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Deep learning (DL) presents new opportunities for enabling spacecraft autonomy, onboard analysis, and
intelligent applications for space missions. However, DL applications are computationally intensive and often
infeasible to deploy on radiation-hardened (rad-hard) processors, which traditionally harness a fraction of
the computational capability of their commercial-off-the-shelf counterparts. Commercial FPGAs and system-
on-chips present numerous architectural advantages and provide the computation capabilities to enable
onboard DL applications; however, these devices are highly susceptible to radiation-induced single-event ef-
fects (SEEs) that can degrade the dependability of DL applications. In this article, we propose Reconfigurable
ConvNet (RECON), a reconfigurable acceleration framework for dependable, high-performance semantic
segmentation for space applications. In RECON, we propose both selective and adaptive approaches to
enable efficient SEE mitigation. In our selective approach, control-flow parts are selectively protected by
triple-modular redundancy to minimize SEE-induced hangs, and in our adaptive approach, partial reconfig-
uration is used to adapt the mitigation of dataflow parts in response to a dynamic radiation environment.
Combined, both approaches enable RECON to maximize system performability subject to mission availability
constraints. We perform fault injection and neutron irradiation to observe the susceptibility of RECON and
use dependability modeling to evaluate RECON in various orbital case studies to demonstrate a 1.5–3.0×
performability improvement in both performance and energy efficiency compared to static approaches.
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1 INTRODUCTION

Due to ongoing innovations in both sensor technology and spacecraft autonomy, spacecraft
designers are challenged to create dependable, high-performance space computers that address
the computational demands required for future space missions [29]. Modern spacecraft increas-
ingly require high-performance computers to compress vast volumes of raw sensor data into
actionable information to overcome bandwidth limitations in downlink. Spacecraft also require
real-time capabilities to execute critical spacecraft maneuvers and operations autonomously. Deep
learning (DL) presents several opportunities for enhancing spacecraft autonomy, onboard data
analysis, and intelligent applications for space missions. One example is semantic segmentation, a
powerful DL and computer-vision process that learns to classify pixels within an image. Semantic
segmentation has numerous applications in onboard remote sensing for both science and defense
missions, from analyzing Earth observations (EO) for Earth science (e.g., land use, land cover,
and cloud masking), to monitoring natural disasters for emergency response, and to conducting
reconnaissance for national security. Despite these advantages, DL models are computationally
intensive and often impractical for deployment on traditional radiation-hardened (rad-hard)
space processors. The space-computing challenge is further exacerbated with stringent con-
straints in size, weight, power, and cost (SWaP-C) and dependability requirements for harsh
environments (e.g., radiation, thermal, vibration, and vacuum) often considered in space missions.

To address these challenges, space missions continue to adopt small satellites (SmallSats),
including CubeSats, as low-SWaP-C platforms [32]. Furthermore, to improve onboard process-
ing capabilities, SmallSat and CubeSat missions frequently employ systems developed with solely
commercial-off-the-shelf technology or with a mix of commercial and rad-hard devices including
both FPGAs and hybrid system-on-chips (SoCs) [16]. Hybrid SoCs synergize multiple distinct
computing architectures within one device to attain the architectural advantages of each. FPGA-
based hybrid SoCs combine dedicated fixed-logic CPUs with reconfigurable-logic FPGAs. Commer-
cial SoCs and FPGAs provide superior performance, energy efficiency, and affordability compared
to their rad-hard alternatives but are highly susceptible to radiation-induced single-event effects
(SEEs) that can affect the dependability of the system and application [28]. To improve depend-
ability, fault-masking techniques such as triple-modular redundancy (TMR) are frequently em-
ployed for SEE mitigation. However, TMR incurs significant overhead in area, power consumption,
and timing-critical path that is impractical for resource-constrained systems and can also limit
the performance and energy-efficiency potential of a system. To create a dependable and high-
performance system capable of onboard DL, efficient approaches in SEE mitigation are essential.

In this article, we propose Reconfigurable ConvNet (RECON), a runtime-reconfigurable
acceleration framework for dependable, high-performance semantic segmentation for space
applications on FPGAs and SoCs. RECON uses several model-compression, algorithmic, and
architectural optimization techniques to maximize the inference performance, energy efficiency,
and area efficiency for onboard processing. In RECON, we propose both selective and adaptive
strategies to enable efficient SEE mitigation. RECON is disaggregated into separate control-flow
and dataflow subsystems. In our selective approach, the control-flow subsystem, which is
vulnerable to SEE-induced hangs, is selectively protected with TMR to minimize the frequency
of hangs that are disruptive and slow to repair. In our adaptive approach, the dataflow subsystem,
which is more vulnerable to SEE-induced silent data corruption (SDC) but is faster to repair, is
protected using an environmentally adaptive strategy leveraging dynamic partial reconfiguration.
Due to the dynamics of the near-Earth radiation environment, spacecraft are exposed to SEE rates
that can vary by multiple orders of magnitude. Using partial reconfiguration, RECON can adapt
its dataflow subsystem by alternating between parallel (performance) and redundant (dependable)
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configurations in response to the fluctuating SEE rates of the dynamic near-Earth radiation
environment. RECON selects the dataflow configuration that uses only the amount of redundancy
that is necessary for the immediate environmental condition and uses remaining resources for
performance. Combined, both approaches enable RECON to maximize performability, in terms of
performance and energy efficiency, subject to mission availability constraints. Finally, to demon-
strate the efficacy of RECON for onboard semantic segmentation, we evaluate this framework
accelerating the SegNet model [2], a symmetric autoencoder for semantic segmentation, in terms
of accuracy, resource utilization, performance, energy efficiency, performability, and availability.
In our dependability evaluation, we perform fault injection and neutron irradiation to analyze
the SEE susceptibility of SegNet accelerated on RECON, and we use dependability modeling
to evaluate RECON in various orbital case studies to demonstrate a 1.5–3.0× performability
improvement in performance and energy efficiency compared to static approaches.

The remainder of this article is organized as follows. Section 2 provides a cursory overview of
background topics and related work. Section 3 introduces the RECON framework, describes the
application of RECON for hybrid and heterogeneous SoCs and systems, and explains the selective
and adaptive approaches for efficient SEE mitigation. Section 4 evaluates RECON in terms of per-
formance and dependability. Finally, Section 5 concludes this article with findings of this research.

2 BACKGROUND

This section provides a cursory overview of space-computing trends including SmallSats, CubeSats,
DL for space missions, and commercial hybrid and heterogeneous SoCs and systems that enable on-
board DL processing. Next, topics in DL including neural network (NN) and convolutional NN
(CNN) basics, semantic segmentation, accuracy metrics, and CNN architectures and optimizations
for FPGA acceleration are covered. Furthermore, concepts in dependable computing such as radi-
ation effects on electronic devices, SEE susceptibility of SRAM-based FPGAs, including mitigation
techniques and evaluation methods, and environmentally adaptive systems and modeling for near-
Earth radiation environments are discussed. Finally, this section provides a discussion of related
work in the analysis, evaluation, and mitigation of SEEs in DL applications accelerated on FPGAs.

2.1 SmallSats, CubeSats, and Onboard DL

The application of onboard DL for spacecraft autonomy and data analysis is rapidly trending in
SmallSat and CubeSat missions. SmallSats, constrained to low size and mass under 500 kg, and
CubeSats, measured in Units (U) with 10 × 10 × 10 cm3 per U, have emerged as useful, high-risk,
low-SWaP-C platforms enabled by the miniaturization of electronics, sensors, and instruments,
and have proliferated in both science and defense missions [32, 47, 53]. The proliferation of
CubeSat missions has also enabled complementary activities that use emerging techniques in big
data, such as DL, to process vast CubeSat-generated datasets. However, the National Academies’
Space Studies Board (SSB) highlighted the need for fault protection and high-performance
computing for spacecraft operations and payload processing for CubeSats [32]. In 2018, the SSB
issued a report for the 2017–2027 decadal strategy on Earth science and applications from space,
providing recommendations to the National Aeronautics and Space Administration (NASA),
National Oceanic and Atmospheric Administration (NOAA), and U.S. Geological Survey
for future missions in EO [34]. The decadal strategy accentuated the need for advanced method-
ologies to analyze and convert EO data into scientific knowledge, which can be achieved using
DL methods. However, the decadal strategy also emphasized the importance of mission design
tradeoffs and the crucial balance of three interrelated parameters: performance, cost, and risk,
which signifies the importance of considering all three parameters for a space computer capable
of onboard DL. In addition to advancing science missions, SmallSat and CubeSat technology
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are also emerging in future defense missions. The Defense Advanced Research Projects Agency
Blackjack program seeks to create a next-generation avionics unit, called Pit Boss, that will
leverage both commodity and commercial technologies to enable advanced, on-orbit computing
with payload-level and mission-level autonomy [10]. Blackjack aims to demonstrate that a
distributed, resilient constellation of autonomous, replenishable SmallSats in low-Earth orbit
(LEO) can compete with expensive, flagship spacecraft in geosynchronous orbit [9].

2.2 Commercial Hybrid and Heterogeneous SoCs and Systems for Space Applications

To improve onboard processing capabilities that enable DL applications, SmallSat and CubeSat
missions often employ commercial FPGAs and hybrid SoCs. Hybrid SoCs, such as the Xilinx
Zynq-7000 SoC (Zynq-7000) [57] and Xilinx Zynq UltraScale+ MPSoC (Zynq-MPSoC) [58],
combine fixed-logic CPUs with reconfigurable-logic FPGAs in a single device. The Zynq-7000 SoC
features single- or dual-core ARM Cortex-A9 application processor unit (APU) and an Artix or
Kintex 7-Series FPGA fabric. The Zynq-MPSoC features a multiprocessor system, including dual-
or quad-core ARM Cortex-A53 APU, dual-core ARM Cortex-R5 real-time processor unit, TMR
MicroBlaze platform management unit, and an UltraScale+ Architecture FPGA fabric. In both SoC
series, the CPU and FPGA subsystems can interact over the Advanced eXtensible Interconnect
(AXI) for general-purpose and high-performance memory-mapped accesses. Both series also
include configuration access ports (CAPs) that enable interactions with the FPGA configura-
tion controller for FPGA reconfiguration and access to configuration memory (CRAM). These
ports include the processor CAP (PCAP) and internal CAP (ICAP), which are accessible by
the CPU and FPGA, respectively. Xilinx SoCs and FPGAs support partial reconfiguration (PR)
that allows predefined partitions, called PR regions (PRRs), to be reconfigured with compatible
modules, called PR modules (PRMs) at runtime without interrupting the remainder of the
system, including the CPU and logic in the static region (SR) and other PRRs.

The Center for High-Performance Reconfigurable Computing (CHREC) Space Proces-
sor (CSP) [54] and Space, High-Performance, and Resilient Computing (SHREC) Space
Processor (SSP) [40] are two examples of multifaceted hybrid space computers. CSP was devel-
oped by researchers at the National Science Foundation (NSF) CHREC in collaboration with NASA
Goddard Space Flight Center (GSFC), and SSP was developed at the NSF Center for SHREC,
which superseded CHREC in 2018, at the University of Pittsburgh in collaboration with govern-
ment and industry partners. CSP and SSP are both 1U compute cards that feature a Zynq-7000 SoC
(Z7020 or Z7030/Z7035/Z7045) and combine a novel mix of commercial technology (processor and
memory) for performance, rad-hard technology (monitoring and managing circuits) for depend-
ability, and supplementary dependable computing for extended reliability enhancements. CSP has
flight heritage as part of two U.S. Department of Defense Space Test Program (STP) Houston mis-
sions to the International Space Station, including STP-H5 CHREC Space Processor (STP-H5-CSP)
and STP-H6 Spacecraft Supercomputing for Image and Video Processing (STP-H6-SSIVP) [41, 54].
Both CSP and SSP are planned for flight on the STP-H7 Configurable and Autonomous Sensor Pro-
cessing Research (STP-H7-CASPR) [40]. Derivatives of CSP include the SHREC Hybrid Computer
and SpaceCube Mini-Z [7], both developed at NASA and featured on many new science missions.

The Science Data Processing Branch at NASA GSFC is developing the SpaceCube v3.0 VPX
(SCv3VPX) [15] and SpaceCube v3.0 Mini (SCv3M) [7] as the next generation of hybrid space com-
puters for future missions. SCv3VPX is a 3U SpaceVPX Lite card that features the Zynq-MPSoC
and Kintex UltraScale FPGA (KU-FPGA) with both devices interconnected by multi-gigabit
transceivers (MGTs) and supervised by a rad-hard Microchip RTAX FPGA. SCv3M is a 1U card
that features the KU-FPGA, supervised by a Microchip RT ProASIC3, and can be paired with a
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Fig. 1. SegNet semantic-segmentation model.

processor card (e.g., SSP) for external management or self-managed with a soft-core processor
(e.g., MicroBlaze or RISC-V).

2.3 Convolutional Neural Networks

CNNs have become increasingly popular in DL and computer-vision applications for classification,
detection, localization, and segmentation tasks in imagery [44]. CNNs are a form of classical
supervised learning algorithms with a feed-forward process for inference and a back-propagation
process for training. CNNs consist of a combination of layers that operate on feature maps
(FMs). Convolutional layers extract features of input FMs and generate new FMs that represent
the locations and strengths of detected features. Each convolutional operation contains a set of
learnable weights and biases that are formulated during model training. Initial convolutional
layers extract low-level features (e.g., edges, corners, surfaces), and deeper layers extract more
complex abstractions (e.g., structures and patterns). Activation layers (e.g., sigmoid, tanh, and
rectified linear unit (ReLU)) introduce nonlinearity into the model to approximate nonlinear
patterns and functions. Pooling layers (e.g., max pooling and average pooling) downsample and
discretize the spatial resolution of input FMs to reduce the number of parameters and operations.
Fully connected layers perform classification and map features extracted from previous layers
into an output vector of classes. The arguments of the maxima (argmax) of the output vector
specify the most probable classification of the input for class label assignment. CNNs can append
an optional softmax layer to convert the output vector into a discrete probability-distribution
vector to determine the confidence of the classification. Batch normalization (BatchNorm)
is another layer that can be inserted between convolutional and activation layers to accelerate
training and mitigate overfitting through the normalization of the inputs.

2.4 Semantic Segmentation

Semantic segmentation is a process that labels each pixel of an image, where pixels with the same
label share the same semantic characteristics. The application of DL to perform semantic segmen-
tation has been explored extensively in the literature [14, 23]. One semantic-segmentation model
proposed by Badrinarayanan et al. [2], called SegNet, is illustrated in Figure 1. SegNet is a sym-
metric autoencoder that contains five encoder blocks followed by five decoder blocks, each with
two or three sets of convolutional, BatchNorm, and ReLU layers. Each encoder block is followed
by a max-pooling layer that produces two outputs: downsampled FMs and pooling indices (PIs).
Each decoder block begins with a max-unpooling layer that uses the PIs of the corresponding
encoder block to upsample smaller FMs back to their original spatial resolution. SegNet uses PIs to
perform nonlinear upsampling without the need to learn to upsample. An optional softmax layer
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can be appended at the end of the network to generate a discrete pixelwise probability distribution.
The argmax of the output layer can also be used to assign the most probable label for each pixel.

To evaluate the accuracy of semantic-segmentation models, two common metrics include the
intersection-over-union (IoU; Jaccard index) and F1-score (F1; Dice score). The IoU is the area of
intersection (overlap) divided by the area of union between the predicted output and ground-truth
label mask. The F1 is defined as the harmonic mean of precision and recall. Both metrics range
from 0% to 100% (higher is better) and can be calculated from a confusion matrix, which compares
the predicted output and the ground-truth label in terms of true positive (TP), false positive
(FP), and false negative (FN) using Equation (1). For multi-class segmentation, to determine the
mean IoU (mIoU) and mean F1, respectively, the IoU and F1 are calculated for each class and
are then averaged across all classes,

IoU =
TP

TP + FP + FN
and F1 =

2TP

2TP + FP + FN
. (1)

2.5 FPGA Acceleration of DL Applications

The acceleration of DL on FPGAs has been explored extensively in the literature [17, 30]. Re-
searchers have explored various model-compression, algorithmic, and architectural optimization
techniques to efficiently map CNN algorithms to FPGAs. Model compression techniques, such as
weight pruning and data quantization, can improve hardware efficiency at the cost of decreased
accuracy. Weight pruning is a sparsification technique that removes weights with negligible rep-
resentation in the model. Data quantization replaces high-precision, resource-intensive floating-
point data and arithmetic with low-precision integer or fixed-point to reduce the bandwidth,
storage, energy, and area requirements for each operation. The 8-bit integer (INT8) quantization
scheme proposed by Jacob et al. [19] constrains the continuous input set (floating point) to a dis-
crete set (INT8) using scale and zero-point parameters to map between real numbers and integers.

Additionally, algorithmic optimization techniques, such as fast convolution algorithms,
BatchNorm folding, and loop optimizations, can improve the parallelism and efficiency of the
accelerator architecture for FPGAs. Fast convolution algorithms, such as Winograd [24] and
frequency-domain convolution, can improve the hardware efficiency of convolutional operations.
Winograd convolution uses an algorithmic strength reduction technique to reduce strong
operations (multiplications) at the expense of increased weak operations (additions) and is
computed using Equation (2), where G, B, and A are Winograd transformation matrices. The
weights д and FMs d are converted to Winograd space using the transformations U = GдGT

and V = BTdB, respectively. Next, the transformed weights and FMs undergo elementwise
multiplication W = U � V to produce the output in Winograd space. Finally, the outputs are
converted back to normal space using the inverse transformation Y = ATWA,

Y = AT
[
(GдGT ) � (BTdB)

]
A. (2)

The F (2 × 2, 3 × 3) form of Winograd convolution requires a 3 × 3 weights matrix and 4 × 4 data
matrix (subset of a FM) to compute a 2× 2 output matrix. Compared to direct 3× 3 convolution, the
F (2 × 2, 3 × 3) form has a 2.25 × improvement in multiplication efficiency (number of multiplies to
compute one output pixel) at a 2.625 × increase in addition operations, which can minimize utiliza-
tion of limited DSP resources. BatchNorm folding is a technique for embedding the parameters of a
BatchNorm layer into the weights and biases of the preceding convolutional layer. BatchNorm fold-
ing is performed prior to model deployment, which can eliminate the need for processing Batch-
Norm layers at runtime.Loop optimization techniques include unrolling, tiling, and interchange.
Loop unrolling, combined with pipelining, exploits parallelism by executing multiple iterations
of a loop using FPGA resources in parallel. Loop interchange involves reordering loop iteration
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variables to improve the efficiency of cache usage. Loop tiling is used to partition large FMs into
tiles that can fit in on-chip memory (OCM), such as block RAM (BRAM) or Xilinx UltraRAM,
for accumulation or caching to reduce the bandwidth requirement for off-chip memory access.

Finally, architectural optimizations, such as systolic arrays, DSP time-multiplexing, and layer
fusion, can further improve CNN acceleration. Wei et al. [52] proposed a two-dimensional (2D)
systolic array architecture for accelerating convolutional layers composed of processing ele-
ments (PE), each often implemented using one DSP slice. For each cycle, in a weight-stationary
topology, every PE performs a multiply-accumulate (MAC) operation and shifts its input FM
element and MAC output to adjacent PEs in a rippling flow. Because systolic arrays replace global
multiplexers with interconnects between adjacent PEs, CNN accelerators based on this topology
can achieve high-frequency operation. Furthermore, the DSP slices of Xilinx 7-Series, UltraScale,
and UltraScale+ FPGAs are rated for high-frequency operation. DSP time-multiplexing involves
reducing the number of DSP slices by a factor N and operating them at N times the frequency of
surrounding logic to accomplish the same amount of computation [17]. This frequency technique
can improve DSP efficiency but requires maintaining matched routing to ensure synchronization
between two clock domains. Layer-fusion (cross-layer scheduling) techniques can improve
latency and minimize off-chip memory access by fusing and executing multiple adjacent layers
in a pipeline [17]. Miscellaneous, channelwise operations can often be performed as a preprocess
or postprocess of the main convolutional operation. Because multiple layers are processed in the
same stream, the total number of streams and layer operations is reduced. These optimization tech-
niques all demonstrate the viability, advantages, and limitations of FPGAs for CNN acceleration.

2.6 Radiation Effects

Radiation is an environmental hazard that pose several challenges for electronic devices including
hybrid SoCs and FPGAs in space. Radiation sources include galactic cosmic rays (GCRs), solar
particle events, and charged particles trapped within the Van Allen radiation belts. Radiation
effects on electronic devices are typically categorized as long-term cumulative effects or short-
term transient effects. Cumulative effects include total ionizing dose, the ionizing radiation dose
absorbed by the device material over time causing parametric or functional degradation, and dis-
placement damage dose, the non-ionizing damage caused by particles colliding with atoms of the
device lattice structure. SEEs are transient effects that occur when a single radiation particle strike
deposits enough charge to cause an effect. SEEs can be destructive or nondestructive. Destructive
SEEs include single-event latch-up, single-even burnout, single-event gate rupture, and others.
Nondestructive SEEs include single-event upset (SEU), single-event transient, and single-event
functional interrupt. Both types of effects are extensively covered by the National Academies’
report on the U.S. infrastructure for space radiation effects testing [33]. Additionally, NASA
created the Radiation Hardness Assurance (RHA), a multi-step approach to address radiation
concerns in spacecraft development [22]. NASA further evolved RHA for SmallSat missions that
require high reliability but are too cost-constrained to follow standard RHA practices [8].

2.7 FPGA Dependability

Many FPGAs and FPGA subsystems in hybrid SoCs are SRAM-based. SRAM-based FPGAs are
high-density, high-reconfigurability architectures composed of many diverse resources, including
logic blocks and hard blocks (e.g., DSPs, BRAM, and high-speed I/O), interconnected by a complex
routing network. At runtime, a design bitstream is stored in CRAM to configure the resources and
network routing to implement a design onto the FPGA. This paradigm provides designers with
the flexibility to create customized, massively parallel datapaths to accelerate compute-intensive
algorithms on FPGAs as well as the capability to reconfigure the FPGA fully or partially at
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runtime to multiplex applications or system configurations over time. However, despite these
architectural advantages for onboard processing, SRAM-based FPGAs and SoCs are seldom
deployed in NASA-qualified avionics due to their high susceptibility to radiation, which can
introduce faults that manifest into a variety of error and failure modes. To address radiation
concerns, many NASA missions deploy rad-hard, flash-based, or antifuse-based FPGAs, which
are relatively or completely immune to CRAM faults, instead of SRAM-based FPGAs. Faults in
static CRAM bits, which configure the FPGA to realize the design, can cause functional changes
in the design. Faults in dynamic CRAM bits, which are typically used for distributed RAM or
shift registers, and other design-specific memories (e.g., BRAM, flip-flops, and internal hard-block
registers) can also cause a wide variety of adverse effects. Typically, design-specific memories
can be protected with error correction code (ECC) to improve dependability. A comprehensive
overview of the radiation effects on FPGAs, including SEE mitigation techniques for fault masking,
avoidance, and tolerance, is covered in the literature [38, 45, 55].

2.7.1 Dependability Techniques. TMR is a hardware redundancy technique that involves
triplicating circuits and routing the outputs through majority voters for single-fault masking.
TMR can improve the reliability of a design; however, triplication incurs a high overhead in the
device resource utilization, energy consumption, and timing-critical path of a design, which can
reduce performance or even detrimentally increase the critical area (critical bits) vulnerable to
faults. The granularity at which triplication is applied can vary. Fine-grain TMR (FG-TMR)
involves triplication of intra-modular circuits with more frequent voters to mask low-level faults
(e.g., circuits within the module are triplicated with voters inserted at the inputs of each flip-flop),
and coarse-grain TMR (CG-TMR) involves triplication of entire modules to mask module-level
faults (e.g., voters inserted at the modular interfaces). Generally, fine-grain replication provides
greater reliability, whereas coarse-grain replication provides greater area efficiency [48]. A variety
of tools have been developed for the automatic triplication and insertion of majority voters
of FPGA designs. Commercial tools, such as Xilinx TMRTool, Synopsis Synplify Premier, and
Mentor Graphics Precision Hi-Rel can triplicate designs at the RTL level during synthesis, along
with other reliability features. BL-TMR is an academic tool that supports selective replication of
designs in a post-synthesis netlist [21].

Hardware redundancy can be combined with PR for module-based error recovery (MER)
[5]. In this paradigm, the replicas of a CG-TMR design are PRMs residing in their independent
PRRs with majority voters inserted in the SR near the PRR boundaries. When module-based
errors are detected, the majority voters signal a reconfiguration controller residing in the SR to
reconfigure faulty PRMs for recovery. Various network topologies and strategies for MER have
been explored in the literature [1, 59, 60].

Hardware redundancy can also be combined with CRAM scrubbing to prevent the accumu-
lation of faults in CRAM that can overwhelm single-fault masking techniques like TMR. CRAM
scrubbing is a background process that detects and corrects faults in CRAM. On Xilinx FPGAs,
scrubbing architectures can be implemented on-chip using the PCAP or ICAP or off-chip using
JTAG or SelectMAP [4], and the scrubbing approach can be categorized into blind, readback,
replacement, or hybrid forms [46].

2.7.2 Dependability Evaluation of FPGA Designs. The dependability of a full or partial design
of an FPGA can be measured experimentally through fault-injection or radiation-beam testing. In
CRAM fault injection, a bit-flip is injected into CRAM to observe the architectural response to the
fault during design operation. Three essential metrics for quantifying the dependability of a design
include the architectural vulnerability factor (AVF), critical area, and mean-work-to-failure
(MWTF). In the context of this article, the AVF of a design is the probability that an injected fault
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will manifest into an observable event [31]. The critical area of a design combines the design AVF
and area to account for differences in the resource utilization [25]. MWTF describes the amount of
useful work completed until an observable event is expected [39]. The classification of observable
events is user-defined and can vary by design or application (e.g., SDC or hangs). AVF, critical
area, and MWTF are calculated using Equations (3), (4), and (5), respectively,

AVF =
Number of Observable Events

Number of Fault Injections
. (3)

Critical Area = AVF × Area, (4)

MWTF =
Amount of Useful Work Completed

Number of Observable Events
. (5)

Radiation-beam testing involves irradiating devices-under-test (DUTs) by high-energy
radiation or laser beam to induce SEEs. In radiation-beam testing, the beam flux (number of
particles per unit area per second) or fluence (integration of flux over time; the number of particles
per unit area per second) are recorded in addition to the observed events. One metric of interest is
the cross-section (σ ), which is the sensitive area of the DUT where a radiation-induced fault will
manifest into an observable event [37]. The cross-section is calculated by dividing the number of
observable events by the beam fluence using Equation (6). In practice, the AVF and cross-section
results are reported with the corresponding 95% confidence interval (CI) error to provide context
for uncertainty in the measurements of the experiment [37],

σ =
Number of Observable Events

Total Effective Fluence
. (6)

2.8 Environmentally Adaptive Resilience for Near-Earth Radiation Environments

Due to the dynamics of the near-Earth radiation environment, influenced by the geomagnetic
field, solar weather, and other phenomena, spacecraft are exposed to wide variations of radiation
fluxes resulting in SEE rates that can vary by multiple orders of magnitude depending upon the
orbit [6, 56]. Jacobs et al. [20] and Sabogal et al. [43] proposed methodologies for modeling and
evaluating adaptive and evolvable systems in near-Earth radiation environments.

First, the dynamic radiation environment is modeled using the combination of multiple
well-established models to predict the time-varying SEE rates of a device. Simplified General
Perturbation [18] is an orbital-perturbation model that can predict the geographic coordinates
of the orbital position of near-Earth objects over a period. International Geomagnetic Reference
Field [51] is a geomagnetic-field model that can map the geographic coordinates to the McIlwain
L-shell (Lm), which labels the drift shells that cross the geomagnetic equator in units of Earth
radii (R⊕) from the geomagnetic center. Using the NASA trapped particle radiation (AP-8/AE-8)
and Cosmic Ray Effects on Micro-Electronics (CRÈME96) models, the Lm can be used
to estimate the fluxes of trapped particles within the geomagnetic field and GCRs attenuated
after geomagnetic shielding. CRÈME96 [50], developed by Vanderbilt University and supported
by NASA, is a state-of-the-art tool that uses phenomenological models with device, mission,
orbital, and environmental characteristics to predict SEE rates induced by protons and heavy ions.
CRÈME96 can also predict the average SEE rates for a specific orbital segment between two drift
shells bounded by lower and upper Lm. These segmented SEE rates can be assigned to the time
domain by mapping SEE rates to the Lm of the spacecraft over time.

Next, for a specific observable event, the time-varying fault rate of an FPGA design (λdesign (t ))
can be approximated using Equation (7). For each resource type (r ∈ R), the aggregated resource

ACM Transactions on Reconfigurable Technology and Systems, Vol. 14, No. 4, Article 22. Pub. date: September 2021.



22:10 S. Sabogal et al.

SEE rates (λr,SEE (t )) is scaled by the resource utilization (RUr ) times the resource AVF (AVFr ). In
cases where determining the AVF of a specific resource type is infeasible, an estimate is made (e.g.,
assume worst-case or use another resource AVF). The final design fault rate is the summation of
the scaled fault rates for all resource types.

λdesign (t ) =
∑

r ∈R
λr,SEE (t ) · RUr · AVFr . (7)

Finally, phased-mission system modeling is used to model adaptive and evolvable systems,
where failure, recovery, and performance mechanisms change over time. At each phase of the
mission, the system configuration can be modeled using continuous-time Markov chains
(CTMCs), with time-varying fault rates, repair rates, and reward rates assigned to represent failure,
recovery, and performance mechanisms, respectively. The instantaneous and average availability,
failure rate, and performability of the system can be calculated by performing a transient anal-
ysis of the phased-mission system model. Availability describes the probability that a system is
operational. The failure rate describes the rate at which a system enters a failure state. Finally, per-
formability describes the amount of useful work completed and is dependent on system availability

2.9 Related Work

The evaluation, analysis, and mitigation of SEEs in machine-learning applications accelerated on
FPGAs have been moderately explored in the literature [3, 11–13, 26, 27, 42, 49]. An overview
of concepts and taxonomy for dependability in FPGA-based NNs, including passive and active
methods for fault tolerance, is provided in [49]. A variety of methods using fault injection
and radiation-beam testing have been explored to evaluate the dependability of NNs. Du et al.
[12] performed fault injection, targeting both static and dynamic CRAM with single-bit and
multi-bit faults, to evaluate the susceptibility of a binary NN to single-bit and multi-bit upsets in
various resource types. Benevenuti et al. [3] characterized the SEE susceptibility of a multi-layer
perceptron for Iris flower classification accelerated on the Zynq-7000 in terms of tolerable and
critical SDC. Layers of the NN were assigned to separate FPGA partitions to analyze the design
susceptibility at the model and layer levels. Dos Santos et al. [11] used fault injection and neutron
irradiation to evaluate the impact of double-, single-, and half-precision floating-point data
representations on the reliability of an MNIST CNN implemented on the Zynq-7000. The reduced
area due to reduced precision decreased the critical area. Libano et al. [27] used fault injection to
evaluate the impact of binary quantization on the reliability of an MNIST CNN implemented on
the Zynq-MPSoC. The reduced area due to quantization decreased the critical area but increased
the error severity, which describes the impact of faults on inference accuracy.

Methods to improve NN dependability using efficient methods for SEE mitigation have also
been explored. Libano et al. [26] used fault injection to identify the most vulnerable layers of
two fully unrolled models, Iris flower NN and MNIST CNN, accelerated on the Zynq-7000 and
Zynq-MPSoC, respectively. Selective TMR was applied to protect the most vulnerable layers of
each model to reduce redundancy overhead. Gambardella et al. [13] used fault injection to identify
the most vulnerable channels of a binary NN. Selective TMR was applied to the PEs processing the
most vulnerable channels to reduce redundancy overhead. For folded implementations where PEs
each process multiple channels, Gambardella et al. proposed a fault-aware scheduler to schedule
channels through mitigated or unmitigated PEs based on the vulnerability of the channel (e.g., the
most vulnerable channels run through mitigated PEs). Sabogal et al. [42] performed fault injection
and neutron irradiation to evaluate a CNN accelerator for the SegNet model on the Zynq-7000 and
Zynq-MPSoC. Due to the impracticality of unrolling deep CNNs on resource-constrained FPGAs,
a reusable instruction-based CNN architecture was created. TMR was selectively applied to the
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Fig. 2. RECON acceleration framework.

control-flow part of the acceleration framework to minimize the hang rate, and high-performance,
unmitigated and low-performance, TMR versions of the dataflow part were evaluated to quantify
the SDC rate and the tradeoffs in performance and dependability.

In this article, we extend upon our previous work in Reference [42] and make the following
contributions. First, we present an updated acceleration framework for RECON that is comparable
to the current paradigm of state-of-the-art CNN architectures, including instruction-based
processing and model-compression, algorithmic, and architectural optimizations that maximize
inference performance with efficient hardware. Second, we propose the partitioning of control-
flow and dataflow parts of RECON into static and reconfigurable regions, respectively, and
applying selective TMR to protect control-flow parts to reduce the hang rate. Leveraging the
reconfigurability of FPGAs, we also propose an environmentally adaptive approach to mitigate
SDC in the dataflow part in response to the environmental condition. Combined, both approaches
can maximize inference performability subject to mission availability constraints. Finally, we
evaluate the susceptibility of the SegNet model accelerated on RECON for the Zynq-7000 and
Zynq-MPSoC using fault injection and neutron irradiation, and we discuss our methodology and
analyze the architectural response of RECON to both injected CRAM faults and neutron-induced
SEEs at the model and layer levels.

3 ARCHITECTURE OVERVIEW

This section provides an architectural overview of the RECON framework, which is illustrated
in Figure 2. RECON is a runtime-reconfigurable acceleration framework for dependable, high-
performance semantic segmentation for space applications. The framework is composed of three
major modules including the Configuration Manager (CM), RECON Scatter-Gather DMA
(RSGDMA), and RECON Accelerator (RACCEL).

The CM is responsible for three functions: (1) environmental monitoring, (2) system reconfig-
uration and adaptation, and (3) fault management. To assess the environmental condition, the
CM can monitor radiation stimuli, using on-chip or onboard SEE-detection circuitry or external
radiation-flux sensors or dosimeters, or use model-based predictions. In response to the severity
of the environmental condition or criticality of the mission phase, the CM adapts the system by
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using PR to dynamically reconfigure each PRR at runtime without interrupting system operation.
For fault management, the CM performs periodic CRAM scrubbing, event-driven MER using PR,
and full reconfiguration. The CM exists as software on a CPU or as a controller residing in the SR.

The RSGDMA and RACCEL modules constitute the control-flow and dataflow subsystems of
the RECON acceleration framework, respectively. The RSGDMA performs most of the control-
flow functions of the framework, including instruction processing, accelerator configuration, and
memory access, and resides in the SR. The RACCEL performs all dataflow functions of the frame-
work to accelerate SegNet processing with optimizations and resides in a PRR as a PRM. Both
the RSGDMA and RACCEL modules are scalable and runtime parameterizable to accommodate
various FPGA platforms and application domains and to support runtime reconfiguration. The
degree of parallelism in RECON is primarily defined by the number of input channels and output
channels N processed concurrently, with four parallel pixels per channel, for a total of 16N 2

PEs. The notations RSGDMAM and RACCELN are used to denote the configuration of RSGDMA
and RACCEL, respectively, where M and N are user-specified, pre-synthesis parameters. Both
RSGDMAM and RACCELN are compatible if N ≤ M .

The RSGDMA and RACCEL interface via AXI4-Stream (AXIS), and AXIS packets are used to
parameterize and operate the RACCEL. Input stream packets specify the datapath configuration
and provide weights, biases, quantization parameters, and input data of tiled FMs and PIs. Output
stream packets return output data of tiled FMs and PIs. The RSGDMA has a built-in decoupling
mechanism that can sever the AXIS interface between the RSGDMA and RACCEL. This mecha-
nism is activated during PR to protect the RSGDMA by ensuring that the AXIS interface remains
inactive, and this mechanism can also be activated to inhibit the propagation of errors from faulty
RACCEL PRMs to the RSGDMA and other static logic.

3.1 Approaches for Efficient SEE Mitigation

In this article, we use a transient-fault model to address the dependability of RECON due to
SEE-induced faults, and we focus on the mitigation of two SEE-induced events: SDC and hangs.
SDC refers to an erroneous outcome of the application due to errors that are neither detectable
nor correctable without dependable-computing techniques. SDC usually occurs when faults affect
the dataflow parts of the design (i.e., datapath) and manifest into data errors. Faults causing SDC
can be repaired by CRAM scrubbing or reconfiguration. Depending upon the application, the
severity of SDC can vary broadly. Some algorithms, including NNs, have been demonstrated to
have an inherent fault tolerance due to high redundancy in the weights of the model [49]. SDC
events with low severity (e.g., few incorrect pixels) are classified as tolerable SDC (SDCT) if the
accuracy loss remains below a user-defined tolerance threshold. Otherwise, SDC events with high
severity (e.g., severe distortions) are classified as critical SDC (SDCC). Depending upon mission
requirements, if some loss in accuracy due to SDC is acceptable, then the dependability analysis
is adjusted to focus on SDCC.

A hang refers to the nonperformance of the application that can be detected by timeout or
watchdog. A hang usually occurs when faults affect the control-flow parts of the design and
corrupt finite-state machines (e.g., entry into invalid states), disrupt flow-control processes, or
adversely activate/inhibit control signals that prevent completion of the execution. The severity of
hangs can also vary. Some hang conditions can be repaired by a combination of CRAM scrubbing
and asserting a reset signal to repair the faulty control logic and reinitialize the control state.
However, some hang conditions can propagate to other subsystems and require reconfiguration
or external mechanisms (e.g., software-issued reboot or watchdog timer reset) to recover.

CRAM scrubbing and partial reconfiguration are fast, nondisruptive recovery mechanisms to
repair faults. Full reconfiguration and other mechanisms that reset the FPGA are slow, disruptive
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recovery mechanisms that must be minimized to avoid system downtime. The application of
FG-TMR can substantially reduce the critical area to minimize both SDC and hangs; however,
FG-TMR incurs a substantial overhead in the design area, energy consumption, and timing-critical
path that can limit the performance and energy-efficiency potential of the system. To improve the
dependability of RECON with minimal impact on performance, we propose selective and adaptive
strategies for efficient SEE mitigation of hangs and SDC, respectively. The RECON framework is
disaggregated into control-flow (RSGDMA) and dataflow (RACCEL) subsystems, and the selective
and adaptive approaches are applied to the RSGDMA and RACCEL subsystems, respectively.

3.1.1 Selective Mitigation for RSGDMA. Since hangs result in system downtime and require
slow processes to recover, the critical area vulnerable to hangs must be minimized to reduce the
hang rate. FG-TMR is selectively applied to the RSGDMA and supporting logic (e.g., interconnects
and memory controllers) in the SR, because these subsystems perform most of the control-flow
functions of the framework. Additionally, FG-TMR will also reduce SDC due to faults in the
RSGDMA.

Although RACCEL is mostly dataflow-oriented, this module is not devoid of control-flow
function and is also vulnerable to hangs. However, the decoupling mechanism of the RSGDMA
can be activated to sever the AXIS interface between the RSGDMA and RACCEL to inhibit the
propagation of both SDC and hang conditions to protect the RSGDMA and other static logic, and
the CM is invoked to perform MER using fast, nondisruptive repair mechanisms. For example, if
RACCEL hangs and the RSGDMA runtime exceeds a predefined timeout, then the CM activates
the decoupler and performs PR to recover the RACCEL with minimal system interruption.

3.1.2 Adaptive Mitigation for RACCEL. Since the SEE rate of a system exposed to the dynamic
near-Earth radiation environment can vary by multiple orders of magnitude, the application
of static (nonchanging) SEE mitigation can be excessive and inefficient, especially when the
worst-case SEE rates are infrequent or brief. An environmentally adaptive approach for SEE
mitigation can repurpose system resources between parallelism (performance) and redundancy
(dependability) in response to the current environmental condition. Using this approach, a system
can adapt its resources to maximize performance while providing SEE mitigation that is sufficient
to the environmental condition to satisfy mission availability constraints.

As a PRM, the RACCEL configuration can be changed at runtime, and the degree of parallelism
and redundancy of the RACCEL configuration can vary but is constrained by the amount of
resources available in the PRR. Each RACCEL configuration has its own performance, energy
efficiency, and dependability tradeoffs. With several configuration modes available, the CM can
adapt to the environment by selecting the RACCEL configuration with the tradeoffs best suited
for the immediate environmental condition. The policy used by the CM to select a RACCEL
configuration can also vary. One such policy is a threshold-based approach, where adaptation
occurs when the monitored SEE rate crosses predefined thresholds.

Figure 3 illustrates an example of this adaptive approach for a RECON framework with
mitigated RSGDMA4-TMR, which supports RACCELN with N ≤ 4. In this example, the CM selects
between high-performance ModeA (RECON4) or high-dependability ModeB (RECON2-TMR) using
a threshold-based policy for mode selection. Both RACCEL configurations have similar resource
utilization but different tradeoffs in performance and dependability. During periods with SEE
rates below the threshold, ModeA is deployed to maximize performance and energy efficiency at
the expense of dependability, and, during periods with SEE rates above the threshold, ModeB is de-
ployed to improve dependability at the expense of performance and energy efficiency. Depending
upon the orbit and mission availability constraint, this adaptive approach can achieve substan-
tial performability gains compared to a static, high-dependability approach. In Section 4, we
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Fig. 3. Adaptive approach for SEE mitigation selects between high-performance ModeA (RECON4) and high-

dependability ModeB (RECON2-TMR) in response to the current SEE rate of the orbital environment.

demonstrate the effectiveness of this adaptive approach and generate a design tradespace with
static and adaptive strategies in terms of performability and availability. Using this tradespace,
users can select the strategy that achieves the most performability subject to an availability
constraint, and vice versa.

3.2 Architectures for Space Computers

The RECON framework can be deployed on space computers featuring a hybrid and heteroge-
neous SoC and system architecture. Space computers, such as the SpaceCube Mini-Z (Z7020) [7],
CSP (Z7020) [54], and SSP (Z7030/Z7035/Z7045) [40] that feature hybrid SoCs can accommodate
the RSGDMA and RACCEL modules in the FPGA subsystem and run the CM software in the CPU
subsystem, as illustrated in Figure 4(a). The CSP and SpaceCube Mini-Z computers, which do
not contain FPGA-interfaced DDR memory, must reserve a partition of the CPU-interfaced DDR
memory for use by the RSGDMA.

RECON can also be deployed on space computers featuring heterogeneous, disaggregated CPU-
FPGA systems, which often combine a large FPGA coprocessor to a relatively low-profile CPU or
SoC interfaced by a high-speed interconnect. One example is the space single-board computer ar-
chitecture exemplified by the SCv3VPX design (Zynq-MPSoC and KU-FPGA) [15]. Another exam-
ple is a space computer system with both the SoC and FPGA coprocessor as separate cards. Such a
system is demonstrated by the SCv3M design (KU-FPGA) [7] connected to a SoC (e.g., SSP). In both
examples, illustrated in Figure 4(b), the RSGDMA and RACCEL modules reside in the FPGA copro-
cessor and run the CM software in the SoC, and the model can be communicated to the RSGDMA
via AXI Chip2Chip using the Aurora 64B/66B protocol with MGTs as the high-speed interconnect.

In both architectures illustrated in Figure 4, the FPGA containing RECON can serve as a copro-
cessor, where the adjacent CPU or SoC can offload massive workloads for acceleration with mini-
mal communication overhead. Alternatively, the FPGA can serve as a front-end data processor for
sensors interfaced directly with the FPGA. In this configuration, the FPGA can directly process
raw sensor data and provide compressed data to the adjacent CPU or SoC for downlink or storage.

The RECON framework is supported by software, including Linux device driver and userspace
library, that enables userspace applications to have shared access to the RSGDMA for inference
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Fig. 4. RECON architecture for (a) hybrid SoCs and (b) heterogeneous SoC/FPGA systems.

acceleration. The RECON software is parameterizable to support arbitrary input image volumes
(spatial resolution and dimension) and shapes or variations of a DL model to accommodate various
space applications and imaging sensors (e.g., monochromatic, multispectral, or hyperspectral).
When initialized, the software references two resources: the model definition, which specifies
the shape of the model and the instructions to process the model, and the corresponding model
parameters, which are the trained weights, biases, and quantization parameters that are loaded
into memory prior to execution. Both resources are obtained after model development (training,
testing, and analysis) and are uploaded to the onboard computer for deployment. For model
development, a model can be constructed using a dataset generated from downlinked sensor data
or approximated by using or manipulating existing datasets.

3.3 Accelerator Optimizations

Several optimization techniques from the literature have been incorporated into RECON to
maximize the inference performance, energy efficiency, and area efficiency for onboard process-
ing. This discussion includes model-compression, algorithmic, and architectural optimizations
implemented into RECON.
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3.3.1 Model-Compression Optimizations. RECON uses the INT8 quantization scheme in Refer-
ence [19] for model compression. This quantization scheme is applied per-layer and per-channel
for FMs and weights, respectively, with asymmetric quantization used for both FMs and weights.
To improve the precision of the quantization mapping, a winsorizing approach is used to set
all outliers and extreme values of the continuous input set to the edges of the user-specified
percentile of the discrete set. Furthermore, ReLU layers, which have an unbounded range, [0,∞),
are replaced with ReLU6 layers to constrain values to [0, 6]. With INT8 quantization, RECON uses
resource-efficient, low-precision hardware to improve area and energy efficiency. INT8 quanti-
zation also improves the bandwidth and storage efficiency by 4× compared to single-precision
floating point (FP32). RECON uses INT8 quantization to attain the hardware-efficiency benefits
associated with low-precision hardware at the expense of a generally slight decrease in accuracy
due to precision error.

3.3.2 Algorithmic Optimizations. Using the F (2 × 2, 3 × 3) form of Winograd convolution, a
fast algorithm for convolution, the RACCEL improves DSP efficiency by 2.25× compared to direct
3 × 3 convolution. Because FMs are determined at runtime, the Winograd transform for input
FMs and inverse Winograd transform for output FMs are implemented into RACCEL. However,
because the weights of convolutional layers are predetermined, the Winograd transform can be
either implemented using FPGA resources or be applied to the weights prior to model deployment.
RECON uses the latter approach, which results in no FPGA resources being used for the Winograd
transform for weights at the expense of a 1.78× larger model size.

Additionally, BatchNorm folding is used to embed the parameters of BatchNorm layers into the
parameters of the preceding convolutional layer prior to model deployment. This optimization
eliminates the need for RECON to process BatchNorm layers at runtime.

Finally, the RSGDMA implements the controls to perform loop tiling and access tiles of
partitioned FMs stored in off-chip memory. These FM tiles are cached by the RACCEL using
an OCM-based accumulator buffer of user-specified size. Because burst transactions of the
RSGDMA AXI interface use an incrementing access pattern, the FMs are partitioned by rows
to maximize the efficiency of DDR memory accesses and streaming bandwidth. Furthermore,
because convolutional operations require complete kernel windows, tiles require additional rows
from adjacent tiles to address the data dependency for the edge cases. Using this optimization,
RECON substantially reduces the latency and bandwidth requirements of off-chip memory access
by accumulating cacheable FM tiles in OCM.

3.3.3 Architectural Optimizations. The RACCEL uses a 2D weight-stationary systolic array for
processing convolutional layers to achieve high-frequency operation. Each PE is implemented
using one DSP slice to perform a single multiply-accumulate operation per cycle, and all PEs are
interlinked using cascaded signals, which are dedicated paths between DSP slices in Xilinx FPGAs.
Furthermore, since DSP slices of recent Xilinx FPGAs are rated for high-frequency operation,
RACCEL uses DSP time-multiplexing with a factor of two to halve the number of DSP slices
required by operating the DSPs at two times the frequency of the surrounding logic. In RACCEL,
the weights are multiplexed into the inputs of the DSP, and the output of the DSP is demultiplexed
into the surrounding logic.

Additionally, RECON uses layer fusion to process multiple adjacent layers in a pipeline. All
instructions compute convolutional layers with optional preprocess or postprocess operations.
Both the elementwise ReLU6 and compressive, channelwise max-pooling layers are optional
postprocess operations that follow the convolutional layers. Inversely, the decompressive, chan-
nelwise max-unpooling layers are optional preprocess operations that precede the convolutional
layers. Combined with the BatchNorm folding optimization, RECON requires only 26 instructions
to process all 86 layers of the SegNet model. This dataflow is illustrated in Figure 2.
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Finally, the RSGDMA uses an AXI-based scatter-gather DMA (SGDMA), which contains
multiple AXI descriptors to access multiple memory buffers to support scattering and gather-
ing data-flows. In a scattering operation, the SGDMA rotates between AXI descriptors, each
completing one AXI-burst transaction per rotation, to read input FMs or PIs from multiple
memory buffers to generate an interleaved input stream for processing. Inversely, in a gathering
operation, the SGDMA deinterleaves the output stream and writes the output FMs and PIs to
multiple memory buffers. Because interleaving and deinterleaving are seamlessly performed as
part of the scattering and gathering operations, the FMs and PIs remain deinterleaved in memory
without the need for software interleaving or deinterleaving to reorganize accelerator inputs and
outputs. Finally, pointers to memory buffers containing FMs and PIs are alternated at runtime
for zero-copy to avoid inefficient memory copies. After each instruction, the buffer pointers are
swapped so that the output FM buffer of the preceding instruction becomes the input FM buffer
for the following instruction. During the encoder stages, PIs are generated and stored into output
PI buffers, and, during the decoder stages, these PI buffers become inputs.

4 EVALUATION

This section describes the performance and dependability evaluations for RECON. RECON is
configured to use the optimizations discussed in Section 3.3.3 and is implemented for the Z7020
(PYNQ-Z2 and Zybo Z7-20) and ZU3EG (Ultra96-V2 and UltraZed-EG) that serve as emulators for
hybrid space computers (similar to those described in Sections 2.2 and 3.2). The Z7020 and ZU3EG
devices use the configuration illustrated in Figure 4(a) but use CPU-interfaced DDR memory for
DMA buffers. In our performance evaluation, both platforms are evaluated in terms of accuracy,
resource utilization, performance, and energy efficiency. In our dependability evaluation, we use
CRAM fault injection and neutron irradiation to evaluate the SEE susceptibility of the SegNet
model accelerated on RECON for the Z7020. We also use dependability modeling to evaluate our
adaptive strategy for various orbital case studies. For both platforms, Vivado 2020.1 is used to
synthesize and implement the RECON design with default strategies, and PetaLinux 2020.1 is
used to generate an embedded Linux operating system. FG-TMR is applied using the BL-TMR
tool [21]. The Potsdam dataset of the ISPRS commission II/4 benchmark for 2D semantic labeling
[36] is used for this evaluation. This dataset uses EO imagery in infrared-red-green-blue format
with six classes for segmentation: roads, buildings, low vegetation, trees, automobiles, and clutter.
Three shapes of the SegNet model are trained and evaluated: NetA (86 layers, 7,376,806 weights),
NetB (86 layers, 1,849,814 weights), and NetC (86 layers, 465,262 weights).

4.1 Performance Evaluation

This section quantifies and analyzes the RECON modules in terms of conventional metrics. To-
wards a dependability analysis, we measure the inference accuracy and resource utilization that
affect the vulnerability of RECON to faults. Furthermore, we measure performance and energy ef-
ficiency to quantify the advantages of FPGA-accelerated DL and to define reward states to analyze
the tradeoffs in performance and dependability for RECON.

4.1.1 Inference Accuracy. Because RECON uses INT8 quantization for efficient, low-precision
hardware, the inference accuracy is measured for both FP32 and INT8 versions of the SegNet
model to quantify the loss in inference accuracy. Using Equation (1), the interface accuracy of the
segmented images is measured in terms of the mIoU and F1 metrics, and the results are shown
in Table 1. For this evaluation, an mIoU difference of −1.7% to −0.7% was observed with loss
decreasing as the model size increased. Although the INT8 version deviates in accuracy compared
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Table 1. RECON Inference Accuracy

Precision NetA (7.38M weights) NetB (1.85M weights) NetC (465k weights)

(mIoU) (F1) (mIoU) (F1) (mIoU) (F1)
FP32 71.04 81.58 70.55 81.04 67.63 78.91
INT8 70.17 80.85 69.69 80.35 65.95 77.58
Difference –0.87 –0.73 –0.86 –0.69 –1.68 –1.33

Table 2. RECON Resource Utilization

Device LUTs FFs BRAM DSPs CRAM Bits
Module (36b × 1k)
Z7020 53,200 106,400 140 220 25,636,224
RACCEL1 2,547 (4.79%) 3,532 (3.32%) 7 (5.00%) 10 (4.55%) 770,172 (3.00%)
RACCEL2 4,171 (7.84%) 7,057 (6.63%) 21 (15.00%) 36 (16.36%) 1,460,587 (5.70%)
RACCEL4 8,102 (15.23%) 16,890 (15.87%) 41 (29.29%) 136 (61.82%) 3,294,802 (12.85%)
RACCEL1-TMR 10,604 (19.93%) 10,939 (10.28%) 21 (15.00%) 30 (13.64%) 2,614,220 (10.20%)
RACCEL2-TMR 16,844 (31.66%) 21,571 (20.27%) 63 (45.00%) 108 (49.09%) 4,910,929 (19.16%)
RSGDMA4 4,577 (8.60%) 4,871 (4.58%) 21 (15.00%) 0 (0.00%) 1,166,741 (4.55%)
RSGDMA4-TMR 22,919 (43.08%) 14,593 (13.72%) 63 (45.00%) 0 (0.00%) 4,728,197 (18.44%)
ZU3EG 70,560 141,120 216 360 30,834,336
RACCEL1 2,808 (3.98%) 4,040 (2.86%) 7 (3.24%) 10 (2.78%) 1,256,868 (4.08%)
RACCEL2 4,435 (6.29%) 7,814 (5.54%) 21 (9.72%) 36 (10.00%) 2,393,780 (7.76%)
RACCEL4 8,329 (11.80%) 17,855 (16.65%) 41 (18.98%) 136 (37.78%) 5,309,913 (17.22%)
RACCEL1-TMR 11,321 (16.04%) 11,674 (8.27%) 21 (9.72%) 30 (8.33%) 4,344,837 (14.10%)
RACCEL2-TMR 17,562 (24.89%) 23,100 (16.37%) 63 (29.17%) 108 (30.00%) 7,302,230 (23.68%)
RSGDMA4 6,025 (8.54%) 6,523 (4.62%) 41 (18.98%) 0 (0.00%) 2,926,567 (9.49%)
RSGDMA4-TMR 26,379 (37.39%) 19,452 (13.78%) 123 (56.94%) 0 (0.00%) 10,630,561 (34.48%)

to FP32 due to low-precision hardware, the loss in accuracy is a small and acceptable tradeoff for
the hardware efficiency benefits of INT8.

4.1.2 Resource Utilization. The resource utilization of several implemented RECON modules
(RACCEL and RSGDMA) are shown separately in Table 2. In RACCELN , the number of DSP
slices increase quadratically as N increases. RACCELN requires 16N 2 and 4N DSP slices for the
convolutional and requantization operations, respectively, for a total of 16N 2 + 4N . Furthermore,
the number of DSPs is halved when RACCEL is configured for DSP time-multiplexing, for a
final total of 1

2 (16N 2 + 4N ) DSPs. Other resource types, such as LUTs, FFs, BRAM, and CRAM,
increase linearly as N increases, because these resources are predominately utilized for the N
channelwise datapaths. Furthermore, the application of FG-TMR in RACCELN incurs a 3–5×
increase in resource utilization compared to RACCELN -TMR. For this evaluation, the amount of
OCM used for tiling and accumulation is set to 8,192 pixels per channel.

4.1.3 Performance and Energy-Efficiency. Performance and energy efficiency, quantified in
frames-per-second (FPS) and FPS-per-watt (FPS/W), respectively, are measured for several
configurations of SegNet executed as software on the SoC CPU or accelerated on RECON. RECON
operates at the maximum frequencies (noted as logic/DSP) constrained by the dividers of the APU
clock source. In the software versions, the FPGA is kept blank (unprogrammed) to assume a CPU-
only system. The software version uses INT8 quantization, Winograd convolution, BatchNorm
folding, and compilation with optimizations (-O3) and OpenMP for shared-memory multipro-
cessing. Table 3 shows the performance and energy-efficiency measurements. In all situations,
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Table 3. RECON Performance and Energy Efficiency

Platform Configuration Performance (FPS) Power Performance/Watt (FPS/W)

Version NetA NetB NetC (W) NetA NetB NetC

PYNQ-Z2 (Z7020)
Software 650 MHz; 1 Thread 0.005 0.018 0.065 0.520 0.009 0.035 0.126
Software 650 MHz; 2 Threads 0.010 0.036 0.127 0.730 0.013 0.050 0.174
RECON1 250.00/500.00 MHz 0.211 0.825 3.171 1.285 0.164 0.642 2.468
RECON1-TMR 200.00/400.00 MHz 0.169 0.660 2.537 2.480 0.068 0.266 1.023
RECON2 250.00/500.00 MHz 0.653 2.528 9.436 1.800 0.363 1.405 5.242
RECON2-TMR 142.85/285.70 MHz 0.412 1.606 6.117 3.155 0.131 0.509 1.939
RECON4 200.00/400.00 MHz 1.117 4.256 15.472 2.065 0.541 2.061 7.492
Ultra96-V2 (ZU3EG)
Software 1.2 GHz; 1 Thread 0.011 0.041 0.147 0.310 0.016 0.059 0.211
Software 1.2 GHz; 2 Threads 0.023 0.086 0.302 0.620 0.037 0.138 0.487
Software 1.2 GHz; 4 Threads 0.042 0.155 0.546 1.060 0.040 0.146 0.515
RECON1 375.00/750.00 MHz 0.316 1.240 4.773 1.205 0.262 1.029 3.961
RECON1-TMR 375.00/750.00 MHz 0.316 1.240 4.773 4.100 0.077 0.302 1.164
RECON2 375.00/750.00 MHz 1.033 4.002 15.022 1.730 0.597 2.313 8.684
RECON2-TMR 300.00/600.00 MHz 0.938 3.655 13.877 4.935 0.190 0.741 2.812
RECON4 375.00/750.00 MHz 2.101 7.970 28.837 2.440 0.861 3.267 11.818

RECON outperforms the software versions by up to three orders of magnitude depending upon
the model shape and system configuration. In RACCELN , performance increases quadratically
as N increases, because the number of PEs is scaled quadratically. To maintain this quadratic
relationship, the memory bandwidth must increase linearly as N (number of channels) increases;
otherwise, once saturated, the performance of RACCELN begins to increase linearly. The Z7020
and ZU3EG have 64-bit AXI3 and 128-bit AXI4 interconnects, respectively, so the memory band-
width of each device saturates when N > 2 and N > 4, respectively. Furthermore, as the model
size decreases quartically (NetA → NetB → NetC), the performance also increases quartically.

Using a power meter, the board power was measured when idle (i.e., CPU is not busy, and FPGA
is blank) and active (i.e., continuously executing convolutional layers) to determine the dynamic
power consumption. The idle power was measured at 1.97 W and 5.20 W for the PYNQ-Z2 and
Ultra96-V2 platforms, respectively. Although RECON often has higher peak power consumption,
the substantially increased performance leads to significant improvements in energy efficiency,
up to two orders of magnitude compared to the software versions. To accommodate space
applications with stricter power requirements, the FPGA operating frequency and RECON
configuration can be reduced at the cost of decreased performance.

4.2 Dependability Evaluation

This section describes the dependability evaluation of RECON. Both CRAM fault injection and
neutron irradiation are performed to observe the architectural response of the SegNet model
accelerated on RECON to both injected and neutron-induced faults. These experiments quantify
and analyze the AVF, MWTF, and neutron cross-section of multiple configurations of RECON
modules to both SDC and hangs.

To evaluate our selective and adaptive approaches, we perform CRAM fault injection and use
the methodology for evaluating adaptive systems in near-Earth radiation environments, described
in Section 2.8, for three orbital case studies, including the Jason-3 in LEO, NOAA-20 in sun-
synchronous orbit, and Molniya 1-88 in highly elliptical orbit. The selected orbital case studies
represent the dynamic radiation environment of three distinct orbital regimes to demonstrate the
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versatility of RECON. Spacecraft in geostationary orbit (GEO) experience minimal fluctuation
in SEE rates due to their low susceptibility to trapped protons that are present at very low energy
levels at GEO altitude. Consequently, with minimal predictable variation in the GEO radiation
environment, our adaptive approach that is based on the dynamics of the near-Earth radiation
environment is not applicable for GEO and is therefore not included in our analysis.

Our evaluation includes the following steps. First, we analyze the fault-injection results and the
impact of CRAM faults on the inference accuracy to determine the AVF in terms of SDCT, SDCC,
and hang events. Next, we use a combination of state-of-the-art models to predict the time-varying
SEE rates of the Z7020 for each orbital case study. Next, using the resource utilization and AVF re-
sults, we scale the time-varying SEE rates to approximate the time-varying fault rates of multiple
RECON modules on the Z7020 for each orbital case study. Finally, using the time-varying fault rates
of RECON modules, repair rates for the recovery mechanisms in RECON, and reward rates (perfor-
mance and energy efficiency), we create a phased-mission system model to calculate the instanta-
neous and average availability, failure rate, and performability. By analyzing this phased-mission
system model for several static and adaptive strategies at varied threshold parameters, a design
tradespace in terms of availability and performability (FPS and FPS/W) is generated with a Pareto-
optimal set for selecting the best strategy subject to some user-defined availability constraint.

4.2.1 CRAM Fault-Injection Experiment. CRAM fault injection was performed to observe
the architectural response of the SegNet model accelerated on RECON to injected faults. In our
fault-injection experiment, we evaluate several configurations of the static RSGDMA and reconfig-
urable RACCEL modules. The RSGDMA modules include RSGDMA4 and RSGDMA4-TMR, and the
RACCEL modules include RACCEL1, RACCEL2, RACCEL4, RACCEL1-TMR, and RACCEL2-TMR. FG-
TMR is applied using the BL-TMR tool [21]. All RECON modules have tradeoffs in performance,
energy efficiency, and dependability.

CRAM fault injection is performed to quantify the susceptibility of each RECON module to
injected CRAM faults in terms of the AVF and MWTF. Two experiments are performed to analyze
RECON at the model-level and layer-level. In the model-level experiment, CRAM faults are present
during the execution of the entire model, and in the layer-level experiment, CRAM faults are
present only during the execution of one selected layer. In the model-level experiment, each
iteration begins with the system in a clean state (i.e., FPGA is fully reprogrammed) to remove
any latent faults from preceding iterations, and the input image and CRAM bit location (frame
address, word, and bit) are both randomly selected using the Linux system call getrandom(). The
input image is varied to eliminate any potential bias with the input to the model. Next, the fault
is injected into the randomly selected CRAM bit, and the model is fully executed to completion.
Finally, the execution event is recorded. In the layer-level experiment, the input image, CRAM bit
location, and layer are all randomly selected. Next, the model is fully executed with the execution
halted immediately prior to the randomly selected layer to inject the fault and after to repair the
fault, thus isolated the fault to the randomly selected layer. Finally, the execution event is recorded.

The execution will either complete correctly, complete with SDC, or hang. SDC is detected if the
mIoU, F1, or checksum of the output does not match that of the golden output for the randomly
selected image. The mIoU and F1 are also used to analyze the impact of CRAM faults on the infer-
ence accuracy and to classify events as SDCT and SDCC. A hang is detected when RECON fails to
fully execute the model within the expected timeout interval (2 s). Finally, all events (correct, SDC,
and hang) are recorded and the system is reset into a clean state for the subsequent iteration.

Fault injection is performed using the PCAP. A frame-readback command is issued to the PCAP
to retrieve the contents of the frame containing the selected CRAM bit into a software buffer. The
selected CRAM bit is inverted in the buffered frame, and a frame-writeback command is issued
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Table 4. RECON Model-level CRAM Fault Injection Test Results on PYNQ-Z2 (Z7020)

Module Injections AVF (%) Critical CRAM Bits ±95% CI Error

SDCT SDCC Hangs SDCT SDCC Hangs
RACCEL1 2,459,068 16.14 12.55 6.13 124,292.3 ± 386.7 96,622.3 ± 341.0 47,237.9 ± 238.4

RACCEL1-TMR 6,936,806 0.09 0.11 0.06 2,335.9 ± 58.2 2,977.5 ± 65.7 1,490.5 ± 46.5

Improvement 53.2× 32.5× 31.7×
RACCEL2 4,851,293 23.38 11.86 3.43 341,524.5 ± 628.5 173,267.7 ± 447.7 50,095.6 ± 240.7

RACCEL2-TMR 9,876,758 0.14 0.13 0.05 6,889.1 ± 114.7 6,144.5 ± 108.3 2,259.9 ± 65.7

Improvement 49.6× 28.2× 22.2×
RACCEL4 8,819,211 33.02 10.33 1.85 1,087,874.6 ± 1,249.5 340,387.8 ± 698.9 61,107.2 ± 296.1

RSGDMA4 2,773,146 13.75 6.73 10.03 160,463.3 ± 509.3 78,475.0 ± 356.1 117,014.6 ± 434.9

RSGDMA4-TMR 4,573,435 0.17 0.19 0.04 7,960.9 ± 177.8 9,216.3 ± 191.3 2,101.8 ± 91.4

Improvement 20.2× 8.5× 55.7×

to the PCAP to write the faulty, buffered frame back to CRAM to complete the fault injection. To
minimize uncertainty in the measurements, a significant number of fault injections, which will
vary between designs, are performed to minimize the 95% CI error. To accelerate this process,
the Xilinx design tools are used to generate a list of essential CRAM bits, which are CRAM bits
actively used by the design, to target exclusively [25]. Furthermore, several PYNQ-Z2 boards are
deployed to parallelize the fault-injection campaign.

Table 4 shows the results of the model-level fault-injection experiment including (1) the num-
ber of SDCT, SDCC, and hang events, (2) the measured AVF for SDCC and hang events, and (3) the
approximated number of critical CRAM bits (AVF × number of essential bits) with 95% CI error vul-
nerable to SDCC and hang events of each tested module. As shown in Table 4, the static RSGDMA4

module, which performs most of the control-flow operations in RECON, has the most critical bits
vulnerable to hangs and is the biggest contributor to system downtime. Because a hang of the RS-
GDMA requires a slow, disruptive process to repair the module, SEE mitigation must be selectively
applied to the RSGDMA module to minimize the critical area vulnerable to hangs and the associ-
ated downtime. The RSGDMA4-TMR module, which is protected by FG-TMR, substantially reduces
the critical area vulnerable to hangs by 56× at the expense of a 3–5× increase in area (Table 2) and
10% decrease in energy efficiency. Similarly, the application of FG-TMR substantially reduces the
critical area of both RACCEL1-TMR and RACCEL2-TMR compared with their unmitigated counter-
parts in terms of SDC and hangs, also at the expense of increased area and energy overhead.

Figure 5(a) illustrates a histogram that shows the impact of model-level CRAM faults on the
inference accuracy (mIoU) of SDC events. This impact is quantified by the mIoU difference
between each SDC output and its corresponding golden output, and the histogram shows the
distribution of accuracy differences across all RECON modules. SDC events vary broadly. Due to
the inherent fault tolerance of CNNs, the accuracy difference of SDC events is most frequently
near the golden mIoU (i.e., at the peak with an accuracy difference of 0%). In our fault-injection
campaign, most input images had a golden mIoU between 60–80%, which limits the maximum
mIoU loss due to SDC to this range. The worst-case SDC events with near-zero mIoU (i.e.,
at the hump with an accuracy difference of −80% to −60%) are relatively more frequent than
intermediate SDC events between the worst-case and near-zero loss. Few SDC events resulted in a
considerably improved mIoU greater than the golden mIoU (i.e., accuracy difference greater than
0%). A benign SDC event occurs when a faulty execution results in the correct classification of
pixels that would otherwise be mislabeled. For this evaluation, we assume a tolerance threshold
of −5% mIoU, where a loss in accuracy ≥ −5% mIoU is considered acceptable.

Using this tolerance threshold, SDC events can be classified as SDCT or SDCC events to evaluate
RECON in terms of both. The probabilities of SDC events being either SDCT or SDCC for each
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Fig. 5. Impact of CRAM faults on mIoU with (a) distribution of mIoU difference in SDC events and (b)

probability of SDCT and SDCC by RECON module. Multiple, overlaid histograms represented as line plots.

60 bins with widths of 2% mIoU loss per bin.

Fig. 6. Critical CRAM bits vulnerable to SDCC by layer and model for each RACCEL configuration in (top)

logarithmic and (bottom) linear scale.

module can be determined, as shown in Figure 5(b). For both RACCELN and RACCELN -TMR

modules, as N increases, the SDC severity (i.e., probability of SDCC) decreases, possibly due to
the ratio of functional and faulty channels. For example, if RACCEL1 has one faulty channel,
then all input FMs flow through the faulty channel, but if RACCEL2 has one faulty channel,
then only half of all input FMs flow through the faulty channel. For all tested modules, the
mitigated modules (RACCELN -TMR) have greater SDC severity compared to their unmitigated
counterparts (RACCELN ); however, the overall reduced critical area negates this increase. For
example, RACCEL2-TMR has greater severity than RACCEL2 (47% versus 34%) but a 37× reduction
in critical CRAM bits vulnerable to SDCC.

Furthermore, a dependability evaluation of RECON at the layer-level can be useful to analyze
and identify how characteristics of the model and architecture can affect the susceptibility of
RECON to faults. Figure 6 illustrates the number of critical bits vulnerable to SDCC by layer
and model due to layer-level and model-level CRAM faults, respectively. In both mitigated and
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unmitigated RACCELN , across all layers and the full model, the critical area vulnerable to SDCC

increases as N increases. For all RACCEL modules, outer layers had greater critical area compared
to inner layers. This architectural response is possibly due to outer layers operating on FMs with
larger spatial resolution, partitioned into tiles constrained by OCM size, but less dimensionality
compared to the FMs of the inner layers. The last layers of the encoder blocks (layers 2, 4,
7, 10, and 13) and the first layers of the decoder blocks (layers 14, 17, 20, 24, and 25) tend to
have greater critical area compared to other layers within their respective encoder/decoder
blocks. This architectural response is probably due to the adjacent max-pooling postprocess and
max-unpooling preprocess, which are executed as part of the pipeline due to the layer-fusion
optimization. Consequently, because additional circuits are enabled to execute these processes,
CRAM faults in these circuits can also manifest into errors.

4.2.2 Time-varying Fault Rate Prediction. Using the SEE rate prediction methodology of Refer-
ence [43], the time-varying SEE rates are predicted for the Zynq-7000 for each orbital case study
during the first week of 2020. The SEE characterizations of the Zynq-7000 are used, which model
the SEE susceptibility of each resource type of the FPGA subsystem in the Zynq-7000 to protons
and heavy ions. Solar-minimum conditions and 100 mils of spherical, aluminum shielding are
assumed for a worst-case evaluation of each orbit. Next, using Equation (7), the time-varying fault
rates due to SDCT, SDCC, and hangs are determined for each RECON module. For this evaluation,
the resource utilization and AVF are used to scale the SEE rates of all resource types, which are
then summed to produce the time-varying fault rates. Figure 7 illustrates the time-varying fault
rates of multiple RECON modules to SDCC. The average fault rates for unmitigated RECON
modules are orders of magnitude greater than their TMR counterparts (100–1000× for RACCEL
modules and 10–100× for RSGDMA modules). Furthermore, for all three orbital case studies,
the fault rates are often within the lower 1% of the expected range of fault rates (i.e., between
extrema of SEE rates during the first week of 2020) for most of the orbital period, with periodic,
short-term worst-case SEE rates. Although fault-masking techniques such as TMR can improve
dependability substantially, especially during high SEE rates, these methods are excessive for
most of the orbital period, and the resources could instead be used to improve performance and
energy efficiency. By using an environmentally adaptive approach for SEE mitigation, the system
can repurpose resources at runtime to improve performance while providing SEE mitigation that
is sufficient to the immediate environmental condition.

4.2.3 Phased-Mission System Modeling and Analysis. RECON adapts to the environment by
configuring the system into one of several static modes, each with its own performance and
dependability characteristics, in response to the environmental condition. Table 5 lists the static
modes, including the performance, energy efficiency, and MWTF tradeoffs of each one, and
shows the adaptive strategy, a threshold-based approach, used in this evaluation. Static strategies

use only one mode during the evaluation period. Adaptive strategies (denoted as N -Mode) adapt
between N different modes during the evaluation period, and adaptation is invoked whenever
the device SEE rate crosses any user-defined thresholds. Depending upon the thresholds and
fluctuating SEE rate, the adaptive strategies attain some combination of the availability, failure
rate, and performability characteristics of each of the modes in use.

The RECON architecture and adaptive behavior are modeled as a CTMC-based phased-mission
system model. Each mode is independently modeled as a CTMC, and all CTMCs are intercon-
nected with phase transitions to model the transition between modes as RECON adapts. For each
CTMC, all SEEs causing SDC are correctable by CRAM scrubbing (repair rate μScrub), RACCEL
SDC and hangs are recoverable by PR (repair rate μPR), and RSGDMA hangs are recoverable by an
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Fig. 7. Predicted McIlwain L-shell (Lm) and fault rates (λmodule) of multiple RECON modules for Z7020 over

time for the Jason-3, NOAA-20, and Molniya 1-88 orbital case studies.

Table 5. RECON Static Modes and Adaptive Strategy

Static Configuration Performance Energy SDCC MWTF
Mode Efficiency

(FPS) (FPS/W) (FPS) (FPS/W)
Mode0 RSGDMA4-TMR/RACCEL4 15.472 5.545 82.06 14.80
Mode1 RSGDMA4-TMR/RACCEL2 8.006 3.550 41.39 11.66
Mode2 RSGDMA4-TMR/RACCEL1 3.171 1.639 16.48 10.05
Mode3 RSGDMA4-TMR/RACCEL2-TMR 6.117 1.939 4,873.72 2,513.52
Mode4 RSGDMA4-TMR/RACCEL1-TMR 2.537 1.023 2,221.65 2,171.71

Adaptive Strategya

N -Mode1,2,3, ...,N (α1,α2,α3, . . . ,αN−1) (t ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mode1, if λSEE (t ) < α1

Mode2, if λSEE (t ) ∈ [α1,α2)

Mode3, if λSEE (t ) ∈ [α2,α3)
...

ModeN , if λSEE (t ) ≥ αN−1
a Threshold parameters α1, α2, α3, . . . , αN−1 ∈ [λmin, λmax], where α1 ≤ α2 ≤ α3 ≤ · · · ≤ αN−1,
and [λmin, λmax] are the extrema of the expected range of SEE rates.

external watchdog system reset (repair rate μWDT). The time-varying module fault rates (fault-rate
transitions), module repair rates (repair-rate transitions), and performance and energy efficiency
(reward rates) are assigned to the model at runtime. A transient analysis of the phased-mission
system model is performed for each static and adaptive strategy using 60-s intervals over a
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Fig. 8. Instantaneous probability of system operation for six strategies in Jason-3 orbit over time. Strategies D,

E, and F (right column) use selective mitigation and strategies C and F (bottom row) use adaptive mitigation.

one-week period. At each timestep, the fault-rate transitions are updated and, if the device SEE
rate crosses any thresholds, the active CTMC is changed to reflect the new operating mode using
the phase transitions.

Figure 8 illustrates several static and adaptive strategies of RECON with the instantaneous
probability of the system operating in normal, SDCT, SDCC, hung (application is nonoperational),
or unavailable (system is nonoperational) states over time. First, we examine the effect of selective
mitigation in RECON. System availability is predominately affected by the vulnerability of the
RSGDMA to hangs. Since selective mitigation is specific to the RSGDMA, changing RACCEL has
minimal impact on system availability. Strategies D (Mode0), E (Mode3), and F (2-Mode0,3(2.0%))
use selective mitigation (i.e., use RSGDMA4-TMR), and strategies A (ModeA), B (ModeB), and C

(2-ModeA,B(2.0%)) mirror strategies D, E, and F, respectively, but omit selective mitigation (i.e.,
use RSGDMA4). With selective mitigation, strategies D, E, and F have substantially lower system
unavailability due to the reduced vulnerability of the RSGDMA to hangs (represented by less
probability area of unavailability in Figure 8).

Next, we compare static versus adaptive strategies. Strategies D and E are static strategies tuned
for performance and dependability, respectively, and strategy F is an adaptive strategy that adapts
between D and E when the immediate SEE rate crosses the 2.0% threshold within the expected
range of SEE rates. As a result, strategy F, which adapts between D and E, attains the static
performability and availability characteristics of D and E when the SEE rate is below or above the
threshold, respectively, with transients during the adaptation events. With adaptive mitigation,
strategy F is beneficial when the mission availability constraint is between the availability of
D and E, because the threshold can be adjusted to select E to sufficiently satisfy that constraint
and to select D for the remainder of the period to maximize performability. However, in strategy

ACM Transactions on Reconfigurable Technology and Systems, Vol. 14, No. 4, Article 22. Pub. date: September 2021.



22:26 S. Sabogal et al.

Fig. 9. RECON design tradespace in terms of performability and availability and with Pareto-optimal curves

for static and adaptive strategies.

C, which adapts between A and B, the advantage of adaptive mitigation is negated by the high
system unavailability due to the omission of selective mitigation. Therefore, the combination of
both selective and adaptive approaches, as demonstrated by strategy F, is essential to minimize
system unavailability due to RSGDMA hangs and to enable system adaptation to repurpose
resources to maximize performability subject to availability constraints.

By analyzing this phased-mission system model for several static and adaptive strategies at
varied threshold parameters, a design tradespace in terms of availability and performability is
generated for each orbital case study. Figure 9 shows the design tradespace with the Pareto-
optimal set, which can be used to identify the optimal design that achieves most of one trade
subject to the constraint of another trade. In this context, for a given availability constraint, a
strategy is optimal if it satisfies that constraint and achieves the most performability, and vice
versa. Table 6 shows the average unavailability, failure rate, and performability of several static
and adaptive strategies subject to select availability constraints (orders of nine) for each orbital
case study. The performability improvement of an adaptive strategy is measured by comparing
that strategy to the best performing static strategy that satisfies the same availability constraint.
For example, in the Jason-3 case study, both Mode3 and 2-Mode0,3(0.9%) satisfy the availability
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Table 6. Unavailability, Failure Rate, and Performability for Orbital Case Studies

Orbit Availability Average Average Average
Strategy Constrainta Unavailability Failure Rate Performability

(%) (days · yr−1) (failures · day−1) (FPS) (FPS/W)
Jason-3
Mode0 ≥99 2.10 × 100 9.66 × 100 15.38 5.51
Mode1 ≥99 6.76 × 10−1 3.30 × 100 7.99 3.54
Mode2 ≥99.9 2.19 × 10−1 1.19 × 100 3.17 1.64
Mode3 ≥99.99 4.45 × 10−3 1.74 × 10−2 6.12 1.94
Mode4 ≥99.99 3.72 × 10−3 1.39 × 10−2 2.54 1.02
2-Mode0,3(25.6%) ≥99.9 3.17 × 10−1 1.44 × 100 12.46 (2.04 × Mode3) 4.38 (2.26 × Mode3)
2-Mode0,3(0.9%) ≥99.99 3.63 × 10−2 1.61 × 10−1 10.68 (1.75 × Mode3) 3.70 (1.91 × Mode3)
2-Mode1,4(80.9%) ≥99.9 3.36 × 10−1 1.63 × 100 7.29 (2.30 × Mode2) 3.22 (1.97 × Mode2)
2-Mode1,4(3.1%) ≥99.99 3.14 × 10−2 1.48 × 10−1 5.46 (2.15 × Mode4) 2.38 (2.32 × Mode4)
NOAA-20
Mode0 ≥99.9 2.51 × 10−1 1.14 × 100 15.46 5.54
Mode1 ≥99.9 8.04 × 10−2 3.90 × 10−1 8.00 3.55
Mode2 ≥99.99 2.62 × 10−2 1.41 × 10−1 3.17 1.64
Mode3 ≥99.999 5.93 × 10−4 2.31 × 10−3 6.12 1.94
Mode4 ≥99.999 4.95 × 10−4 1.85 × 10−3 2.54 1.02
2-Mode0,3(6.3%) ≥99.99 3.10 × 10−2 1.40 × 10−1 12.56 (2.05 × Mode3) 4.42 (2.28 × Mode3)
3-Mode0,3,4(0.5%,1.5%) ≥99.999 3.48 × 10−3 1.60 × 10−2 8.27 (1.35 × Mode3) 3.12 (1.61 × Mode3)
2-Mode1,4(92.6%) ≥99.99 3.13 × 10−2 1.51 × 10−1 6.96 (2.20 × Mode2) 3.07 (1.87 × Mode2)
2-Mode1,4(2.0%) ≥99.999 3.55 × 10−3 1.67 × 10−2 5.61 (2.21 × Mode4) 2.44 (2.39 × Mode4)
Molniya 1-88
Mode0 ≥90 8.09 × 100 4.98 × 101 15.13 5.42
Mode1 ≥99 3.08 × 100 1.69 × 101 7.94 3.52
Mode2 ≥99 1.06 × 100 5.98 × 100 3.16 1.63
Mode3 ≥99.99 1.61 × 10−2 6.28 × 10−2 6.12 1.94
Mode4 ≥99.99 1.34 × 10−2 5.03 × 10−2 2.54 1.02
2-Mode0,3(19.4%) ≥99 3.54 × 100 1.81 × 101 14.92 (1.88 × Mode1) 5.34 (1.52 × Mode1)
2-Mode0,3(2.0%) ≥99.9 3.40 × 10−1 1.55 × 100 14.15 (2.31 × Mode3) 5.03 (2.60 × Mode3)
2-Mode0,3(0.2%) ≥99.99 3.52 × 10−2 1.49 × 10−1 13.63 (2.23 × Mode3) 4.84 (2.49 × Mode3)
2-Mode1,4(3.7%) ≥99.9 2.80 × 10−1 1.36 × 100 7.41 (2.92 × Mode4) 3.28 (3.20 × Mode4)
2-Mode1,4(0.6%) ≥99.99 3.24 × 10−2 1.42 × 10−1 7.05 (2.78 × Mode4) 3.11 (3.04 × Mode4)
a RECON availability includes normal and SDCT operation.

constraint of ≥99.99% (four nines), but 2-Mode0,3(0.9%) has a performability improvement in
performance (1.75×) and energy efficiency (1.91×) over Mode3. As another example with low-area
constraints for the PRR, in the Molniya 1-88 case study, both Mode4 and 2-Mode1,4(3.7%) satisfy
the availability constraint of ≥99.9%, but 2-Mode1,4(3.7%) has a performability improvement in
performance (2.92×) and energy efficiency (3.20×) over Mode4. Depending upon the performance
and dependability tradeoffs between the RECON modules in use, the SEE susceptibility of the
FPGA device to the radiation characteristics of the orbit, and user-defined parameters (e.g., repair
rates, reward rates, and availability constraints), the achievable performability gains can vary. In
our evaluation, the optimal adaptive strategies of RECON for the selected availability constraints
achieved performability improvements of 1.5–3.0× for all orbital case studies.

4.2.4 Wide-spectrum Neutron-Beam Test Experiment. RECON was irradiated under wide-
spectrum neutrons at the Los Alamos Neutron Science Center (LANSCE) using the
4FP30R/ICE-II instrument [35] to characterize the susceptibility of the SegNet model acceler-
ated on RECON to neutron-induced SEEs. In this experiment, the neutron cross-section was
calculated for two design configurations of RECON: RSGDMA2-TMR/RACCEL2 (Mode1) and
RSGDMA2-TMR/RACCEL1-TMR (Mode4). The experimental setup is illustrated in Figure 10. Four
Zybo Z7-20 (Z7020) and two UltraZed-EG (ZU3EG) DUTs were placed in the beam to parallelize
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Fig. 10. Experimental setup at LANSCE.

the fluence each design was exposed to. DUT management software hosted on a separate
monitoring laptop was used to automate the logging, monitoring, and power cycling of the DUTs.
At boot, DUTs pulled their bootable image via Ethernet. At runtime, DUTs reported execution
events via serial UART and transmitted SDC samples to the host via Ethernet. Using a networked
power switch, a DUT was power cycled when it became unresponsive (i.e., the DUT failed to signal
a heartbeat prior to timeout), reported consecutive SDC or hangs (counted as one), or detected
that the CRAM scrubber had failed. For the Zybo Z7-20 DUTs, the DDR memory was configured
with ECC enabled and the unified L2 caches were disabled to prevent the high neutron-flux from
overwhelming the DUTs and to minimize error modes associated with the CPU and DDR memory.
Because the RSGDMA uses noncoherent AXI that bypass the caches altogether, the performance
characteristics are equivalent to those in Section 4.1. For the UltraZed-EG DUTs, the DDR memory
was configured with ECC disabled (not supported) and the caches remained enabled, because the
Zynq-MPSoC APU caches have high resilience to SEUs. Since the wide-spectrum neutron beam
induces an uncontrolled fault rate, the CRAM scrubber was enabled to prevent the accumulation
of CRAM faults. However, the neutron beam can expose the DUTs to fault modes that cannot be
directly compared or reproduced with our CRAM fault-injection procedure (e.g., multi-bit upsets,
CPU or memory faults, or overwhelmed scrubber).

In our radiation-beam test procedure, the DUTs continuously executed the SegNet model us-
ing RECON. Checksums were used to validate the correctness of the execution, and correct, SDC,
and hang events were recorded with timestamps. The 4FP30R/ICE-II instrument contains a U238

dosimeter that recorded the integrated neutron flux (above 10 MeV) with timestamps. The neutron
fluence (above 10 MeV) was calculated by integrating the neutron flux over the time interval that
the DUTs were active. The designs were alternated between DUTs and the recorded fluence was de-
rated to account for the distance between the DUT and beam source (r 2/(r+d )2 where r is the distance
between the dosimeter and beam source and d is the distance between the DUT and dosimeter).

The experimental results are shown in Table 7. For both sets of DUTs, the 5× (Zynq-7000)
and 2× (Zynq-MPSoC) improvement in the neutron cross-section reaffirms the dependability
advantage of RACCEL1-TMR over RACCEL2 with selective mitigation applied to the RSGDMA;
however, with increased overhead in area, performance, and energy efficiency. The dissimilarity
in the cross-section magnitudes between both sets of DUTs (Zynq-7000 and Zynq-MPSoC) can
be attributed to generational differences in both the device architecture and process technology.

5 CONCLUSION

Dependable, high-performance onboard processing is essential for enabling DL applications to en-
hance spacecraft autonomy, data analysis, and intelligent applications for both science and defense

ACM Transactions on Reconfigurable Technology and Systems, Vol. 14, No. 4, Article 22. Pub. date: September 2021.



Resilient Semantic Segmentation for Space Apps 22:29

Table 7. RECON Wide-spectrum Neutron-beam Test Results

Platform Effective Total Observable Events Cross-Sectiona

Design Fluence Runs 95% Confidence Interval

(n · cm–2) SDCT SDCC Hangs SDCC (cm2)
Zybo Z7-20 (Z7020)
RSGDMA2-TMR/RACCEL2 3.80 × 1011 158,216 491 129 18 3.69 × 10–10 [3.06 × 10–10, 4.33 × 10–10]

RSGDMA2-TMR/RACCEL1-TMR 4.17 × 1011 100,702 48 29 7 7.56 × 10–11 [4.82 × 10–11, 1.05 × 10–10]

Improvement 4.88 ×
UltraZed-EG (ZU3EG)
RSGDMA2-TMR/RACCEL2 1.51 × 1011 208,128 16 2 3 1.58 × 10–11 [7.90 × 10–13, 2.19 × 10–11]

RSGDMA2-TMR/RACCEL1-TMR 1.50 × 1011 135,224 0 0 1 8.01 × 10–12 [0.00 × 10–00, 1.57 × 10–11]

Improvement 1.97 ×
a Assuming one event when no events were detected [37].

missions. Commercial hybrid and heterogeneous SoCs and systems featuring SRAM-based FPGAs
provide several architectural advantages compared to rad-hard processors that can enable the de-
ployment of DL applications for spacecraft systems. However, these commercial devices are highly
susceptible to radiation-induced SEEs that can degrade the dependability of the DL application.

In this article, we proposed RECON, a runtime-reconfigurable framework for dependable, high-
performance semantic segmentation for space applications on FPGAs and hybrid SoCs. RECON
leverages several model-compression, algorithmic, and architectural optimization techniques to
maximize the inference performance, energy efficiency, and area efficiency for onboard processing.
To enhance the dependability of DL applications for the space environment, we proposed selective
and adaptive approaches to enable efficient SEE mitigation in RECON. In our selective approach,
the control-flow parts of RECON are protected by TMR to minimize SEE-induced hangs, which are
slow and disruptive to repair. We demonstrated a 56× reduction in the critical area at the expense
of 3-5× increase in area (for control-flow parts only) and 10% decrease in energy efficiency. In our
adaptive approach, we leverage partial reconfiguration to alternate between configurations of the
dataflow parts of RECON to adapt the degree of SEE-induced SDC mitigation in response to the
fluctuating SEE rates of the dynamic near-Earth space radiation environment. Combined, both
approaches enable RECON to maximize performability subject to mission availability constraints.
We performed fault injection and neutron irradiation to observe the susceptibility of the SegNet
semantic-segmentation model on RECON, and we used dependability modeling to evaluate
RECON in various orbital case studies to demonstrate 1.5–3.0× performability improvements in
performance and energy efficiency, respectively, compared to static approaches. Our evaluation,
which was conducted on emulators of flight hardware that is currently deployed in space missions,
demonstrates that compute-intensive DL applications such as semantic segmentation can be
dependably executed onboard for next-generation missions.
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