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Abstract—When designing embedded systems, especially for
space-computing needs, finding the ideal balance between size,
weight, power, and cost (SWaP-C) is a primary goal in the
processor selection process. One variable that can have a signif-
icant impact on the tradeoffs between performance and power
consumption is the processor architecture. Widely adopted archi-
tectures such as the ARM Cortex-A series have gained popularity
due to their favorable combination of high performance and
low power consumption. The RISC-V architecture presents a
compelling alternative in part due to its modular instruction
set, collaborative development approach, and open-source nature.
The recent introduction of a RISC-V processor in the Microchip
PolarFire SoC enables performance and power consumption
comparisons with competing architectures using application and
kernel benchmarks. For application benchmarking, this re-
search employs several image-processing applications, including
a histogram equalizer, Sobel filter, and image tiler, to describe
real-world device performance. To gain additional insight into
a processor’s architectural characteristics, kernel benchmarks
that perform common operations in sensor processing such as
matrix multiplication and convolution are used. In addition, the
CoreMark synthetic benchmark suite is used to help quantify
overall performance. This study considers several architectures
and space-grade computer facsimiles, including the ARM Cortex-
A9 SHREC Space Processor, the ARM Cortex-A53 Boeing
High Performance Space Computing platform, and the Power
e5500 BAE Systems RAD5545 processor. Both single- and multi-
core performance are considered. The PolarFire SoC achieves
approximately 3.13 CoreMarks per MHz and 15.63 CoreMarks
per milliwatt, demonstrating competitive performance and power
consumption characteristics under single-threaded workloads.
However, RISC-V presents mixed results in kernel and applica-
tion benchmarks incorporating multiprocessing, with execution
times that are average at best. Additionally, while matrix mul-
tiplication and addition yield high parallel efficiencies, matrix
convolution and transpose are less efficient. Dynamic energy con-
sumption results for the PolarFire SoC were generally average,
but the platform does achieve significant reductions in dynamic
energy consumption during increased parallel workloads in some
tests. Dynamic energy consumption variability was also very
low for the PolarFire SoC during most benchmarks. While the
RISC-V architecture does not present ideal benchmark results, it
provides a competitive balance between performance and power
consumption, with future extensions to the instruction set only
further enabling its potential for space applications.

Index Terms—Benchmark, Processor Architecture, RISC-V,
Sensor Processing, SoC, Space Computing
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I. INTRODUCTION

Selecting an embedded processor for space-computing
needs involves the careful consideration of multiple factors,
including size, weight, power, and cost, also known as SWaP-
C. Another important requirement is the desired performance
of the final system. This selection process typically considers
a set of trade-offs; a highly performant system may also
have a power consumption too great to be practical, or it
may be too expensive to be realistically deployed. In onboard
sensor data processing for space platforms, these trade-offs
are amplified by the requirements and restrictions associated
with space computing. In this environment, energy is a finite
resource and flight systems must therefore be as power-
efficient as possible. Conversely, given the growing resolution
and data rate of sensors for imaging and data acquisition,
processors that maximize performance are often required to
meet real-time computing constraints. With these factors in
mind, given a mission’s power consumption restrictions and/or
performance requirements, developing a system that is both
high performance and low power while also meeting budget
limitations is a difficult goal to achieve.

The recent emergence of the RISC-V architecture in com-
mercially available processors presents a unique solution to
this problem. RISC-V is a relatively new architecture com-
pared to industry-standard solutions such as ARM or Power.
It also presents an unconventional approach to computer
architecture. While alternatives such as ARM are proprietary
and require expensive licensing fees for use and modification
rights, RISC-V is completely open-source and free to use. Its
design methodology is also open and collaborative, allowing
anyone to contribute to development. The architecture’s cre-
ators even claim RISC-V to have both superior performance
and superior power consumption characteristics compared to
the ARM architecture [1]. The introduction of a commercially
available RISC-V processor in the Microchip PolarFire SoC
allows for the evaluation of both performance and power
consumption of the RISC-V architecture.

This study considers the RISC-V architecture in onboard
sensor data processing applications and evaluates its perfor-
mance and power consumption characteristics. Comparative
platforms containing the ARM Cortex-A9, ARM Cortex-A53,
and Power e5500 architectures are also evaluated, representing
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a wide variety of space-capable systems in use today: the
NSF Center for Space, High-performance, and Resilient Com-
puting (SHREC) Space Processor (SSP), the Boeing High-
Performance Space Processing (HPSC) platform, and the BAE
Systems RAD5545, respectively [2]–[4]. Compared to these
systems, the suitability of the RISC-V architecture for use in a
space processing context is discussed in terms of both single-
core and multi-core processing capabilities.

This paper is organized into the following sections. Section
II provides a detailed background of existing architectures
used in flight systems, platforms used for comparison in
this study, benchmarking methods performed, and related
literature. Section III gives details on the methodology for
obtaining performance and power consumption results. Section
IV presents the results collected and an analytical discussion of
the findings. Finally, section V demonstrates conclusions made
about this research as well as future avenues of exploration.

II. BACKGROUND

The following sections discuss relevant information regard-
ing the processor architectures and benchmarking tools that are
the subject of this study. Space platform facsimiles and their
specifications are outlined. Finally, an overview of literature
related to this research is also provided.

A. Architectures in Flight SoCs

A wide variety of processor architectures exist in modern
computing and are used in a range of devices. However,
when considering flight-proven systems, the ARM and Power
architectures are the most prevalent. The ARM Cortex-A9
processor was released in 2008 and has extensive flight
heritage, with an example being within the CHREC Space
Processor (CSP) [2]. The CSP has been used successfully on
multiple International Space Station missions, including the
Space Test Program - Houston 5 - CSP (STP-H5-CSP) and
STP-H6-SSIVP (Spacecraft Supercomputing for Image and
Video Processing) [5]. CSP uses the Xilinx ZYNQ XC7Z020
SoC, which contains a 32-bit dual-core ARM Cortex-A9
processor operating with a maximum clock frequency of 667
MHz and supporting the Armv7-A instruction set [6] [7].
An upgraded development based on CSP, called the SHREC
Space Processor (SSP), features the same ARM Cortex-A9
processing system as CSP [8]. To represent the ARM Cortex-
A9 architecture present in both CSP and SSP in this study, the
TUL PYNQ-Z2 development board is used, which features the
Xilinx XC7Z020 SoC operating at 650 MHz [9].

The ARM Cortex-A53 processor was released in 2013 and
is planned to be incorporated in flight systems such as the
High-Performance Spaceflight Computing (HPSC) processor,
which was being developed by Boeing in collaboration with
the NASA Jet Propulsion Laboratory (JPL) and NASA God-
dard Space Flight Center (GSFC). HPSC was planned to
incorporate two interconnected 64-bit quad-core ARM Cortex-
A53 processors operating with a maximum clock frequency of
800 MHz and supporting the Armv8-A instruction set [3] [10].
To represent the HPSC processor in this study, the 96Boards

HiKey LeMaker is used. The Hikey LeMaker uses a HiSilicon
Kirin 620 SoC, which contains dual quad-core 64-bit ARM
Cortex-A53 processors interconnected in the same manner
as the HPSC. These processors have a maximum clock fre-
quency of 1.2 GHz and support the ARMv8-A instruction
set [11] [12]. To facilitate benchmarking results comparable
to HPSC, the HiKey LeMaker’s clock speed is reduced to
the closest compatible frequency of 729 MHz for this study.
An additional platform, the Hardkernel ODROID-C2 is also
introduced to provide insight into ARM Cortex-A53 platforms
of differing core counts. The ODROID-C2 uses an Amlogic
S905 SoC, which incorporates a quad-core ARM Cortex-
A53 processor with a maximum clock frequency of 1.54
GHz [13] [14]. To facilitate benchmarking results comparable
to HPSC, the ODROID-C2’s clock speed is reduced to the
closest compatible frequency of 1.0 GHz.

Both the ARM Cortex-A9 and Cortex-A53 support ARM’s
single instruction multiple data (SIMD) instruction set exten-
sion called Advanced SIMD and also known as Neon [7] [10].
Neon is an optional extension for the Cortex-A9 but is included
in the Xilinx XC7Z020 SoC. Neon is required in the Cortex-
A53 and is therefore present in both the HiKey LeMaker’s
Kirin 620 and the ODROID-C2’s Amlogic S905 SoCs [8].

The Power architecture was first introduced in the early
1990s through a collaboration between Apple, IBM, and
Motorola and has since evolved into an open standard man-
aged by the OpenPOWER Foundation [15] [16]. The Power
architecture is especially significant due to its prevalence in
critical space missions, with an example being the RAD5545
radiation-hardened SoC by BAE Systems [4]. Predecessors of
the RAD5545, the RAD6000 and RAD750, also use the Power
architecture and have had success in missions including the
Spirit and Opportunity Mars Exploration Rovers, the Curiosity
rover, and the Perseverance rover [17]–[21]. As of July 2020,
the first RAD5545 processors have been delivered to Lockheed
Martin for use in software-defined radio systems [22]. The
RAD5545, which is a subject of this study, contains four 64-
bit RAD5500 processing cores, which are radiation-hardened
variants of Freescale’s QorIQ Power e5500 cores [4] [23] [24].
The RAD5545 supports Power architecture v2.03 and has
a clock speed of 466 MHz [24] [25]. To represent the
RAD5545, the Freescale P5040 is used in this study, which
incorporates four Power e5500 cores at a clock speed of
2.267 GHz [26]. Altering the clock frequency in the P5040
was nontrivial on the platform used this study, and therefore
scaling of results to reflect the RAD5545’s 466 MHz will be
performed where appropriate.

B. The RISC-V Architecture

The RISC-V processor architecture represents a departure
from conventional instruction set architecture (ISA) design
methodologies mainly due to its open-source ISA and its
collaborative approach to specification development. RISC-
V was developed as an academic project in 2010 at the
University of California at Berkeley, with key initial goals
including open access to architecture specifications, ease of
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implementation in a variety of instruction execution styles and
hardware configurations, and suitability for use in educational
settings. The architecture leverages a unique, modular design.
RISC-V was designed with a small “base” ISA which cannot
be changed, with additional instructions and functionalities
permitted through the inclusion of extensions to the base
instruction set [27]. The RISC-V Foundation, which allows
both organizations and individuals to become members and
contribute to architectural developments, has officially ratified
32- and 64-bit configurations of the base RISC-V ISA, labeled
as RV32I and RV64I, respectively. The RISC-V Foundation
has also officially ratified a number of ISA extensions for
features including integer multiplication and division, atomic
instructions, single- and double-precision floating point op-
erations, control and status registers, instruction-fetch fence,
and 16-bit compressed instructions. When labeling a pro-
cessor’s supported RISC-V base ISA and extensions, the
base configuration is listed first, followed by the letters of
the included extensions. The currently ratified extensions are
labeled M, A, F, D, Zicsr (control and status register instruc-
tions), Zifencei (instruction-fetch fence), and C, respectively.
Additional extensions for features including vector operations
are still under development. The general-purpose RISC-V ISA
implementation, as defined by the RISC-V Foundation, is
“IMAFDZicsr Zifencei”, which is provided with a shortened
label of ‘G’ [28].

Until recently, RISC-V devices realized in silicon have
not been available for study. The release of one of the first
commercially available RISC-V processors, the Microchip
PolarFire SoC, allows the RISC-V architecture to be evaluated
and compared to flight-capable ARM and Power architec-
tures [29]. The PolarFire SoC contains five RISC-V cores
– one RV64IMAC monitoring core for boot and configu-
ration processes and four RV64GC application processing
cores for use in an environment such as Linux, all with a
maximum clock speed of 667 MHz [29]. To evaluate the
RISC-V architecture inside the PolarFire SoC, we use the
Microchip PolarFire SoC Icicle Kit evaluation board, which
uses a Microchip PolarFire SoC model MPFS250T with a
clock speed of 600 MHz [30]. Table I displays all platforms
used in this exploration and their technical specifications.

C. CoreMark Benchmarks

Developed by the Embedded Microprocessor Benchmark
Consortium (EEMBC), CoreMark is an industry-standard syn-
thetic benchmarking tool for measuring and comparing the
performance of a single core inside embedded systems. Test
results are compiled into a single numerical score for easy
comparison. CoreMark was released as an improvement to the
popular benchmarking tool Dhrystone, which was developed
in 1984 and was originally designed to compare computer
systems as a whole [31]. The CoreMark benchmarking tool
aims to provide more extensive insight into the performance of
an embedded processor, while also improving the consistency
of reported test results and reducing the impact of individual
compiler optimizations when compared to Dhrystone [31].

CoreMark is written in C and contains five key integer
operation algorithms [32]. These algorithms include linked list
search and sort operations, cyclic redundancy check (CRC),
matrix multiplication, and a Moore state machine that iden-
tifies numbers inside a string and uses those numbers for
division operations. For more details about these algorithms
and their specific implementations, CoreMark documentation
and source code are available for download in the CoreMark
Github repository referenced in [33].

The resulting CoreMark score is presented in units of
iterations per second. When comparing platforms of differing
clock speed, it is common to divide this score by the respective
platform clock speed to obtain a normalized result in Core-
Marks per MHz [34]. CoreMark scores that are submitted
to the EEMBC are made available to the public on the
EEMBC website, with platform specifications and compiler
flags typically included in these reports [35].

D. SHREC SpaceBench Benchmarks

The SpaceBench benchmarking suite was developed at
SHREC by Dr. Tyler Lovelly for the purpose of investigating
the performance of space processors. SpaceBench is a collec-
tion of nine different kernel benchmarks, with the following
four used in this study: matrix multiplication, matrix addition,
matrix convolution, and matrix transpose. The benchmark
suite supports computation with 8-, 16- and 32-bit integer as
well as single- and double-precision floating-point datatypes.
Benchmarking kernels are parallelized using OpenMP and
accelerated with ARM Neon for applicable platforms. Dur-
ing execution, the user defines the benchmark operation to
perform, the datatype to compute with, the problem size N
(to create an NxN matrix), the number of OpenMP threads
to execute with, and the number of iterations to perform the
operation for [36]. When the benchmark is finished, a single
execution time in seconds is presented, which is computed by
SpaceBench as the total elapsed computation time divided by
the number of iterations specified by the user.

E. SHREC GKSuite Benchmarks

Application benchmarking is used in this study to demon-
strate more representative real-world performance on the con-
sidered platforms. A collection of seven image-processing
apps developed at SHREC, called GKSuite, are considered.
This collection includes a color search, a histogram equal-
izer, an image difference calculator, a Mandelbrot set fractal
generator, a Sobel filter, a bilinear thumbnailer, and a tiler.
The color search app conducts pixel color thresholding by
Euclidean distance calculation. The histogram equalization
app performs histogram equalization independently on each
color channel. The image difference app calculates the percent
difference between two images and outputs a delta comparison
image. The Mandelbrot set fractal generator serves as an
embarrassingly parallel test case for comparison. The Sobel
filter conducts edge detection. The thumbnailer conducts im-
age downsampling via bilinear interpolation. The tiler splits
images into tiles of specified size for classification or other use
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TABLE I
PROCESSING PLATFORMS AND SPECIFICATIONS

Platform SoC Architecture Core Count L1 Cache L2 Cache Memory Clock Frequency

TUL
PYNQ-Z2

(SSP Facsimile)

Xilinx XC7Z020
(28 nm) ARM Cortex-A9 2 32 KB 512 KB 512 MB DDR3 650 MHz

Hardkernel
ODROID-C2

(HPSC Facsimile)*

Amlogic S905
(28 nm) ARM Cortex-A53 4 32 KB 512 KB 2 GB DDR3 1 GHz

96Boards
HiKey LeMaker

(HPSC Facsimile)**

HiSilicon Kirin 620
(28 nm) ARM Cortex-A53 8 32 KB 512 KB 2 GB LPDDR3 729 MHz

Freescale
P5040

(RAD5545 Facsimile)

Freescale P5040
(45 nm) Power e5500 4 32 KB 512 KB 8 GB DDR3 2.267 GHz

Microchip PolarFire
SoC Icicle Kit

Microchip
PolarFire SoC

(28 nm)

RISC-V
RV64IMAC /

RV64GC
1 + 4 8 KB 2 MB 2 GB LPDDR4 600 MHz

* Represents a half-chiplet HPSC (single quad-core ARM Cortex-A53)
** Represents a full-chiplet HPSC (two interconnected quad-core ARM Cortex-A53)

cases. The parallel performance of each of these apps varies
and helps to demonstrate difference in parallel performance
between the platforms [37].

F. Related Research

Studies surrounding both the evaluation of space-grade
processor performance and the exploration of the RISC-V
architecture have been performed in [25], [38], [39], and [40].
In [25], Lovelly evaluates the performance of radiation-
hardened space-capable processors. The study performs its
evaluation by calculating both performance in billions of
operations per second and the input/output bandwidth in
Gigabytes per second to compare processor and overall system
performance metrics. Lovelly also discusses the impact of
radiation-hardening through comparison of results to COTS
equivalents, where applicable. In [38], eight RISC-V core
designs, including one proprietary design, are implemented
on FPGA platforms and their performance is compared. Each
core varies in terms of the supported RISC-V ISA, in addition
to having differing pipeline structures. Multiple benchmark
tools are used in the study, including Dhrystone, Embench,
and CoreMark. Conclusions from this research show that
several of the evaluated open-source cores produced greater
performance results than the proprietary design. In [39], a
RISC-V processor supporting RV32G (the 32-bit variant of
the general-purpose RISC-V configuration) is created and
implemented on an FPGA. The resulting processor design
is then evaluated using Dhrystone and CoreMark. In terms
of CoreMarks per MHz, the RISC-V design closely matches
the performance of platforms using the ARM Cortex-M3
and slightly underperforms platforms using the ARM Cortex-
M4. In [40], an RV64IMC-compatible RISC-V processor
realized on silicon is evaluated in terms of performance and
energy consumption and is compared to previous RISC-V

implementations. The performance benefits of incorporating
instruction set extensions versus simply raising clock speeds
are compared, and it is concluded that extensions are most
effective in terms of performance versus energy consumption
tradeoffs. Both space-grade processors and the RISC-V archi-
tecture have been explored extensively in previous literature.
However, these related works do not incorporate an exploration
of the RISC-V architecture in a space-computing context, nor
do they evaluate a commercially available and Linux-capable
RISC-V processor realized on silicon. Both of these topics are
discussed in this study.

III. APPROACH

The following sections outline the procedures followed in
this study for acquiring both performance and power consump-
tion data. Where applicable, make flags and configuration
flags are provided. All necessary modifications to benchmark
tools are also detailed.

A. CoreMark

To maintain fairness to all platforms, the CoreMark score
database in [35] was surveyed for insight into the best choice
of compiler flags to use when running CoreMark on each
platform. Recommended compiler flags for the PolarFire SoC
Icicle Kit evaluation board were provided by Microchip [41].
Where compiler flags were not available, some extrapolation
was required. For example, while CoreMark results are pub-
lished for the Cortex-A9, specifically for the Xilinx XC7Z020,
there are not any published results for a Cortex-A53 pro-
cessor [35]. Therefore, the recommended compiler flags for
the Cortex-A9, including -march and -mcpu, were taken and
altered to best suit execution on the Cortex-A53. This method
was used for both the HiKey LeMaker and the ODROID-
C2, which both use the Cortex-A53 processor architecture.
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TABLE II
COREMARK MAKE FLAGS

Platform Make Flag

PYNQ-Z2 make XCFLAGS=“-O3 -march=armv7-a -mcpu=cortex-a9 -mfpu=neon-fp16 -DPERFORMANCE RUN=1 -lrt”

HiKey LeMaker make XCFLAGS=“-O3 -march=armv8-a -mcpu=cortex-a53 -DPERFORMANCE RUN=1 -lrt”

ODROID-C2 make XCFLAGS=“-O3 -march=armv8-a -mcpu=cortex-a53 -DPERFORMANCE RUN=1 -lrt”

Freescale P5040 make XCFLAGS=“-O3 -mcpu=e5500 -DPERFORMANCE RUN=1 -lrt”

PolarFire SoC
make XCFLAGS=“-O3 -DPERFORMANCE RUN=1 -DHAS STDIO -DHAS TIME H -DUSE CLOCK -fno-common
-funroll-loops -finline-functions -falign-functions=16 -falign-jumps=4 -falign-loops=4 -finline-limit=1000 -fno-if-conversion2
-fselective-scheduling -fno-tree-dominator-opts -lpthread -DHAS FLOAT=0 -mtune=sifive-7-series -lrt”

A similar approach was performed with the Freescale P5040,
however the gcc compiler on the platform does not accept
specified architectures with -march, and therefore only the
-mcpu flag was changed to reflect the Power e5500 cores
on the P5040 [26]. A list of the CoreMark make command
flags used for each platform can be found in Table II. As
shown in the table, all app test binaries were compiled with
optimization level -O3 on all platforms. It should be noted that
-O3 activates the -ftree-vectorize flag which will make use
of the ARM Neon vector acceleration engines in the ARM
Cortex-A9 and Cortex-A53 architectures. The PowerPC and
RISC-V architectures tested do not have similar SIMD vector
acceleration support.

Before execution, edits to the CoreMark source code were
performed for the PolarFire SoC as recommended by Mi-
crochip. Loop index variables originally designated as un-
signed integers in the core portme.h file within the linux64
folder of the source code were changed to be signed inte-
gers, due to more efficient handling of signed integer loop
indices by the RISC-V architecture [41]. Source files on
other platforms were left unchanged. The number of iterations
was not provided as an input to CoreMark, which results
in CoreMark automatically choosing a number of iterations
during runtime to reflect a total elapsed execution time of at
least 10 seconds [33]. CoreMark results in units of iterations
per second were recorded from the generated log files on each
platform.

B. SpaceBench

Unused benchmarks within SpaceBench rely on the use
of Basic Linear Algebra Subprograms (BLAS) to run, and
these portions were removed for this study due to compilation
issues on the PolarFire SoC and the P5040. The omission of
BLAS does not affect the operation of the four SpaceBench
benchmarks used in this study. Because the benchmark has
multiple variable inputs, a shell script was created and run
on all platforms to simplify data collection. A listing of the
benchmarks, datatypes, problem sizes, and OpenMP threads
can be found in Table III. Each test was run for 100 iterations,
and the average of those iterations was recorded as the final
result.

TABLE III
SPACEBENCH TEST CONFIGURATIONS

Size Datatypes OpenMP Threads

512 (Matrix Multiplication)
int8
int16
int32
fp32
fp64

1
2
4*

8**

3000 (Matrix Addition)

2500 (Matrix Convolution)

3500 (Matrix Transpose)

* Not applicable for PYNQ-Z2
** Only applicable for HiKey LeMaker

C. GKSuite

Each of the nine apps within GKSuite was written in C
and parallelized using OpenMP. For parallelization, all but one
app are configured for static division of image lines between
threads as load is equally balanced. The exception is the
Mandelbrot set application, which sees improved performance
with dynamic parallelization due to the load imbalance near
the center bulb of the fractal. All apps that require an image
input used the same five-megapixel Earth-observation image
to simulate a space computing use case. App parameters were
tuned to achieve desired parallel performance and consistent
timing between all apps on all platforms. Color search was
conducted for blue, the RGB value (0, 0, 255), at 13%, 14%,
and 15% distance thresholds. A Mandelbrot set of 1024 pixels
square was generated. An input image was resized to 1600
by 1200 pixels via the thumbnailer application. The tiler was
set to split the same input image into 224-pixel square tiles.
Execution time was averaged over one hundred runs. Speedup
and parallel efficiency calculations were made for each app
and thread count.

D. Power Consumption

Power consumption was measured for all benchmarks using
the same methodology. The Poniie PN2000 power meter was
used to record idle power consumption before benchmark
execution, and average runtime power during execution was
recorded. Measurements provided by the PN2000 are accurate
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TABLE IV
COREMARK SCORES AND ITERATIONS

Platform CoreMark Score
(Iterations/Sec)

Iterations
(Thousands)

Dynamic Power
Consumption (Watts)

PolarFire
SoC 1875 30 0.12

HiKey
LeMaker

2065 30 0.13

PYNQ-Z2 2228 30 0.15

ODROID-C2 3420 60 0.30

Freescale
P5040 6627 110 1.84

within 1% of the true power consumption [42]. The difference
between idle and average runtime power consumption was
taken to produce average dynamic power consumption for each
test. For SpaceBench and GKSuite, which produce execution
time results, the dynamic energy consumption in Joules was
calculated. This was performed by multiplying the average
execution time of each algorithm by the respective dynamic
power consumption.

IV. RESULTS

Performance and power consumption results and analysis
are presented together in order of benchmark suite. First,
single-core performance and power consumption results from
CoreMark are discussed. Then, multi-core performance along-
side dynamic energy consumption results are presented for
SpaceBench and GKSuite.

A. CoreMark

Fig. 1. CoreMark benchmarking scores.

The CoreMark scores, number of iterations performed, and
dynamic power consumption measurements for each platform
can be found in Table IV. Fig. 1 shows a visual represen-
tation of CoreMark scores as well. It is clear from these
results that the PolarFire SoC is very competitive in terms
of dynamic power consumption for this benchmark, with
results comparable to the HiKey LeMaker and the PYNQ-
Z2. The high dynamic power consumption in the P5040 is not

surprising given its deployment in a larger scale system with
higher-power supporting components. Based on observing raw
CoreMark scores alone, the Freescale P5040 appears to far
outperform the other platforms in this benchmark. However,
normalizing around clock speed and factoring in dynamic
power consumption provide an improved perspective.

Fig. 2. CoreMark scores normalized by clock speed.

Fig. 2 displays CoreMark scores normalized by platform
clock frequency, presented in units of CoreMarks per MHz.
From this representation, it can be determined that perfor-
mance capabilities of all platforms are fairly close to each
other after accounting for each platform’s differing clock
speed. The Freescale P5040, while seeming to far outperform
ARM and RISC-V platforms based on raw score alone, is
actually quite similar to the others in a normalized CoreMark
score representation. Furthermore, taking the P5040’s score
of about 2.924 CoreMarks per MHz and multiplying by the
RAD5545 clock speed of 466 MHz, a raw CoreMark score for
the RAD5545 can be estimated to be about 1362.5 iterations
per second. One interesting result is the large difference in
performance between the HiKey LeMaker and ODROID-C2,
which both have the same ARM Cortex-A53 architecture.
While the HiKey LeMaker has both the largest number of
cores and the lowest dynamic power consumption compared to
the ODROID-C2, this result makes sense due to architectural
differences. The HiKey LeMaker’s use of an interconnect
between two Cortex-A53 processors likely poses as a slight
disadvantage here compared to the ODROID-C2’s use of a
single die. Observing the results of the RISC-V PolarFire SoC
shows that RISC-V performs comparably to ARM and Power
in terms of CoreMarks per MHz, with scores just underneath
the ARM Cortex-A9 and single-die ARM Cortex-A53, and just
above the Power e5500 and the interconnected ARM Cortex-
A53. These results show the RISC-V architecture is quite
capable of performing competitively against ARM and Power
architectures in CoreMark testing, while also maintaining a
minimal dynamic power consumption.

Fig. 3 displays CoreMark scores normalized by platform
dynamic power consumption, presented in units of CoreMarks
per milliwatt. The data show that the PolarFire SoC has the
second-highest performance at approximately 15.6 CoreMarks
per milliwatt, just underneath the HiKey LeMaker’s score
of approximately 15.9 CoreMarks per milliwatt, providing
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Fig. 3. CoreMark scores normalized by dynamic power consumption.

evidence of both high performance and high efficiency for
RISC-V using a single core. While the Freescale P5040
power-normalized results are significantly lower than those
of other platforms, the P5040 may have a larger dynamic
power consumption only due to its higher-power supporting
components. However, this is outside the scope of this research
and presents a potential avenue of further exploration.

Performance and power consumption results from Core-
Mark show that RISC-V is a competitive architecture in
comparison to ARM and Power for single-core computa-
tion. Single-core performance per unit of power consumed
is especially notable in this section. Additional results from
SpaceBench and GKSuite application benchmarking provide
further insight into multi-core capabilities of the RISC-V
architecture.

B. SpaceBench

Fig. 4. Execution times of 32-bit integer matrix multiplication.

Figs. 4, 5, 6, and 7 display the execution times of ma-
trix multiplication, addition, convolution, and transpose algo-
rithms, respectively, using 32-bit integers on each platform.
Please note the log scale in the Y-axis of each chart. Please
also note the chart legends, which display names of the
emulated flight platforms, with exception to the Microchip
PolarFire SoC. A single asterisk (*) indicates an emulated
HPSC half-chiplet (single quad-core ARM Cortex-A53), and
two asterisks (**) indicate an emulated HPSC full chiplet (two
interconnected quad-core ARM Cortex-A53). These calcula-
tions produce similar trends when run using single-precision

Fig. 5. Execution times of 32-bit integer matrix addition.

Fig. 6. Execution times of 32-bit integer matrix convolution.

floating-point (SPFP) numbers. The results and trends for
SPFP calculations are available for reference in the appendix
as Figs. 21, 22, 23, and 24. Execution times for the Freescale
P5040 are scaled to reflect operation on a system clocked to
466 MHz to best represent and estimate the performance of
the RAD5545 in these tests. It is clear from these results that
both the scaled P5040 and the PolarFire SoC have the highest
execution times in the set of platforms. In matrix multiplication
and addition, the P5040 performs slightly better in all thread
counts compared to the PolarFire. However, the opposite is
true for convolution and transpose, with the PolarFire showing
performance more comparable to the other platforms. This
result is likely due to a combination of factors, including
memory frequency and bandwidth, device cache configuration,

Fig. 7. Execution times of 32-bit integer matrix transpose.
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and varying development board topologies. However, analysis
was not performed at this depth and is therefore left for future
work. Only at higher thread counts for matrix transpose does
the P5040 show slightly better performance than the PolarFire
SoC. Additionally, most likely due to the benefits of ARM
Neon vector acceleration, performance of the PYNQ-Z2 at its
maximum thread count of two threads is comparable to the
PolarFire’s performance at four threads. Overall, the RISC-
V architecture shows average performance at best based on
execution times alone.

Fig. 8. Parallel efficiency of 32-bit integer matrix multiplication.

Fig. 9. Parallel efficiency of SPFP matrix multiplication.

Fig. 10. Parallel efficiency of 32-bit integer matrix addition.

Figs. 8 and 9 display the parallel efficiencies of the
SpaceBench matrix multiplication algorithm for 32-bit integer
and SPFP numbers, respectively. As seen in the diagrams,

Fig. 11. Parallel efficiency of 32-bit integer matrix convolution.

Fig. 12. Parallel efficiency of SPFP matrix convolution.

the PolarFire SoC has very high efficiencies for both integer
and floating-point operations during matrix multiplication. One
interesting trend seen is the fact that most of the platforms are
highly efficient with either integer or floating-point operations,
but not both. The PYNQ and PolarFire SoC, however, maintain
high efficiency for both datatypes. Additionally, the PolarFire
SoC shows only a small reduction in efficiency with an
increase in threads.

Fig. 10 displays the parallel efficiencies of the SpaceBench
matrix addition algorithm for 32-bit integer numbers. Similar
results and trends can be found for SPFP values, and are
available for reference in the appendix as Fig. 25. While
efficiencies are overall lower than what was seen during matrix
multiplication for all platforms, the PolarFire SoC still shows

Fig. 13. Parallel efficiency of 32-bit integer matrix transpose.
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high efficiency relative to ARM- and Power-based platforms
during matrix addition. These results suggest that RISC-V
is a competitive architecture for performing efficient parallel
matrix multiplication and matrix addition operations.

Figs. 11 and 12 display the parallel efficiencies of the
SpaceBench matrix convolution algorithm for 32-bit integer
and SPFP numbers, respectively. As seen in the diagrams,
matrix convolution produces very different trends from matrix
multiplication and addition. For 32-bit integers, the PolarFire
SoC has average efficiencies compared to the other platforms,
with every platform maintaining consistency during thread
count increases. SPFP operations produce this same level
of consistency, however the PolarFire SoC has the lowest
efficiency out of the group of platforms for SPFP values.

Fig. 13 displays the parallel efficiencies of the SpaceBench
matrix transpose algorithm for 32-bit integer numbers. Similar
results and trends can be found for SPFP, and are available
for reference in the appendix as Fig. 26. All platforms except
for the Freescale P5040 experience a reduction in efficiency
with increased thread counts for this algorithm, however the
PolarFire SoC experiences a severe reduction moving from
two threads to four threads. Additionally, the P5040 maintains
very high efficiencies compared to the other platforms. These
results may be attributable to the more compute-bound nature
of the former two operations compared to the more memory-
bound nature of the latter.

Fig. 14. Dynamic energy consumption of 32-bit integer matrix multiplication.

Fig. 15. Dynamic energy consumption of SPFP matrix multiplication.

Figs. 14 and 15 display SpaceBench dynamic energy con-
sumption results for matrix multiplication of 32-bit integer and

Fig. 16. Dynamic energy consumption of 32-bit integer matrix addition.

Fig. 17. Dynamic energy consumption of 32-bit integer matrix transpose.

SPFP numbers, respectively. Matrix convolution results show
similar results and trends and are available for reference in
the appendix as Figs. 27 and 28. As seen in the diagrams, the
PolarFire SoC does not have a competitive energy footprint
compared to the other platforms. However, the PolarFire SoC
has a very stable dynamic energy consumption between both
changes in datatype and changes in thread count. The only
other platforms showing these characteristics are the Freescale
P5040, which has an overall higher energy consumption, and
the PYNQ-Z2.

Fig. 16 displays SpaceBench dynamic energy consumption
results for matrix addition of 32-bit integer numbers. Similar
results and trends can be found for SPFP values, and are
available for reference in the appendix as Fig. 29. This result
is particularly interesting because while the other platforms
experience increases in dynamic energy consumption with
an increased number of threads, the PolarFire SoC shows
significant decreases in dynamic energy consumption with
increased thread counts. However, it should be noted that
dynamic energy consumption for the PolarFire SoC is still
higher than most other platforms, even with the decreasing
trend.

Fig. 17 displays SpaceBench dynamic energy consumption
results for matrix transpose of 32-bit integer numbers. Similar
results and trends can be found for SPFP values, and are
available for reference in the appendix as Fig. 30. In terms
of energy consumption, the PolarFire SoC is most competitive
during matrix transpose operations. While energy consumption
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is not the lowest overall, the device’s low energy variability
results in the PolarFire using the lowest energy at the highest
thread counts for this test.

C. GKSuite

GKSuite application benchmarking execution times are in-
cluded as Fig. 18. Results are divided by app and color-keyed
to platform. The clear victors in raw performance are the ARM
Cortex-A53 platforms, but this should come as no surprise
considering their higher clock speeds. The 729 MHz HiKey
LeMaker is the closest facsimile to the 800 MHz HPSC.
It is postulated that the improved performance of the ARM
platforms is partially owed to Neon vector acceleration, though
further investigation beyond the scope of this study is required
to confirm the extent of its benefit. The PolarFire and its
RISC-V architecture are competitive in these real-world app
performance benchmarks, especially given its only 600-MHz
clock frequency. The Freescale P5040, with results scaled
to the 466 MHz frequency of the BAE Systems RAD5545,
demonstrates the longest execution times as the lowest-clocked
platform. Additional results with per-thread trends are visible
in the appendix as Fig. 31.

Fig. 18. Execution times of GKSuite application benchmarking.

Fig. 19. Parallel efficiencies of GKSuite application benchmarking.

Parallel efficiencies from this application-benchmarking
component of this research can be referenced in Fig. 19. This
serves as a visualization of the parallel performance of each
app on each platform. Among all platforms, the Mandelbrot
set provides the most consistently ideal parallel performance
results. Some of the least parallel efficient apps, however, such

as the color search, histogram equalize, and tile, provide the
most competitive insight between platforms. The RISC-V plat-
form is consistently among the top two for parallel efficiency,
performing the best for multiple cores in the image difference,
image tile, and especially the histogram equalization app.
The Power architecture shows the best and most consistent
results for the Mandelbrot set and thumbnail apps. The ARM
architectures tested struggle more in this comparison. The
authors postulate that, while vector acceleration benefits raw
performance, the overhead for vectorization across multiple
threads has a higher negative impact. It’s important to note
that the PYNQ’s two threads result in higher peak efficiencies
compared to the four-threaded platforms while the HiKey’s
eight threads bias it to worse parallel performance despite
faster execution time. Additional parallel efficiency results,
including those for all thread counts, are included in the
appendix as Fig. 32.

Fig. 20. Dynamic energy consumption of GKSuite application benchmarking.

Dynamic energy consumption from the application-
benchmarking phase of this study can be seen in Fig. 20.
The minimal power envelope of the RISC-V PolarFire is very
apparent here. The RISC-V platform is among the lowest
dynamic energy consumers for the color search, Mandelbrot
set, thumbnail, and tile. Even more beneficial, the PolarFire
sees the highest reduction in energy with parallelization, even
on apps for which it did not achieve high parallel efficiency.
This is seen here as a comparison between dynamic energy
for the serial baseline and maximum thread counts. While
the ARM platforms are very competitive on overall dynamic
energy consumption, they demonstrate poorer trends for the
reduction of dynamic energy consumption with parallelization.
In fact, the HiKey LeMaker platform tested sees consid-
erable increases in dynamic energy consumption for apps
that parallelize poorly, especially visible for the color search,
histogram equalize, and image difference. While the ZYNQ’s
ARM Cortex-A9 architecture is competitive in some metrics,
this architecture is antiquated compared to the others. While
the Power architecture appears significantly less competitive,
the authors again note that this platform takes the form of
a significantly larger system with higher-power supporting
components. Considering only dynamic energy consumption
helps to offset some of these effects.
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V. CONCLUSIONS

In this study, the RISC-V architecture implemented in
the Microchip PolarFire SoC is evaluated and benchmarked
within a space-computing context. Comparisons were made
to the ARM Cortex-A9, ARM Cortex-A53, and Power e5500
architectures prevalent in today’s space-capable systems. By
using industry-standard synthetic benchmarks such as Core-
Mark, kernel benchmarks such as SpaceBench, and applica-
tion benchmarks such as GKSuite, the RISC-V architecture’s
performance and power consumption in both single- and
multi-threaded computation scenarios have been extensively
explored. Results show that the RISC-V architecture demon-
strates competitive single-core performance, high efficiencies
in CoreMark, and average multi-core performance results
when evaluated under embedded system-focused workloads
including SpaceBench and GKSuite. While highly favorable
parallel efficiencies were observed during tests such as matrix
multiplication and addition, average and low efficiencies were
also observed in tests including matrix convolution and matrix
transpose. Dynamic power and energy consumption of the
RISC-V architecture also showed mixed results. Though the
PolarFire SoC showed good power consumption results during
CoreMark application benchmarking tests, dynamic energy
observed during many SpaceBench algorithms was quite high.
The PolarFire SoC did, however, show very low dynamic
energy consumption variability during these tests, even under
maximum thread loads.

Additional avenues of exploration also allow this research to
be extended in the future. While dynamic energy consumption
is a very useful result when comparing processing platforms,
it is not without its inadequacies. The higher-power supporting
components of the P5040 resulted in less than ideal compar-
isons in terms of power and energy consumption. As such,
additional insight will be necessary in order to make distinct
power consumption conclusions for the Power architecture as
a whole. Vector acceleration is another area of further study.
The RISC-V architecture does not currently have a completed
vector-operation extension of the ISA, and therefore current
hardware does not support vector acceleration. The addition of
vector operations to RISC-V hardware could impact the results
of these tests and make the architecture more competitive
for complex workloads and matrix operations. Additional
exploration can also be performed to better extend these results
to flight-capable systems. Because this research focuses on
COTS development boards, the impacts of radiation hardening
and fault-tolerant design on processor performance and power
consumption are not able to be analyzed. Incorporating flight-
capable processing platforms in future research will allow
these factors to be considered.

The results of this study show a promising future for the
modern and open-source RISC-V architecture, especially in
the context of space computation. It certainly presents compet-
itive characteristics when compared against well-established
ARM Cortex and Power systems. However, this is only the
beginning for relatively recent ISA development. As RISC-V

continues to evolve and new extensions are ratified and imple-
mented into devices, its competitiveness in onboard sensor data
processing systems calls for continued evaluation, while in the
process satisfying the critical system design considerations of
maximizing performance and minimizing power consumption.
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APPENDIX

A. Additional SpaceBench Results

Fig. 21. SpaceBench SPFP matrix multiplication algorithm execution times.

Fig. 22. SpaceBench SPFP matrix addition algorithm execution times.

Fig. 23. SpaceBench SPFP matrix convolution algorithm execution times.

B. Additional GKSuite Results
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Fig. 24. SpaceBench SPFP matrix transpose algorithm execution times.

Fig. 25. SpaceBench SPFP matrix addition algorithm parallel efficiencies.

Fig. 26. SpaceBench SPFP matrix transpose algorithm parallel efficiencies.

Fig. 27. SpaceBench 32-bit integer matrix convolution algorithm dynamic
energy consumption.

Fig. 28. SpaceBench SPFP matrix convolution algorithm dynamic energy
consumption.

Fig. 29. SpaceBench SPFP matrix addition algorithm dynamic energy
consumption.

Fig. 30. SpaceBench SPFP matrix transpose algorithm dynamic energy
consumption.
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Fig. 31. Application benchmarking execution times. Legend entries represent platform name followed by number of threads or S indicating serial baseline.

Fig. 32. Application benchmarking parallel efficiencies. Legend entries represent platform name followed by number of threads or S indicating serial baseline.

Fig. 33. Application benchmarking dynamic energy consumption. Legend entries represent platform name followed by number of threads or S indicating
serial baseline.
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