
978-1-7281-1957-1/19/$31.00 ©2019 IEEE

Reconfigurable Real-Time Video Pipelines on
SRAM-based FPGAs

Andrew E. Wilson and Michael Wirthlin
NSF Center for Space, High-performance, and Resilient Computing (SHREC)

Brigham Young University

Provo, Utah, USA

{andrew.e.wilson, wirthlin}@byu.edu

Abstract—FPGAs are an excellent target for real-time video
processing as they provide large amounts of low-level parallelism,
low latency, and high bandwidth. However, creating real-time
video processing systems on an FPGA is tedious and requires
significant effort and low-level digital design skills. This paper
presents a technique for creating complex real-time video pro-
cessing pipelines relatively quickly and easily using partial recon-
figuration (PR). A static FPGA system is created that provides a
template for a variety of partially reconfigurable video processing
cores. A library of video filters has been created that can be
inserted into the template regions. At run-time, the user can select
the topology of video cores and customize these cores to create
complex and unique video pipelines without any understanding of
low-level FPGA details. This paper demonstrates this technique
with a library of 11 partial reconfigurable regions and 16 video
processing cores operating on the Xilinx PYNQ system.

Index Terms—FPGA, Video Processing, Partial Reconfigura-
tion

I. INTRODUCTION

Field-Programmable Gate Arrays (FPGAs) are an ideal

target for high performance and low latency video processing

[1], [2]. They contain a large number of configurable look-

up tables (LUT)s, flip-flops (FFs), high-speed I/O, digital

signal processing (DSP) units, and block RAMs (BRAMs)

to process video data in real-time. Custom video pipelines

can be created in configurable hardware to match the com-

putation and throughput of the video processing operations.

When using an FPGA, the video processing can be pipelined

to maximize throughput with latency defined down to the

individual clock cycle. Each stage of these real-time video

pipelines contains unique filtering and manipulation functions

that together provide complex real-time video functionality.

These video processing stages can be implemented in FPGAs

as custom hardware circuits to provide low latency video

while simultaneously processing video data at high through-

put [3], [4]. Creating video pipelines within an FPGA requires

the designer to use traditional FPGA design tools such as

logic synthesis and FPGA implementation tools. Although the

productivity of video processing design can be increased by

using FPGA video processing libraries or high-level synthesis

(HLS), designing video pipelines on an FPGA is ultimately

a low-level, digital hardware design flow. Any changes or

This work was supported by the I/UCRC Program of the National Science
Foundation under Grant No. 1738550.

customization to an existing FPGA video pipeline must go

through the time-consuming FPGA implementation tools.

This paper introduces a method for creating complex video

processing pipelines on an FPGA very quickly using dynamic

partial reconfiguration (PR). This approach involves the fol-

lowing key components: (1) a static FPGA circuit that contains

all static video interfacing logic such as video encoders,

decoders, and video memory interfaces, (2) a set of partially

reconfigurable regions (PRRs) dedicated for custom video

processing modules, and (3) a flexible interconnect to facilitate

the communication of video data between video processing

cores. At run-time, the user of this system can customize

the video pipeline by choosing video filters for the various

partial regions and customizing the interconnect between the

processing cores. A large number of possible video pipelines

can be created in seconds through partial reconfiguration and

video pipeline customization.

This approach is demonstrated on the Xilinx PYNQ system

that provides interfaces for real-time video, programmable

logic, and a host processor system. The PYNQ system has

various video sinks and sources including the HDMI interfaces

and DDR video direct memory access (VDMA). The pro-

grammable logic is organized into a static region to connect to

these PYNQ interfaces and 11 different PRRs to hold custom

video processing cores. In addition, an AXI interconnect is

used to connect these regions to each other for a custom

communication topology. A library of cores consisting of 16

different video processing operations is created to fit within the

PRRs of the pipeline. A variety of interesting video processing

pipelines are demonstrated on this system by configuring

the regions with different cores and programming the AXI

interconnect appropriately. The video pipeline can easily be

changed using a Jupyter notebook running on the PYNQ

system.

II. PYNQ VIDEO SUB-SYSTEM

The run-time reconfigurable video pipeline described in this

paper was developed for the Xilinx PYNQ-Z1 system [5]. This

system contains a Zynq 7020 device, DRAM, various I/Os

and the PYNQ framework. The PYNQ framework includes

a large set of pre-programmed hardware functions for I/O

interfaces, Ubuntu Linux, Jupyter notebooks, and a Python

interpreter. The default PYNQ bitstream or “Base Overlay" is

Authorized licensed use limited to: Brigham Young University. Downloaded on April 07,2021 at 15:50:55 UTC from IEEE Xplore. Restrictions apply.

a programmable logic circuit that allows users with no FPGA

experience to immediately interact with the board and all its

I/O. The PYNQ-Z1 was chosen as the implementation device

because of the HDMI I/O, the “Base Overlay" containing a

basic video processing pipeline to build from, and a Linux

operating system capable of driving the partial reconfiguration.
The base overlay for the PYNQ-Z1 system contains a

real-time video pipeline that can sample an incoming video

stream and generate an outgoing video stream using the DVI

protocol. The video pipeline is implemented in the Zynq’s

Programmable Logic (PL) and interfaces with the HDMI input

port, HDMI output port, and the AXI bus. This low-cost FPGA

platform can sample video streams up to 1080p resolution and

60 Hz frame rate. The PYNQ installation provides a number

of tutorials for manipulating the video stream using Python

code and OpenCV software filters. These examples can be

displayed in the Jupyter window or over the HDMI output

port.
A high-level overview of the PYNQ video pipeline is shown

in Figure 1. This pipeline uses IP blocks developed by Digilent

[6] and Xilinx [7]. The “DVI to RGB" module extracts the

timing signals from the video display, generates a pixel clock,

and converts the incoming DVI signal into a 24-bit RGB color

signal. The “Video In to AXI4-Stream" module packages the

data and incorporates an AXI4-Stream interface so the video

data can be transferred in real-time over the AXI bus. The

“AXI VDMA" module provides a DMA engine for transferring

the video-in to main memory and transferring video data

from main memory to the video-out pipelines. The “AXI4-

Stream to Video Out" provides an AXI4-Stream interface for

the video data in main memory. The “RGB to DVI" module

generates timing signals for the HDMI output and converts

the RGB signals into the corresponding DVI output signal.

These modules can support monitor resolutions of 1920x1080,

1280x1024, 1280x720, 800x600, and 640x480.

Fig. 1. PYNQ Video Sub-System

The video pipeline can be configured in a number of ways

including image frame capture into DRAM, streaming to

the HDMI output port, and streaming through the DRAM

frame buffer. When the video is streamed through DRAM,

custom video processing routines can operate on the video

stream in software by the ARM processor. Several software

examples within the PYNQ distribution demonstrate the ability

to capture input video data, perform software-based image

processing, and then stream the result to the HDMI output port.

These examples, written in Python and linked to an OpenCV

library, include: changing RGB values, edge detection, and

face detection. Running in software, these examples are not

able to run at the full 60 Hz frame rate, but run at around

2-3 frames per second due to the limitations of processing the

video in the processor. This video pipeline provided on the

default PYNQ overlay provides a convenient and easy way to

experiment with real-time video streams and learn about video

systems.

III. PROGRAMMABLE VIDEO PIPELINE

Although the default video pipeline on the PYNQ system

provides the ability to capture and produce real-time video

data, it is not organized to easily support custom hardware

circuits using the available PL. If custom video pipelines are

needed, the designer must modify the design of the PL and

resynthesize that design using vendor tools. Those interested

in making custom video pipelines must have the expertise and

tools necessary for modifying the logic circuits and correctly

implementing this logic on the PYNQ system.

This paper introduces a method to simplify the deployment

of custom video pipelines without the need to redesign the

logic of the PYNQ video pipeline. This approach relies on par-

tial reconfiguration to reconfigure various regions of the FPGA

with precompiled partial bitstreams that implement discrete

video processing functions. By interconnecting these video

functions at run-time, complex and unique video pipelines can

be configured with little understanding of the digital logic used

to implement each function. Furthermore, the video pipeline

can be changed at run-time to implement a variety of different

video pipelines on the same PYNQ system. This work is an

extension of a class project that demonstrated the use of a

single PRR for simple video functions [8]. The single PRR

operated on the raw VGA video signals and implemented

filters defined with hardware description language (HDL)

code.

Other works have shown effective, FPGA-implemented

video processing cores capable of handling live video at

600×800 pixel resolution with a 60 Hz frame rate. These

cores included Harris Corner [9], Sobel, Robert, Prewitt, and

Laplacian filters [10]. The Canny edge detector has been

implemented in the PYNQ hardware that is capable of the

full 1080p bandwidth at 60 frames per second [11]. Additional

works have demonstrated the benefits of using dynamic PR for

video processing cores to save resources and add configura-

bility to the video processing pipeline [12]–[15]. One of these

dynamic reconfigurable pipelines was able to process 720p

video at 60 frames per second [16].

The dynamically reconfigurable video processing pipeline

presented in this paper is composed of two distinct compo-

nents: a static logic circuit and a library of partially recon-

figurable video processing functions. The static logic circuit

contains the fixed logic for the video I/O interfaces, dedicated

“stubs" or PRRs for the reconfigurable video circuits, and an

interconnect network to customize the communication between

circuit functions. The library of video processing functions

each implement a distinct function that when combined with

other functions can produce interesting and complex video

processing pipelines. Complex video processing pipelines can

be created without the long process of re-implementing the

Authorized licensed use limited to: Brigham Young University. Downloaded on April 07,2021 at 15:50:55 UTC from IEEE Xplore. Restrictions apply.

whole bitstream. The following two sections will describe

the static video processing circuit and the library of video

functions.

IV. STATIC VIDEO PROCESSING FRAMEWORK

The first component of the programmable video process-

ing pipeline is a static logic circuit that provides the fixed

functionality of the video pipeline and the fixed framework

for partially reconfigurable video processing units. This logic

never changes and is configured once at boot time in the

PYNQ system. This static circuitry provides the following

three essential functions: (1) static interfacing logic, (2) recon-

figurable regions, and (3) interconnect for the reconfigurable

regions. An overview of this static framework is shown in

Figure 2.

Fig. 2. Static Video Processing Circuit

A. Static Logic

The static interfacing logic defines all the circuitry of the

FPGA digital design that is consistent for any possible config-

uration. There are a number of important functions that must

be provided within the static logic to support the operation

of the video processing pipeline. This static logic contains

the main AXI-Lite bus connected to the ARM processor and

allows the processor to interact with the PL. All of the I/O

interfaces such as LEDs, switches, and HDMI interfaces also

remain in the static logic.

The video processing pipeline is split between the static

and dynamic logic. Although the PYNQ base overlay is not

used in this project, the logic used to create the video sub-

system within the PYNQ base overlay is used within the

static region of this video processing system. As shown in

Figure 2, the components of the PYNQ video sub-system

have been included in the new pipeline. This includes the

conversion of the HDMI input to RGB data stream over AXI4-

Stream and the conversion for the HDMI output. The original

video sub-system includes video processing cores to perform

color conversion and data packing in the PL. These cores are

included in the static logic around the video DMA interfaces

to the DDR memory. The video pipeline clock did not change

from the 142 MHz in order to process real-time video of up

to 1080p resolution and 60 Hz frame rate.

B. Video Processing Template

In addition to the static logic, basic video processing tem-

plates were instantiated as black boxes to later be defined by

the dynamic logic. The video processing cores implemented

in these templates operate on the data within the AXI4-Stream

interfaces similar to the “Color Convert" processing units

found in the original PYNQ base overlay. The AXI4-Stream

interface can deliver 24-bits of RGB video data, a flag for the

start of the frame, and a flag for the end of a line within the

frame every clock cycle. The basic template for the dynamic

video processing logic includes two AXI4-Stream interfaces as

input and another as output. Additional inputs were added to

allow the processor to configure video processing core-specific

parameters during run-time. Ten of these templates were added

to the design to allow for ten separate video processing cores.

C. Video Stream Mixing

Besides the basic video processing template that uses one

input and one output stream, two additional modules were

chosen. The first module is a Xilinx AXI4-Stream Broadcaster

that takes one input stream and broadcasts it to two output

streams. This allows for more complex video pipelines or for

the final processed video to be broadcast to both the DDR and

the HDMI out-port. This module operates on the video within

the static logic of the pipeline.

The second module is a special video processing template,

the “Mux". This module takes two inputs, mixes them ac-

cording to the dynamic logic provided, and outputs to one

or both of the available AXI4-Stream outputs. This provides

the useful function to combine two different video processing

streams into one stream. This unique template could be used

for applications such as a “green screen" filter, split screen, or

the absolute difference between the incoming streams. Only

the “green screen " filter was implemented in this pipeline.

To guarantee that two input video streams are synced for

this module, an additional custom HDL solution was added to

this special template. The custom HDL stalls a non-real-time

video stream driven by the VDMA output until the frame start

flag of the AXI4-Stream is aligned with the real-time video

stream.

Authorized licensed use limited to: Brigham Young University. Downloaded on April 07,2021 at 15:50:55 UTC from IEEE Xplore. Restrictions apply.

D. Partially Reconfigurable Regions

The PRRs define the configurable FPGA resources dedi-

cated to the dynamic logic that will be configured during

run-time. The physical locations must be specified for each

PRR to separate them from the static logic. Through several

iterations of implementing different sizes for the PRRs, three

different sizes where chosen for the 10 basic templates to

allow for the greatest number of PRRs and support video

processing cores of various resource utilizations. Six small

PRRs were created for use by the video processing cores that

required few resources such as LUTs, FFs, DSPs, and BRAMs.

Some of the video filters used within this design required

additional logic resources to be properly implemented within

the bounds of a PRR. Three medium PRRs were added to

the design for these video filters. One large PRR was created

for video cores that required a significant amount of BRAMs.

Any core that can be implemented in a small PRR can also

implemented the medium or large PRR, and any medium PRR

filter can be implemented in the large PRR. The “Mux" has a

unique PRR because it is a template with a different number

of I/O interfaces and can not be exchanged with the other

video processing cores in this design. The “green screen"

filters implemented within this template does not require many

resources in this implementation and is given the smallest

PRR.

The placement of these PRRs was based upon the location

of special resources such as BRAMs and DSPs while meeting

the timing constraints of the HDMI input and output. The

Vivado floorplan in Figure 3 shows the placed and routed static

logic and the resources dedicated to the PRRs. Although the

static region contains logic that does not change, most of the

programmable logic on the system is reserved for run-time

configurable logic. Table I shows the utilization of the static

region and the resources each PRR has available to implement

the video processing cores.

TABLE I
COMPARISON OF PR REGIONS

PR Region Utilization
Region LUT FF BRAM DSP
Static 14434 24582 15 12
Large 5200 10400 20 20

Medium 3200 6400 10 20
Small 2400 4800 10 20
Mux 1200 2400 0 0

Each PRR was instantiated as a black box in the digital

design prior to synthesis. Once synthesis was completed,

Xilinx pblocks were assigned to each black box to define

the resources and physical placement of the PRRs. Video

processing cores were temporarily added to allow the tools to

account for average timing when the design was implemented.

After the design was placed and routed, the video cores were

removed and the design was locked down to prevent future

partial designs from affecting the static region, as depicted in

Figure 3. A TCL script was generated to automate this process

for future changes to be added to the static design.

Fig. 3. Floorplan

E. Pipeline Interconnect

This video processing pipeline allows multiple video

streams to be processed, mixed, and/or copied with the use of

multiple video sources, the “Mux" processing template, and

the AXI4-Stream Broadcaster. To provide the high amount

of configurability to support a variety of different processing

paths, a Xilinx AXI4-Stream Switch is implemented in the

static logic. This provides an interconnect between the differ-

ent components of the static and dynamic logic. The switch

allows for the controlled flow of 16 input and output streams

configured by registers that can be accessed by the processor

over an AXI-Lite bus. This dynamic switch adds an additional

two cycles of delay between every connection.

Figure 2 shows the layout of the AXI4-Stream Switch that

directs the video stream between the static logic and the

dynamic video processing cores. The HDMI input and output

stream are connected directly to the switch. This requires

that the pixel clock be passed from the input to the output

in the case of the “AXI VDMA" not being included in the

pipeline to act as a frame buffer. The “AXI VDMA" was also

included as an optional port on the switch with the original

PYNQ Xilinx modules that allow for color conversion and

data packing to optimize the use of the DDR and processor.

These video sources and sinks can be pipelined with the ten

basic processing templates, the “Mux", and the AXI4-Stream

Broadcaster available on the switch interconnection.

V. PARTIALLY RECONFIGURABLE VIDEO FILTERS

The second primary component of this programmable video

pipeline system is the library of partially reconfigurable video

processing cores. These cores are designed to operate within

Authorized licensed use limited to: Brigham Young University. Downloaded on April 07,2021 at 15:50:55 UTC from IEEE Xplore. Restrictions apply.

the PRRs defined in the static region. Most of the video filters

operate on a single real-time video stream and produce a modi-

fied video stream (filters designed for the ‘Mux’ reconfigurable

region operate on two video streams). The incoming video

stream includes 24-bits of RGB data, a flag for the start of the

frame, and a flag for the end of the line within the frame.
A variety of video processing cores of different functionality

and resource utilizations were developed to demonstrate this

reconfigurable video processing pipeline concept. The follow-

ing cores were included in this work:

• Pass: Passes data through with no changes.

• Threshold: Performs a threshold function that converts

each pixel into a binary value.

• Color Limiter: Limits the max color value for each of

the three RGB channels.

• Draw Lines: Draws four lines over the image, two

horizontal and two vertical, with variable locations and

widths.

• Invert: Inverts the color values of each pixel.

• Grayscale: Calculates the grayscale value for each pixel

and outputs to all three channels.

• Mirror: Mirrors the image from left to right.

• Emboss: Applies an embossing algorithm on the full

image.

• Erode: Performs the erosion morphological operation.

• Dilate: Performs the dilation morphological operation.

• Sobel: Performs Sobel edge detection.

• Kernel 3x3: Applies a parameterizable 3x3 kernel filter

to support custom operations such as sharpen, outline,

and blur.

• ASCII Overlay: Overlays ASCII characters on screen

with variable size and location.

• Hirigana Overlay: Overlays Japanese Hirigana charac-

ters on screen with variable size and location.

• Image Overlay: Applies a static image stored in BRAM

on the image at a parameterizable location.

• Green Screen: Segments the image into a foreground and

background based on a parameterizable range of RGB

values.

The library of filters can easily be extended by designing other

filters that fit within any of the PRRs and meet the interfacing

requirements.
The video processing cores are designed using C++ and

synthesized using HLS. Each core was fully pipelined with

an iteration interval of one, allowing the function to begin

processing one pixel every clock cycle. Some filters required

video line buffers to allow for more complex functions that

required additional video frame information. Other filters

required BRAM memory to store dynamic images and static

fonts that were overlaid on the video image. Each video core

used the AXI4-Stream for video data to simplify the design

of the interfacing logic as the Vivado HLS tools automatically

handled the acknowledgement protocol for the AXI4-Stream

interface.
Each filter was mapped to as many of the PRRs as possible

to maximize the flexibility of building complex pipelines at

run-time. Those filters that fit within the Small regions are

mapped to each Small, Medium, and Large region within the

static design. Filters fitting in the Medium regions are mapped

to the Medium and Large regions. The build process for

generating this set of bitstreams involved HLS synthesis, out-

of-context HDL synthesis, and then placement, routing, and

bitstream generation for each potential PRR. A custom TCL

script was written to allow for the automated implementation

and generation of the partial bitstreams.
Table II summarizes implementation time of creating bit-

streams for all 16 filters using a computer with a i7-4770 CPU

at 3.40GHz and 16GB of RAM. The first row also includes

the time to implement one static pipeline that includes a large

set of these filters. Generating individual filter circuits is much

faster than generating a full static design, suggesting that faster

to generate partial circuits for the complex pipeline than to

create a custom static pipeline for each pipeline variation.

TABLE II
COMPARISON OF IMPLEMENTATION TIMES

Designs Time (min)

Static 62.94
Pass 11.87

Threshold 12.10
Color Limiter 11.75
Draw Lines 13.45

Invert 11.53
Grayscale 11.90

Mirror 12.13
Emboss 13.13
Erode 12.91
Dilate 12.81
Sobel 18.17

Kernel 3x3 17.54
ASCII Overlay 16.97

Hirigana Overlay 17.35
Image Overlay 15.03
Green Screen 13.49

The resource utilization of each of the filters is summarized

in Table III. This table also includes the latency in clock cycles

of each filter as well as its potential PRR placement (small,

medium, and/or large). The video filters of Mirror, Erode,

Dilate, Sobel, and Kernel 3x3 use line buffers to perform their

operations and require additional latency to fill the buffers.

VI. VIDEO PIPELINE OPERATION

Once the bitstreams have been generated for the PRRs and

uploaded to the PYNQ file system, custom video pipelines can

be created. Python classes and Juypter interfaces were created

to automate this process for the user. The process for creating

a custom pipeline is as follows:

1) The partial bistreams are first configured into the appro-

priate FPGA region using the xdevcfg drivers to access

the the processor configuration access port (PCAP).

2) Each filter can be customized with run-time specific

parameters (such as filter coefficients, text strings, etc.)

using a custom control bus. The user can change these

settings at run-time using the Jupyter interface to cus-

tomize the pipeline as needed.

Authorized licensed use limited to: Brigham Young University. Downloaded on April 07,2021 at 15:50:55 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. Edge Detection Video Processing Example

Fig. 5. Green Screen Video Overlay Example

TABLE III
COMPARISON OF HLS VIDEO FILTERS

Filters LUT FF BRAM DSP Latency PRR

Pass 70 130 0 0 2 S,M,L
Threshold 117 274 0 1 6 S,M,L

Color Limiter 127 263 0 0 3 S,M,L
Draw Lines 547 579 0 0 5 S,M,L

Invert 70 130 0 0 2 S,M,L
Grayscale 91 172 0 1 6 S,M,L

Mirror 121 172 3 0 4* S,M,L
Emboss 175 232 3 0 6 S,M,L
Erode 217 533 1.5 1 8* S,M,L
Dilate 193 445 1.5 1 8* S,M,L
Sobel 1254 3978 1.5 6 51* M,L

Kernel 3x3 1297 3222 1.5 10 51* M,L
ASCII Overlay 545 1346 1 0 11 S,M,L

Hirigana Overlay 671 1364 0.5 0 11 S,M,L
Image Overlay 479 1166 16.5 0 9 L
Green Screen 295 533 0 0 4 MUX

3) The topology of the communication between video

filters is set by configuring the AXI4-Stream Switch.

Once these steps have been completed, the custom video

pipeline is ready to process real-time video streams.

A. Python Pipeline API

For the PYNQ to support the configurable video processing

pipeline, additional Python functionality is needed. Using the

“MMIO" class provided by the PYNQ Python API, a subclass

was created to configure the AXI4-Stream Switch and send

commands to each filter. The “MMIO" class allows Python to

memory map Linux protected memory and have read and write

access to these addresses. The AXI4-Stream switch and CMD

Bus were connected to the main AXI-Lite interface of the

processor. The Python class PRControl used a map to simplify

the process of configuring the AXI4-Stream Switch.

Listing 1 shows a Python example of configuring the video

processing pipeline with a single color limiter core. One

of the small PRRs is reconfigured with the correct partial

bitstream on line 2. The PRControl class also has a function to

send commands to each filter. The function, filter_cmd, takes

the name of the filter, the address of the variable, and the

data. Line 4 shows an example usage of this function to set

the maximum red color value in the color limiter core. The

command on line 6 connects the hdmi input to PRR S0 by

writing to the control registers of the AXI4-Stream Switch.

Lines 8 and 10 connect that S0 PRR to the VDMA to allow

the processor access the video data over the AXI-Lite bus,

and forwards the VDMA to the HDMI output, displaying the

final frame on an external display. The final output will show

the processed image limiting the red portion of the pixels to

a max value of 0xA0.

Listing 1. Pipeline Contols
1 # Reconfigures S0 PRR with the color limiter core
2 PartialBitstream("limit_s0.bit"). download ()
3 # sets register 0 of S0 PRR to 0xA0
4 prcontrol_i.filter_cmd("S0" ,0,0xA0)
5 # Connects the live HDMI to S0 PRR
6 prcontrol_i.connect("HDMI_IN","S0")
7 # Connects S0 PRR to the DDR VDMA frame buffer
8 prcontrol_i.connect("S0","VDMA")
9 # Connects the DDR VDMA frame buffer to the HDMI output

10 prcontrol_i.connect("VDMA","HDMI_OUT")

B. Example Video Pipelines

A number of unique video pipelines have been created on

the PYNQ system using this static video region and the library

of video filters. Two examples will be described here: an edge

detection pipeline and a “green screen" mixing pipeline. The

topology of the edge detection pipeline is shown in Figure

4. This pipeline includes the following filters organized into

a linear sequence of video processing steps: grayscale, 3x3

kernel (using a blur configuration), threshold, erode, dilate,

Sobel filter, and a 3x3 kernel (using a sharpen configuration).

Several of these filters require parameters that can be set by the

user to create a very effective real-time video edge detector.

A second example is a “green screen" video overlay as

shown in Figure 5 . This pipeline uses all 11 filter slots

and mixes two real-time video streams. The first stream is

generated from an image in DDR memory using the AXI

VDMA channel and undergoes the following steps: invert, text

Authorized licensed use limited to: Brigham Young University. Downloaded on April 07,2021 at 15:50:55 UTC from IEEE Xplore. Restrictions apply.

overlay (with a user customizable message), and line insertion.

The second video stream is driven by the HDMI input port

and is mirrored and augmented with both custom text and

lines. The “green screen" mux filter identifies regions within

the incoming video stream that fit within a range of color

values (i.e., "green screen" values) and then replaces these

pixels with those of the background image. The resulting video

stream then undergoes the following final steps: emboss, color

limiting, text overlay, and small image overlay.

Each of these two sample pipelines were easily created in

a matter of seconds by a user interacting with the PYNQ

Jupyter pages. Many other interesting video pipelines can be

created by organizing these library functions in other unique

topologies.

C. Dynamic Pipeline Specifications

The video processing pipeline consists of one full bitstream,

15 large partial bitstreams, 42 medium partial bitstreams,

and 72 small partial bitstreams. All of these sum to to 131

bitstreams consisting of 64137 KB that can create billions

of possible hardware configurations using the small, medium,

and large PRRs1. The average times to reconfigure the large,

medium, and small PRRs are 50.5, 32.8, and 30.9 milliseconds

respectively, using the xdevcfg Linux driver. The PYNQ

system can reconfigure the whole pipeline in under a second

with any configuration. All the possible configurations support

the full 1080P video at 60Hz bandwidth. The max cycle

latency of the pipeline, ignoring any necessary row buffering,

is 600 clock cycles of a 142 MHz clock or 4.23 μs. The power

utilization ranges from 2.063 W for the empty static design to

2.515 W for a fully loaded design.

This configurable video processing pipeline tested the lim-

itations of the PYNQ with 11 different PRRs and 16 various

video processing cores. The PYNQ Jupyter demonstration files

can be found in this public repository2. The hardware and TCL

build scripts are available at this repository3.

VII. CONCLUSION

This paper describes a unique approach for generating

custom video pipelines in real-time by reconfiguring the FPGA

with pre-built video processing filters. This approach involves

creating a static circuit with fixed I/O interfaces, reconfigurable

regions, and a programmable interconnect. In addition, a li-

brary of video processing cores was created in C++ using HLS

and then mapped to each of the partial reconfigurable regions.

This approach significantly reduced the implementation time

needed to create a custom video pipeline. Custom pipelines

can be organized in a matter of seconds rather than the hours

required to fully implement a custom pipeline using traditional

FPGA tools.

A number of future enhancements to this work are being

pursued. First, this work is being upgraded to the recently

1126 × 143 × 15 = 1.23× 1011 possible combinations
2https://github.com/byuccl/BYU_PYNQ_PR_Video_Pipeline
3https://github.com/byuccl/BYU_PYNQ_PR_Video_Pipeline_Hardware

released ZCU104 PYNQ system that supports higher perfor-

mance quad-core processors and more FPGA configurable

resources. Further, this system uses the more advanced and

efficient UltraScale+ FPGA architecture using FinFET tech-

nology. Second, additional and more complex video filtering

circuits are being investigated including the Xilinx xfOpenCV

HLS library based upon the OpenCV software library.

REFERENCES

[1] M. Genovese and E. Napoli, “ASIC and FPGA implementation of the
gaussian mixture model algorithm for real-time segmentation of high
definition video,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 22, no. 3, pp. 537–547, March 2014.

[2] M. Hahnle, F. Saxen, M. Hisung, U. Brunsmann, and K. Doll, “FPGA-
Based real-time pedestrian detection on high-resolution images,” in
2013 IEEE Conference on Computer Vision and Pattern Recognition
Workshops, June 2013, pp. 629–635.

[3] A. Tumeo, S. Borgio, D. Bosisio, M. Monchiero, G. Palermo, F. Fer-
randi, and D. Sciuto, “A multiprocessor self-reconfigurable JPEG2000
encoder,” in 2009 IEEE International Symposium on Parallel Distributed
Processing, May 2009, pp. 1–8.

[4] G. A. Vera, D. Llamocca, M. s. Pattichis, and J. Lyke, “A dynamically
reconfigurable computing model for video processing applications,” in
2009 Conference Record of the Forty-Third Asilomar Conference on
Signals, Systems and Computers, Nov 2009, pp. 327–331.

[5] “Python productivity for zynq.” [Online]. Available: http://www.pynq.io/
[6] Digilent. (2019) Digilent vivado library. [Online]. Available:

https://github.com/Digilent/vivado-library
[7] Xilinx, “Xilinx ip catalog,” 2019.
[8] B. Hutchings and M. Wirthlin, “Rapid implementation of a partially

reconfigurable video system with PYNQ,” in 2017 27th International
Conference on Field Programmable Logic and Applications (FPL), Sep.
2017, pp. 1–8.

[9] E. Onat, “FPGA implementation of target detection algorithm at real
time video signal processing using harris corner detector filter,” in 2018
26th Signal Processing and Communications Applications Conference
(SIU), May 2018, pp. 1–4.

[10] ——, “FPGA implementation of real time video signal processing
using sobel, robert, prewitt and laplacian filters,” in 2017 25th Signal
Processing and Communications Applications Conference (SIU), May
2017, pp. 1–4.

[11] B. C. Maheshwari, J. Burns, M. Blott, and G. Gambardella, “Imple-
mentation of a scalable real time canny edge detector on programmable
SOC,” in 2017 International Conference on Electrical and Computing
Technologies and Applications (ICECTA), Nov 2017, pp. 1–5.

[12] R. Khraisha and J. Lee, “A scalable h.264/avc deblocking filter architec-
ture using dynamic partial reconfiguration,” in 2010 IEEE International
Conference on Acoustics, Speech and Signal Processing, March 2010,
pp. 1566–1569.

[13] L. S. U. Rani, G. Jagajothi, and P. T. Selvan, “Digital filter for real-time
impulse noise suppression in video processing using dynamic partial
reconfiguration technique,” in 2015 International Conference on Control
Communication Computing India (ICCC), Nov 2015, pp. 433–436.

[14] S. U. Bhandari, S. Subbaraman, S. Pujari, and R. Mahajan, “Real time
video processing on FPGA using on the fly partial reconfiguration,” in
2009 International Conference on Signal Processing Systems, May 2009,
pp. 244–247.

[15] S. Bhandari, S. Subbaraman, S. Pujari, F. Cancare, F. Bruschi, M. D.
Santambrogio, and P. R. Grassi, “High speed dynamic partial recon-
figuration for real time multimedia signal processing,” in 2012 15th
Euromicro Conference on Digital System Design, Sep. 2012, pp. 319–
326.

[16] M. Nguyen and J. C. Hoe, “Time-shared execution of realtime computer
vision pipelines by dynamic partial reconfiguration,” in 2018 28th In-
ternational Conference on Field Programmable Logic and Applications
(FPL), Aug 2018, pp. 230–2304.

Authorized licensed use limited to: Brigham Young University. Downloaded on April 07,2021 at 15:50:55 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

