrix-multiplication, and is one of the most frequently used
devices in the study. It should be noted that the GeForce 8
Series devices are more mature than the newer GeForce 200
or 400 devices.

The matrix-decomposition RU scores further reveal the
trend of decreasing RU scores with increasing device ca-
pacity and show similar performance patterns as matrix-



Fig. 3. Realizable Utilization for Matrix-Decomposition Kernels

multiplication. Once again we observe that low-CD CPUs can
achieve more of their theoretical performance, but as the CD
increases in GPUs the realized portion decreases.

Fig. 4. Realized Utilization for N-Body Simulations

The final kernel area in this study is n-body simulations.
Both molecular dynamics simulations as well as astrophysical
simulations are included in this data set plotted in Figure 4.
The data in n-body simulations shows the highest range of
scores (1% to 99%) and includes the highest scores overall.
These high scores point to a better fit between the application’s
development and the GPU device’s hardware resources. Con-
versely, the CPUs didn’t score as well in this kernel area and
that shows that the n-body kernels shown are not as efficient
on the CPU’s architectures. While the devices with higher
CD scored significantly better on RU than they did in other
application areas, they still fell behind the older GeForce 8
Series GPUs. The data and references for all the figures are
posted online for reference [4].

The general trend across all kernels shows the higher CD
devices tend to have lower RU scores especially in matrix-
based kernels. While overall raw performance is increasing
as the device CD grows, the downward trend in RU shows

that applications are not able, at this time, to capitalize
fully on the added computational resources. This trend could
be caused by many different issues including device tools,
developer experience, application characteristics, architecture
bottlenecks, and others. Determining which of these issues are
most responsible is being considered for future work.

V. CONCLUSIONS

RU quantifies the difference between the theoretical perfor-
mance of a device and the actual performance observed by
developers. This work outlines the RU metric and methodol-
ogy of using data from available technical publications and
benchmarking experiments to quantify the effects of various
factors limiting device performance. This RU score is the
fraction of the theoretical capacity that the specific application
is achieving on a specific device.

Our study focuses on three arithmetic kernels: matrix mul-
tiplication, matrix decomposition, and n-body simulations.
Within these application areas, higher CD devices, such as
larger GPUs, show significantly lower RU scores than their
lower CD counterparts. While the relative performance is
increasing, there is a significant reduction in the computational
power that the applications are utilizing. Within the matrix-
oriented kernels, the range of RU scores varied from nearly
0% to 60%. Further strengthening the trend, the CPU devices
with lower CD, such as the Intel Core2 based processors,
ranged in RU scores from 45% to 90% for matrix-based
kernels. In contrast, n-body simulations show the highest RU
scores for the GPU devices and the widest range reaching
from 1% to almost 99%. The data shows that the GPU’s
architecture design is very effective at the computations in n-
body simulations; however, it is not as good a fit for generic
matrix-multiplication.

Future work on this topic will include adding additional
devices, such as ARM processors and FPGAs, in addition
to adding power and memory characteristics to the analysis.
Advanced benchmarking studies will also explore the specific
causes of different architecture’s lower RU scores.

VI. ACKNOWLEDGEMENTS

This work was supported in part by the I/UCRC Program
of the National Science Foundation under Grant No. EEC-
0642422.

REFERENCES

[1] J. Williams, A. George, J. Richardson, K. Gosrani, C. Massie, and
H. Lam, “Characterization of fixed and reconfigurable multi-core devices
for application acceleration,” ACM Transactions on Reconfigurable Tech-
nology and Systems (TRETS), vol. 3, no. 4, pp. 19:1 – 19:29, 2011.

[2] J. Williams, A. George, J. Richardson, K. Gosrani, and S. Suresh,
“Computational density of fixed and reconfigurable multi-core devices
for application acceleration,” Proc. of Reconfigurable Systems Summer
Institute 2008 (RSSI), July 7-10, 2008.

[3] J. Williams, A. George, J. Richardson, K. Gosrani, and S. Suresh, “Fixed
and reconfigurable multi-core device characterization for HPEC,” Proc. of
High-Performance Embedded Computing Workshop (HPEC), Sep. 23-25,
2008.

[4] J. Richardson, A. George, and H. Lam, “Performance analysis of GPU
accelerators with realizable utilization of computational density,” http:
//www.hcs.ufl.edu/∼richardson/Data/Papers/JR-SAAHPC-2012.pdf, June
2012.

http://www.hcs.ufl.edu/~richardson/Data/Papers/JR-SAAHPC-2012.pdf
http://www.hcs.ufl.edu/~richardson/Data/Papers/JR-SAAHPC-2012.pdf

	Introduction
	Background
	Realizable Utilization
	RU Concepts
	Calculating CD
	Calculating RU
	Using RU

	Results
	RU Results

	Conclusions
	Acknowledgements
	References

