
Optimization Techniques for a High Level Synthesis
Implementation of the Sobel Filter

Josh Monson, Mike Wirthlin, Brad L Hutchings
NSF Center for High-Performance Reconfigurable Computing (CHREC)

Department of Electrical and Computer Engineering, Brigham Young University, Provo, Utah, USA
jsmonson@gmail.com, wirthlin@ee.byu.edu, hutch@ee.byu.edu

Abstract—For many application-specific computations, FPGA-
based computing systems have been shown to provide superior
performance per Watt than many general-purpose architectures.
However, the benefits of FPGA-based computing are difficult to
exploit since FPGAs are challenging to program and require
advanced hardware design skills. Recent developments in High
Level Synthesis (HLS) provide the ability to create FPGA
compute accelerators entirely in ’C’ code. Because the circuits are
described in ’C’, it may be possible for software programmers
to “program” FPGA accelerator circuits. This paper explores
the challenges faced by software programmers when using HLS
to implement computing kernels within FPGAs and identifies the
specific new knowledge and skills required by these programmers
to succeed at the task. A high-performance Sobel edge-detection
acceleration core is developed and used to demonstrate the use
of the Vivado HLS tool. A variety of simple directives and code
restructuring steps are applied to demonstrate a variety of Sobel
edge-detection accelerators that vary in performance from 10.9
frames per second (fps) to 388 fps. The concepts outlined in this
paper suggest that with proper training, software programmers
are able to create a wide range of FPGA acceleration circuits.

Keywords—FPGA, accelerator, programmer, C-RTL, high-level
synthesis

I. INTRODUCTION

FPGAs have been shown to provide high performance com-
puting at relatively low power when compared to many other
general-purpose programming architectures. FPGAs, however,
are much more difficult to “program” than traditional general-
purpose architectures. A number of high-level design tools
have been introduced that allow the programmer to create
FPGA computing engines with less-specialized knowledge.
The Vivado HLS tool, for example, allows a person to create
an FPGA design using the “C” programming language. The
availability of “C” tools for hardware suggests that software
programmers who are not familiar with designing FPGA
circuits may be able to create FPGA computing circuits. This
paper seeks to investigate if FPGA-based computing systems
are still inaccessible to programmers in light of the latest
developments in CAD.

The experimental process described in this paper begins
with a conventional software implementation of the Sobel
edge-detection algorithm obtained from a standard image-
processing library[1]. The original code is then iteratively mod-
ified and refined until it approaches the theoretical performance
of the system. Sobel edge-detection was chosen because it
fits the scope of this paper and also because, excepting the
constants used in the convolution kernel, it is identical to one of

the modules used in a more complex image-processing system
currently under development in our lab.

This paper focuses on the development of an FPGA-based
accelerator in a constrained system environment by a software
programmer. In particular, the Sobel application was designed
to run on the ZYNQ-based ZED board but could easily target
any FPGA system with a high-performance DDR interface. It
assumes the existence of an FPGA board containing a fixed set
of I/O interfaces that have been pre-determined by the man-
ufacture or otherwise provided by a hardware designer. The
programmer is provided with a standard interface for reading
and writing data that can be accessed from their program.
Maximum data bandwidth through the I/O interface is fixed
and is documented for the programmers so that they can predict
theoretical maximum performance and compare it with the
performance of their accelerator as they refine and optimize
their code. The development environment is the Eclipse-based
Vivado High Level Synthesis (HLS) environment [2].

This paper purposely ignores two important questions: 1)
will the generated FPGA design meet the clock frequency
estimated by the synthesis tool?, and 2) will the generated
design “fit” in the desired device? Although these questions
will need to be considered, they are of secondary importance
to this effort because this effort focuses on the programmer’s
ability to develop and functionally debug C code that describes
an FPGA accelerator.

This effort is different from previously-reported work be-
cause it illustrates the code optimization process from the
perspective of a programmer. The goal is to identify specific
skills and knowledge that a software programmer must learn
and apply in order to effectively use HLS to develop FPGA-
based compute accelerators.

II. PREVIOUS WORK

Berkley Design Technology, Inc (BDTi) published a re-
port in 2010 [3] on the usability and quality of results of
the HLS tool AutoPilot (purchased by Xilinx and renamed
Vivado HLS). They found that creating a hardware accelerator
with AutoPilot required about the same amount of effort as
programming a DSP. They also concluded that “a typical DSP
software engineer with an awareness of hardware architecture
fundamentals (e.g., pipelining, latency) can learn to effectively
use AutoPilot.”

Other papers, however, have acknowledged issues that still
make HLS challenging for programmers. Cong et. al. [4] and
Neuendorffer and Vissers [5] explain that many HLS solutions

lack efficient memory hierarchy support and leave software
programmers exposed to more low-level details than most
are comfortable with. Cong et. al. also mentions in-system
debugging and performance evaluation.

Handel-C was an early attempt at making FPGA pro-
gramming accessible to software programmers [6]. Others
have attempted to improve accessibility by building on-top of
existing HLS tools. Such tools typically use specifications in
dataflow programming languages [7], untimed C [8] or CUDA
[9] and generate HLS amenable code and automatically apply
tool-specific directives.

Edit Code

Compile

Debug

Run High-Level
Synthesis

Does the Core
Meet Specs?

Apply Directives

Redesign

Run RTL Co-
Simulation

Yes.

No.

Done.

Fig. 1. Shows the general Flow of the High-Level Synthesis Process.

III. VIVADO HIGH LEVEL SYNTHESIS

The basic flow for HLS synthesis is shown in Figure 1.
Many of the steps are similar to the edit-compile-debug loop
familiar to programmers. Within the Vivado HLS environment,
programmers can execute the compiled version of their code
to determine if it is correct. Once the C code appears to be
functionally correct, the programmer can invoke the synthe-
sizer and view the synthesizer log-files to determine if the
generated FPGA design achieves the desired performance.

There are two ways to influence how Vivado HLS translates
C code into an FPGA design: directives and code structure.
Directives are Vivado HLS commands that constrain how the
tool synthesizes the C code into an FPGA design. Directives
can affect how resources are used and allocated. The structure
of the C code also heavily influences the organization of the
FPGA accelerator and programmers typically must signifi-
cantly restructure their code to meet performance goals.

We have identified four important concepts that a software
programmer should understand in order to create effective
circuits within VivaldoHLS. These concepts are include: (1)
the VivadoHLS synthesizable subset of C, (2) the function
and usage of FPGA resources, particularly memories, (3)
clocking, scheduling, binding and concurrency, and (4) the
HLS synthesis directives. Each of these will be described in
more detail below.

a) Synthesizable Subset: Vivado HLS comes with a
number of restrictions to facilitate hardware synthesis. These
restrictions include: no system calls are allowed, memory
allocation must be static, no support for recursion, and no

pointers or references to member functions in user-defined
classes.

b) FPGA Resource Guidelines: The following guide-
lines will help the programmer to make the best of use of
FPGA resources. Operations requiring fewer bits will run faster
and require fewer resources than standard C types. The use
local memories will increase data bandwidth and facilitate data
reuse and greater internal concurrency.

c) Clocking, Scheduling, Binding and Concurrency:
Computations on an FPGA are sequenced relative to an
external clock. During synthesis, HLS selects operations and
schedules them relative to the external clock according to the
semantics of the ’C’ program. Once operations are scheduled,
they are assigned to a specific resource on the FPGA. To
improve performance, HLS will schedule operations concur-
rently where possible. The user can influence the schedule and
resource usage by structuring loops, functions and conditional
statements, as will be shown in the examples that follow.

d) Directives: It is vitally important that a software
engineer be familiar with the Vivado HLS directives and
know when they should be applied. These directives support
user-defined HLS optimizations such as memory partitioning,
pipelining, loop-unrolling, etc.

IV. SOBEL FILTER OVERVIEW AND PERFORMANCE
MEASURES

The Sobel filter is an edge-detection operator commonly
used in image processing. Listing 1 contains a source-code
listing for Version 1 of the Sobel filter code that was obtained
online [1]. It consists of two 3 X 3 convolution kernels (shown
in Lines 1 and 2) that are applied in both the x and y directions.
The loops starting at Lines 10 and 11 apply the kernels to
every interior pixel in the image. The Sobel algorithm is
highly parallel; within a single image all output pixels can
be computed simultaneously.

A. System Organization and Maximum Performance

In streamed systems, the Sobel filter is typically an I/O
bound computation where the architecture of the surrounding
system puts an upper bound on performance. For this example,
let us assume that the surrounding system streams 1 pixel/cycle
at 150 MHz (Max Clock Rate of High Performance interface
on Zynq [10]). Assuming a 640x480 image, the maximum
throughput of such a system would be 488 frames per second
(FPS).

When compiled to an 2.80 GHz Intel core i7, Listing 1
achieves a throughput of 38.75 FPS. Multi-core and SIMD
implementations of similar filters have been reported achieving
throughput of 100-1000 FPS [11]. Clearly, the code shown in
Listing 1 is not optimized for CPU performance. However,
the code is easy to read, contains very few non-synthesizable
elements and provides a good starting point for HLS.

B. Performance Measures

In this paper, we optimize several versions of the Sobel
filter. Each version is tested both in software and in simula-
tion to ensure it is functionally correct. The estimated clock
frequency and cycle latency of each accelerator is used to

1 i n t dx [3] [3] = {{1 ,0 ,−1} ,{2 ,0 ,−2} ,{1 ,0 ,−1}} ;
2 i n t dy [3] [3] = {{1 ,2 ,1} ,{0 ,0 ,0} ,{−1 ,−2 ,−1}} ;
3
4 void Sobe l (I p l I m a g e ∗ img , I p l I m a g e ∗ d s t) {
5 i n t s t e p = img−>w i d t h S t e p / s i z e o f (u c h a r) ;
6 u c h a r ∗ d a t a = (u c h a r ∗) img−>imageData ;
7 u c h a r ∗ d a t a d s t = (u c h a r ∗) d s t−>imageData ;
8
9 i n t s ;

10 f o r (i n t i =1 ; i < img−>h e i g h t −1; i ++)
11 f o r (i n t j =1 ; j < img−>width −1; j ++) {
12 / / a p p l y k e r n e l i n X ans Y d i r e c t i o n
13 i n t sum x =0; i n t sum y =0;
14 f o r (i n t m=−1; m<=1; m++)
15 f o r (i n t n=−1; n<=1; n ++) {
16 / / g e t t h e (i , j) p i x e l v a l u e
17 s= d a t a [(i +m)∗ s t e p + j +n] ;
18 sum x+= s∗dx [m+ 1] [n + 1] ;
19 sum y+= s∗dy [m+ 1] [n + 1] ;
20 }
21 i n t sum= abs (sum x)+ abs (sum y) ;
22 / / s e t t h e (i , j) p i x e l v a l u e
23 d a t a d s t [i ∗ s t e p + j] = (sum>255)?255: sum ;
24 }
25 }

Listing 1. Original C++ Code

calculate the performance of the accelerator in frames (or
images) per second (FPS). The performance of an accelerator
is also measured in clock cycles per output pixel. In pipelined
versions of the accelerator this is equivalent to the pipeline
initiation interval.

V. OPTIMIZING THE SOBEL FILTER

To create a high performance accelerator with HLS, the
programmer must use appropriate directives and code struc-
ture. Achieving high performance with current HLS tools
usually requires a programmer to manually determine where
to restructure code or apply synthesis directives. This is
done by examining the log files and looking for performance
bottlenecks. While this process is similar to conventional
edit-compile-debug loop of code development, HLS requires
additional knowledge and expertise beyond that required for
conventional software development. This section will discuss
several changes that were made to each version of the code to
achieve greater throughput.

A. Optimization 1

The first optimization resulted in the first synthesizable
hardware. Unsynthesizeable constructs were removed from the
downloaded code and a FIFO-based I/O system was added to
the code.

a) Non-Synthesizeable constructs: The process of
identifying and replacing non-synthesizeable constructs is
largely guided by Vivado HLS. Attempting to compile the
code in Listing 1 will result in Vivado HLS issuing a
non-synthesizable type error and an unsupported
memory access error. Both of these synthesis errors can
be remedied by replacing the IplImage pointers (Listing 1,
Line 4) with fixed-sized arrays. Once the IplImage pointers
have been removed, the references to the height and width
(Listing 1, lines 10,11) need to be replaced with constants.

The decision to replace the IplImage pointers with
fixed size arrays (see Listing 2 lines 1,2) is a re-
sult of a array size not known at compile-time
error. Since we are using two-dimensional arrays we no
longer need to calculate the offsets and can refer directly to
the src and dst arrays (removing Lines 5-7 from Listing 1
and modifying Lines 17, 23). In this example, the loop bounds
were replaced with constants since the height and width of the
image are fixed (Listing 2, Lines 10,13).

b) FIFO-based I/O: Directives were added to the sec-
ond version that specified that the randomly-accessible arrays
were to be replaced with FIFOs. These FIFOs increase perfor-
mance by providing streaming input/output data to and from
the accelerator. The FIFOs were supported by line buffers
that made it possible to provide random access to incoming
streaming data and are implemented by Lines 5-8, 11-12, 15-
16, 19, 28-29 in Listing 2.

The use of the 2-D arrays to represent streaming I/O
can result in differences between the C-Simulation and RTL
co-simulation if the streaming ordering is violated. RTL co-
simulation is the process of comparing the output from the
compiled C program against a cycle-by-cycle simulation of
the RTL code generated by the HLS tool. If the miss-ordering
is subtle, the difference may be difficult to detect without
actually reading the simulation waveform trace (something a
programmer would be uncomfortable with). Vivado HLS issues
a warning when reads or writes may be out of order; however,
this warning is issued very conservatively, as the warning arose
in working versions of our code (as indicated by the results of
the RTL cosimulation).

We encountered this issue during the first step in opti-
mization (Optimization 1). Originally, the size of the source
input array and the size of the destination array were the
same. However, this version of the Sobel filter deals with
the edge of the images by only computing the filter for the
interior pixels of the image. Thus, results were only written
out for the interior pixels of the image. Since the RTL co-
simulation was run immediately after modifying the code, we
were able to identify the problem without resorting to reading
the waveform. However, had we waited to run co-simulation
until the accelerator was further along we may have had to
dig into the simulation waveform to diagnose the problem. To
fix this issue, the size of the destination array was reduced
and the array indices were adjusted (Listing 2, Lines 2, 25).
The Vivado HLS user guide documents several points in which
differences between C-Simulation and RTL co-simulation may
differ [2]; however, extremely subtle differences might be
difficult (for anyone) to detect without reading the simulation
waveform.

Vivado HLS synthesized the code shown in (Listing 2)
using its default synthesis behaviors and resulted in an ac-
celerator with sub-optimal performance (42 cycles/pixel) and
acheived a clock rate of 150 MHz.

B. Optimization 2

In this section, we use directives to override these default
behaviors and improve the performance of the accelerator to 2
cycles/pixel. To further optimize the Sobel filter, one needs
to understand how to use directives to optimize loops. By

1 void Sobe l (u c h a r s r c [ROWS] [COLS] ,
2 u c h a r d s t [ROWS−2][COLS−2]) {
3 #pragma HLS INTERFACE a p f i f o p o r t = s r c
4 #pragma HLS INTERFACE a p f i f o p o r t = d s t
5 u c h a r l i n e b u f f e r [4] [COLS] ;
6 f o r (i n t i =0 ; i <3; i ++){
7 f o r (i n t j =0 ; j<COLS ; j ++){
8 l i n e b u f f e r [i] [j] = s r c [i] [j] ; }}
9 u c h a r s ;

10 f o r (i n t i =1 ; i < ROWS−1; i ++){
11 i f (i<ROWS−2)
12 l i n e b u f f e r [(i +2)%4] [0] = s r c [i + 2] [0] ;
13 f o r (i n t j =1 ; j < COLS−1; j ++) {
14 i n t sum x =0; i n t sum y =0;
15 i f (i<ROWS−2)
16 l i n e b u f f e r [(i +2)%4][j] = s r c [i + 2] [j] ;
17 f o r (i n t m=−1; m<=1; m++)
18 f o r (i n t n=−1; n<=1; n ++) {
19 s= l i n e b u f f e r [((i +m) % 4)] [j +n] ;
20 sum x +=(i n t) s∗dx [m+ 1] [n + 1] ;
21 sum y +=(i n t) s∗dy [m+ 1] [n + 1] ;
22 }
23 i n t sum=ABS(sum x)+ABS(sum y) ;
24 s =(sum>255)?255: sum ;
25 d s t [i −1][j −1]= s ;
26 }
27 i f (i<ROWS−2)
28 l i n e b u f f e r [(i +2)%4][COLS−1]=
29 s r c [i + 2] [COLS−1]; }}

Listing 2. First Synthesizable Code Version

default, Vivado HLS leaves for-loops unoptimized (rolled and
unpipelined). This behavior allows the programmer to decide
whether to optimize the design for area or performance.

Vivado HLS describes the performance of for-loops using
the following terms:

• Loop Latency: The number of total clock cycles
required to execute all iterations of a loop.

• Trip-Count: The total number of iterations executed.
• Iteration Latency: The number of total clock cycles

required to execute a single iteration of a loop. This
can be calculated by using the following formula:
Iteration Latency = Loop Latency / Trip Count.

• Loop Pipelining: Overlapping the execution of loop
iterations.

• Pipeline Initiation Interval (II): The cycle interval at
which a new loop iteration can start.

• Pipelining Depth: The latency of a pipelined loop
iteration.

There is nothing in the above definitions that would require
hardware expertise to understand. In fact, most hardware
engineers would probably have to learn the HLS definition
of these terms. The trip count and loop latency for each
loop is found in the synthesis report. When a loop has been
pipelined the synthesis report will also contain the pipeline II
and pipeline depth.

The pipeline directive should be applied if the programmer
is aware of parallelism between loop iterations. In this case,
the programmer knows that each output pixel can be computed
in parallel with all of the others. Thus, the iterations of Loop
2.1 (which iterates over pixels) should be able to overlap in
execution. Therefore, the pipeline directive should be applied
to Loop 2.1 (Listing 2, Line 13) .

The synthesis report shows that the latency of Loop 2.1
has decreased significantly (28,710 to 3,190 cycles), mostly
due to unrolling the inner-loops for pipelining. However, we
see that Vivado HLS was only able to achieve a pipeline II of
5 and a pipeline depth of 6. This indicates that only one cycle
of successive iterations is overlapping (this can also be seen
using the Vivado HLS schedule viewer). Someone familiar
with hardware image filters would know that HLS should be
able to reach an II of 1 (or 1 cycle/pixel). But how is a software
programmer to know that an II of five is not the best he or
she can do?

The Vivado HLS tool provides guidance on this issue. By
default, when the pipeline directive is applied, Vivado HLS
seeks the minimum II of 1. When it cannot achieve the II
of 1, Vivado HLS provides a synthesis warning. Vivado HLS
issued the following warning regarding its inability to meet an
II of 1:

W@ [SCHED-69] Unable to schedule ’load’ operation
(’s’, sobel ind fast.cpp:50) on array ’line buffer’ due to
limited memory ports.

To understand this warning, one must recognize that arrays
are implemented as local memory resources with limited band-
width – memory resources are limited to two memory accesses
(load or stores) per clock cycle. It is important to note that the
real understanding required here deals with memory resource
limitations and scheduling rather than the number of ports
on a block RAM. The idea of memory “ported-ness” should
not be completely unfamiliar to software engineers as the
concept of dual-ported register files are taught in undergraduate
computer architecture classes. Essentially, the above warning
is saying that Vivado HLS might be able to achieve a lower
II if line_buffer had more ports.

By default, Vivado HLS maps large arrays (i.e., the
line_buffer in the code examples) to a single memory
resource with 2 ports. The warning listed earlier refers to
(Listing 2, Line 19) where 9 pixels are read to compute the
convolution kernel. Because the line buffer only has 2 ports,
the schedule requires 5 cycles to perform 9 reads (and thus an
II of 5).

The ARRAY PARTITION directive allows a single ar-
ray to be mapped to multiple memory resources. Multi-
dimensional arrays can be partitioned along any of their
dimensions. When an array is partitioned across a particular
dimension, each element in that dimension is mapped to its
own memory resource. For example, a 3 x 3 array partitioned
across its rows (1st dimension) results in each row having
its own resource. In other words, elements [0][0], [0][1], and
[0][2] would be mapped into a memory resource with two
ports. The second and third rows would be mapped similarly.

Applying the ARRAY PARTITION directive to the wrong
dimension of a large array can have a detrimental ef-
fect on the quality of accelerator. For example, partition-
ing the line_buffer across its columns results in each
column being mapped to its own memory resource. Since
line_buffer has 640 columns, this partitioning would
require 640 memory resources. A hardware engineer would un-
derstand the hardware requirements of this partitioning (lots of
BRAM and wide multiplexers), while a software engineer may
not. Fortunately, Vivado HLS issues a warning if a partitioned

array will result in a poorly performing circuit; thus, directing
a software programmer to try partitioning across the first
dimension. Partitioning line_buffer across its rows (1st
dimension) results in a much more efficient implementation
and provides more ports for line_buffer.

c) Performance: The result of applying the PIPELINE
directive to Loop 2.1 and partitioning line_buffer array
along its rows resulted in a final II of 2. The reason for the
II of 2 and not 1 will be discussed in the next section. The
synthesis report estimated that the accelerator could operate at
clock frequency of 125.8 MHz (7.95 ns clock period) with a
latency of 615,197 clock cycles. The translates into a frame
rate of 204 FPS.

C. Optimization 3

Another limited memory ports on variable
line_buffer warning, stemming from the PIPELINE
directive that was applied in the previous subsection, is the
starting point for this optimization. Vivado HLS issues this
warning because it did not meet the minimum II of one. The
line buffer cannot be partitioned further so another solution
must be found.

The “limited memory ports” warning leads naturally into
an investigation into the number of available ports versus the
number of attempted line buffer reads per cycle. The warning
again points us to Listing 2, Line 19 where the pixel values
are read out of the line buffer. By reviewing the code, we
find that three lines of the line buffer are actively read (Line
19). The array was partitioned in the previous optimization
so that each line in the line buffer was mapped to its own
memory resource (Line 5). Memory resources provide two
ports each, thus two ports are available per line. However, each
line must be read three times prior to computing a single output
pixel (this would require three ports per line). This makes it
impossible to compute a new output pixel during each clock.
This explains the II of 2 because reading 9 pixels require 2
clock cycles when there are only 6 ports available.

The solution to this problem is to reuse previously-read
pixels. Each new output pixel is dependent upon a neighbor-
hood of nine input pixels. Fortunately, adjacent neighborhoods
overlap and share six of the nine input pixels. If we initially
store the nine neighborhood pixels in a local memory resource,
only three new pixels need to be read for each new output pixel
(one pixel is read per line buffer). This new implementation
is referred to as the windowed implementation and is shown
in Listing 3. The changes between this code and the previous
version include declaring the window array (Line 6), filling the
window at the beginning of each line (Lines 14-19), reading a
new column of pixels (Lines 24-26), and shifting the window
(Lines 37-42).

To follow the reasoning used above, a programmer would
need to understand multi-ported memories, concurrent reads
and be able to perform dependency analysis on small code seg-
ments. Multiported memories and concurrent reads should be
within the grasp of programmers who are reasonably familiar
with microarchitecture, something that is commonly covered
in many computer science programs. Dependency analysis is
also commonly taught in these programs. Similar concepts
also arise when programming DSPs or GPGPUs and these are

1 void Sobe l (u c h a r s r c [ROWS] [COLS] ,
2 u c h a r d s t [ROWS−2][COLS−2]){
3 # pragma HLS INTERFACE a p f i f o p o r t = s r c
4 # pragma HLS INTERFACE a p f i f o p o r t = d s t
5 u c h a r l i n e b u f f e r [4] [COLS] ;
6 u c h a r window [3] [3] ;
7 f o r (i n t i =0 ; i <3; i ++){
8 f o r (i n t j =0 ; j<COLS ; j ++){
9 l i n e b u f f e r [i] [j] = s r c [i] [j] ; }}

10 u c h a r s ;
11 f o r (i n t i =1 ; i < ROWS−1; i ++){
12 i f (i<ROWS−2)
13 l i n e b u f f e r [(i +2)%4] [0] = s r c [i + 2] [0] ;
14 window [0] [0] = l i n e b u f f e r [(i −1)%4][0] ;
15 window [1] [0] = l i n e b u f f e r [(i) % 4] [0] ;
16 window [2] [0] = l i n e b u f f e r [(i + 1) % 4] [0] ;
17 window [0] [1] = l i n e b u f f e r [(i −1)%4][1] ;
18 window [1] [1] = l i n e b u f f e r [(i) % 4] [1] ;
19 window [2] [1] = l i n e b u f f e r [(i + 1) % 4] [1] ;
20 f o r (i n t j =1 ; j < COLS−1; j ++){
21 i n t sum x =0; i n t sum y =0;
22 i f (i<ROWS−2)
23 l i n e b u f f e r [(i +2)%4][j] = s r c [i + 2] [j] ;
24 window [0] [2] = l i n e b u f f e r [(i −1)%4][j + 1] ;
25 window [1] [2] = l i n e b u f f e r [(i)%4][j + 1] ;
26 window [2] [2] = l i n e b u f f e r [(i +1)%4][j + 1] ;
27 f o r (i n t m=−1; m<=1; m++)
28 f o r (i n t n=−1; n<=1; n ++){
29 / / g e t t h e (i , j) p i x e l v a l u e
30 s = window [m+ 1] [n + 1] ;
31 sum x +=(i n t) s∗dx [m+ 1] [n + 1] ;
32 sum y +=(i n t) s∗dy [m+ 1] [n + 1] ; }
33 i n t sum=ABS(sum x)+ABS(sum y) ;
34 s =(sum>255)?255: sum ;
35 / / s e t t h e (i , j) p i x e l v a l u e
36 d s t [i −1][j −1]= s ;
37 window [0] [0] = window [0] [1] ;
38 window [1] [0] = window [1] [1] ;
39 window [2] [0] = window [2] [1] ;
40 window [0] [1] = window [0] [2] ;
41 window [1] [1] = window [1] [2] ;
42 window [2] [1] = window [2] [2] ; }
43 i f (i<ROWS−2)
44 l i n e b u f f e r [(i +2)%4][COLS−1] =
45 s r c [i + 2] [COLS−1]; }}

Listing 3. Windowed Sobel Implementation

usually feasible programming targets for programmers. This
redesign achieves an II of 1 (1 cycle/pixel), a clock rate of
120 MHz, and an throughput of 388 FPS.

D. Performance Summary

At this point, 79.5% (388 FPS out of 488 FPS) of the
maximum theoretical performance has been acheived. Table
I shows the performance of each version of the accelerator.
We see that the cycle latency of OPT 3 is only 1% above the
theoretical minimum cycle latency (maximum performance).
This indicates that remaining performance gap is primarily due
to the achieved clock rate of the accelerator. The programmer
can respond to this issue by asking Vivado HLS to attempt
to achieve a higher clock rate, however, this may or may not
help. If Vivado HLS is unable to achieve a higher clock rate,
an advanced timing analysis may reveal areas of the C source
that could be change to improve timing. However, this kind of
analysis is beyond the skill-set of a software programmer.

TABLE I. SUMMARY OF OPTIMIZATION RESULTS

Version Cycles/Pixel Cycle Latency Frequency FPS
Software N/A N/A N/A 38.75
OPT. 1 42 13,726,264 150 MHz 10.9
OPT. 2 2 615,197 125.7 MHz 204.4
OPT. 3 1 310,711 120.6 MHz 388

Theoretical Max. 1 307,200 150 MHz 488

VI. CONCLUSIONS AND FUTURE WORK

As our Sobel filter example has shown, a new skill-set
beyond traditional C programming is needed to effectively
use HLS tools. The programmer needs to be able to evaluate
an HLS design, identify bottle-necks, and apply directives
and code restructing optimizations. A good understanding of
the following can help software programmers using HLS to
succeed.

• clock-based scheduling, binding, and concurrency ,
• basic HLS terms (pipeline II, latency, etc.)
• usage and limitations of FPGA resources, particularly

memories,
• the effect of HLS synthesis directives

It is likely, however, that a software engineer will encounter
problems that will require the assistance of a hardware engi-
neer. For example, much of the functional verification can be
performed by executing a normally-compiled C program using
a standard debugger. However, verification is where things can
become difficult for the programmer. Unfortunately, there is
no guarantee that the generated FPGA design will behave the
same as the executed C program. For example, in Optimization
1, FIFO buffers were inserted by using pragmas (Listing 2,
Lines 3-4). The source and destination arguments (src and
dst in the listing) are still declared within the C code to
be normal randomly-accessible arrays in the code and they
remain randomly-accessible to body of the code. However, in
the generated FPGA hardware, the arrays will be replaced with
FIFOs that can only produce and consume data in a specific
order. This may lead to a mismatch between the behavior of
the executed C code and the generated FPGA design if the C
code violates read or write order; the C code may appear to
function correctly but the generated hardware will not. Finding
these kinds of mismatches can be difficult, especially for a
programmer.

Vivado HLS does provide a C++ class (hls::stream) that
will enforce the correct read and write ordering. Using the
hls::stream class does require the programmer to make mi-
nor modifications to the test bench. During C-simulation the
hls::stream class is modeled using an infinite queue; however,
this is not the case during RTL co-simulation or in the FPGA
implementation. At this point, the programmer must be careful
to use the read and write model (blocking or non-blocking) that
best matches the surrounding system or the use of this C++
model may cause differences between RTL co-simulation and
the FPGA implementation.

Current in-system debug techniques fall short due to the
lack of visibility and solutions (such as chipscope) require the
engineer to read waveform diagrams (as well as determine
which nets to monitor). Cong et al. proposed including func-
tionality to monitor critical buffers for performance and dead
lock conditions. They also suggested including the ability to

set break-points at the C code and read-back internal hardware
state. It is likely that formal techniques can prove or disprove
the functional equivalence of the FPGA RTL and the original
C code. However, these tools will only prove to be effective
for programmers if they are fully integrated into the HLS suite
and their use is automated. Note that none of these features
exist in the current release of Vivado HLS (2012.4).

Even so, it is clear that FPGA accelerators are becoming
much more accessible to software programmers. Programmers
can currently write descriptions of FPGA accelerators and
participate in their development and help debug them at the
C level. When necessary, they can request assistance from a
hardware designer if verification becomes an issue. As such
programmers can play a significant role in teams that focus on
the development of FPGA accelerators.

ACKNOWLEDGMENT

This work was supported by the I/UCRC Program of the
National Science Foundation under Grant No. 0801876.

REFERENCES

[1] G. A. Ramirez. (2009, April) sobel.cpp. [Online]. Available:
http://www.cs.utep.edu/ofuentes/AI/sobel.cpp

[2] Xilinx, Vivado Design Suite User Guide: High-Level Synthesis (UG902
(v2012.4)), PDF File, Xilinx, San Jose, California, December 2012.

[3] B. D. Technology. (2010) An independent evaluation of: The
autoesl autopilot high-level synthesis tool. [Online]. Available:
http://www.bdti.com/MyBDTI/pubs/AutoPilot.pdf

[4] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang,
“High-level synthesis for FPGAs: from prototyping to deployment,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 30, no. 4, pp. 473 –491, Apr. 2011.

[5] S. Neuendorffer and K. Vissers, “Streaming systems in FPGAs,”
in Embedded Computer Systems: Architectures, Modeling, and
Simulation, ser. Lecture Notes in Computer Science, M. Berekovi,
N. Dimopoulos, and S. Wong, Eds. Springer Berlin Heidelberg,
Jan. 2008, no. 5114, pp. 147–156. [Online]. Available:
http://link.springer.com/chapter/10.1007/978-3-540-70550-5 17

[6] S. Loo, B. Wells, N. Freije, and J. Kulick, “Handel-c for rapid
prototyping of VLSI coprocessors for real time systems,” in Proceedings
of the Thirty-Fourth Southeastern Symposium on System Theory, 2002,
2002, pp. 6 – 10.

[7] N. Siret, M. Wipliez, J. F. Nezan, and F. Palumbo, “Generation
of efficient high-level hardware code from dataflow programs,” in
Proceedings of Design, Automation and test in Europe (DATE),
Dresden, Allemagne, Mar. 2012, p. NC. [Online]. Available:
http://hal.archives-ouvertes.fr/hal-00763804

[8] B. Schafer, T. Takenaka, and K. Wakabayashi, “Adaptive simulated
annealer for high level synthesis design space exploration,” in Interna-
tional Symposium on VLSI Design, Automation and Test, 2009. VLSI-
DAT ’09, Apr. 2009, pp. 106 –109.

[9] I. Mavroidis, I. Mavroidis, I. Papaefstathiou, L. Lavagno, M. Lazarescu,
E. de la Torre, and F. Schafer, “FASTCUDA: open source FPGA
accelerator & hardware-software codesign toolset for CUDA kernels,”
in 2012 15th Euromicro Conference on Digital System Design (DSD),
Sep. 2012, pp. 343 –348.

[10] Xilinx, Zynq-7000 All Programmable SoC Technical Reference Manual
(UG585 (v1.4)), PDF File, Xilinx, San Jose, California, November 2012.

[11] J. Fowers, G. Brown, P. Cooke, and G. Stitt, “A performance and
energy comparison of FPGAs, GPUs, and multicores for sliding-
window applications,” in Proceedings of the ACM/SIGDA international
symposium on Field Programmable Gate Arrays, ser. FPGA ’12.
New York, NY, USA: ACM, 2012, p. 4756. [Online]. Available:
http://doi.acm.org/10.1145/2145694.2145704

