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Abstract—Time-Triggered networks like Time-Triggered Eth-
ernet, TTP/C, Flexray, and IEEE 802.1Qbv are used in critical
embedded systems to provide reliable and predictable message
delivery. These networks work by controlling the maximum size
and exact rate at which applications can transmit messages.
While this approach works well for applications that generate
fixed-sized messages at constant rates, it leads to inefficient
bandwidth utilization when message sizes and timing are highly
variable. For example, to accommodate an application that runs
up to X times per second, and generates up to Y bytes of data per
execution, the network needs to be scheduled for the worst-case
— a Y -byte message every 1/X seconds.

We introduce Reduced Bandwidth Scheduling (RBS), a novel
method for reducing the bandwidth allocated to highly-variable
applications while still ensuring they meet reliability require-
ments. RBS models an application’s communication pattern as
a biased Bernoulli distribution, which we prove represents the
worst-case message overhead. With this model, RBS can provide
an upper bound on the probability that an application overflows
its network buffers, and a lower bound on message reliabil-
ity. Our evaluation shows that, for representative embedded
applications, RBS can reduce bandwidth utilization by up to
329 kbps (43% of the original utilization) while requiring only
2000 bytes of extra buffer space. Moreover, in a realistic case
study with a representative audio compression application, RBS
reduced bandwidth utilization by 146 kbps (34% of the original
utilization) while requiring only 41040 bytes of extra buffer space
(20× more) and maintaining reliability greater than 0.999 over
15 years.

Index Terms—Real-time networks, real-time systems, safety-
critical, TTE

I. INTRODUCTION

Time-triggered architectures are becoming increasingly com-
mon in safety and mission-critical embedded systems like
spacecraft, airplanes, and automobiles. For example, NASA’s
Orion and Gateway spacecraft, as well as ESA’s Ariane
6 launcher, all use Time-Triggered Ethernet as their main
data networks [1]–[5]. Several automobiles use FlexRay, a
time-triggered data bus, for communication with braking and
steering systems [6]. Additionally, industrial control systems
and manufacturing plants are starting to use time-triggered
architectures for controlling critical plant processes [7].

This research was supported by the NSF Center for Space, High-
performance, and Resilient Computing (SHREC) industry and agency mem-
bers and by the IUCRC Program of the National Science Foundation under
Grant No. CNS-1738783.

In time-triggered networks, devices (and their applications)
are synchronized to a common clock, which may be dis-
tributed, and communicate by sending messages according
to a global schedule [8], [9]. The schedule is developed
offline before the system is deployed, and specifies time
windows during which each application is allowed to send
messages [10]. These time windows prevent applications from
ever trying to access shared resources, like switch port buffers,
at the same time — which otherwise might lead to dropped
messages. However, for this approach to work, the schedule
traditionally must be designed to accommodate the worst-
case rate at which each application may run, as well as the
maximum amount of data it may generate [11], [12].

Because time-triggered schedules are loaded on the system
before it is deployed, they cannot typically be modified during
operation to handle changing network requirements [13]. This
means that if an application ever generates less data, or sends
messages at a lower rate, than the worst case assumed in the
network schedule, that unused bandwidth may be wasted [14].
Some time-triggered networks allow asynchronous traffic, such
as standard Ethernet traffic generated by commercial off-the-
shelf devices, to reclaim some of the lost bandwidth [15].
However, even in this case, the unused bandwidth cannot be
used by other time-triggered applications [16]. This means
that by provisioning bandwidth for the worst-case, designers
directly decrease their ability to schedule time-triggered appli-
cations (and meet deadlines) successfully.

This paper introduces Reduced Bandwidth Scheduling
(RBS), a principled method for reducing the bandwidth
requirements of highly-variable time-triggered applications,
while accepting a small (but bounded) probability of dropped
messages. For applications that rarely perform according to
their worst case (e.g., data compression and event-driven
sensor data), the failure probability can be made extremely
low (e.g., 0.001%).

The key idea of RBS is to measure the properties of an
application offline and create a stochastic model that represents
the application as a biased Bernoulli distribution. This model
is then used to select the maximum bandwidth and buffer size
allocated to the application when scheduling the network. In
times of peak traffic load, when the output from the application
exceeds that which can be accommodated by the network
schedule, messages are stored locally until network bandwidth
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becomes available. This design allows an application to be al-
located less bandwidth than its worst-case requirements would
normally dictate, while allowing it to make more efficient use
of the allocated bandwidth.

With RBS, the cost of reducing bandwidth is an increase in
memory usage. However, we consider this a worthwhile trade-
off; in modern embedded systems, onboard memory is often
much more available than network bandwidth [17], [18]. Also,
as we will show in section VI, the extra memory required for
significant bandwidth savings is often small.

To evaluate RBS, we used RBS to schedule a wide array of
representative embedded applications on a real Time-Triggered
Ethernet testbed. Our experimental evaluation shows that RBS
can reduce bandwidth utilization by up to 329 kbps, while
requiring only 2000 bytes of extra buffer space. Additionally,
RBS can achieve these bandwidth savings while introducing
only a small failure probability (e.g., 0.001). Our results show
that RBS can reduce bandwidth needs by 80 kbps with only
8640 bytes on an audio compression application.

Overall, this paper makes the following contributions:

• RBS: a novel method for reducing the scheduled band-
width of time-triggered applications while maintaining
delivery guarantees.

• A detailed formal analysis of RBS’s delivery guarantees
with guidance on how to configure RBS to meet specific
reliability targets.

• An evaluation of RBS on a real time-triggered network
with several representative applications showing signifi-
cantly reduced scheduled bandwidth.

II. BACKGROUND

Time-triggered networks are desirable for critical embedded
applications because they prevent dropped messages due to
resource contention, as well as malicious or faulty devices
from monopolizing the network bandwidth and preventing
other devices from communicating [9], [15], [19]. To ac-
complish this goal, devices in time-triggered networks are
synchronized to a global clock, and the behavior of the
network is controlled by a global schedule [20]. This schedule
is designed offline and pre-loaded onto each of the devices.
Each device sends and receives messages only as permitted by
the schedule. The schedule prevents devices from contending
for network resources, like switch buffers, that might lead to
dropped messages [16]. It also prevents malicious devices from
communicating outside of their preassigned communication
windows.

In order to create the schedule, the rate and maximum
message sizes corresponding to all time-triggered applications
traditionally must be known. If too much bandwidth is required
by all of the applications, the scheduling process fails and
no schedule is generated. When this happens, either the
network must be redesigned to alleviate the bottleneck or the
applications must be redesigned to use less bandwidth [10].

One major trade-off with time-triggered networks is that
flexibility is sacrificed for reliability [13], [21]. Because the

schedule is predefined, an application cannot use more band-
width than it was allocated. Thus, to avoid message drops,
applications must be allocated bandwidth according to their
worst-case needs. This approach is acceptable for applica-
tions with consistent and predictable bandwidth requirements.
However, for applications with unpredictable requirements,
it leads to inefficient network utilization and schedulability
problems [10], [22].

In RBS, we introduce a principled method for reducing the
bandwidth allocated to time-triggered applications, while not
exceeding a bounded probability of message drops.

III. MODEL

We assume that applications generate data periodically ac-
cording to a synchronous clock. This assumption reflects the
capabilities of typical embedded applications in spacecraft,
aircraft, and energy generation plants, where tasks are executed
according to a static cyclic schedule, which is synchronized
to the time-triggered network [23]–[26]. We also assume that
applications can buffer messages locally for a bounded amount
of time before they are transmitted. This buffering could be
performed either by the network interface card (NICs) or in
host memory. Modern time-triggered NICs already have the
ability to buffer hundreds of messages [27].

Applications are modelled according to a Bernoulli dis-
tribution, in which, at each execution, an application either
generates no data or a predefined maximum amount of data.
This distribution will be known as the biased Bernoulli dis-
tribution. As we will show in subsection IV-A, the biased
Bernoulli distribution results in the application behavior that is
most likely to cause buffer overflows. Let D be the maximum
amount of data generated in one execution (the bias), and µ
be the mean amount of data generated in one execution. Let
p be the probability the application produces data in a given
execution. Note that µ = Dp. The bandwidth allocated to the
application by RBS is a function of the mean: bandwidth = bµ,
where b is a scaling factor. The size of the buffer allocated to
the application is buffer size = Sµ. In subsection IV-B, we
describe how to calculate the parameters b and S in order to
meet a certain reliability target.

IV. DESIGN

In this section, we describe how RBS models applications and
selects usable resource parameters to achieve a given reliabil-
ity. RBS saves network bandwidth by buffering the variable
data outputs of an application to fit within the bandwidth
allocated to the application, which is potentially much smaller
than what would be required to accommodate the worst-
case scenario. Using a stochastic model of an application, an
appropriately-sized buffer can be selected to ensure all data
is transmitted over the reduced bandwidth reservation to a
configurable certainty.

A. Application Model Creation

For an application to have its bandwidth reduced, a model for
accurately estimating its output characteristics and applying
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them to a reliability analysis is needed. This model should
provide a conservative estimation in order to capture the widest
range of application behaviors. The model should also be
applicable to any application’s traffic distribution. For these
reasons, RBS models application traffic loads as following the
biased Bernoulli distribution.

The biased Bernoulli is a two-state distribution modelling
an application that outputs only either a volume of data D
(the bias) with probability p, or 0 in a given execution. Any
application whose output follows other statistical distributions
can map to the biased Bernoulli if their mean output, µ, can
be determined, and if they have a known worst-case output.
This will allow us to map the application to a biased Bernoulli
model where D is the worst-case output and p = D/µ.

The biased Bernoulli distribution is only useful for RBS if it
is the distribution that captures the greatest number of failure
states for any given application. To help compare the number
of states captured by different distributions, we can draw upon
the Central Limit Theorem. In this case, each “failure state”
is a sample trial of the application where a resource was
overused. The Central Limit Theorem demonstrates that as
the number of runs increases, the more the outcomes form
a Normal distribution. Since this is the case no matter what
distribution is used to model the application, all candidates can
be compared by checking the number of trials in which some
selected Sµ is exceeded, which can be done by comparing
statistical variances. We will show that the biased Bernoulli
distribution naturally leads to the highest variance of any
distribution — and thus is the most conservative model.
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Fig. 1. Left: the probability distribution for an application following the biased
Bernoulli distribution. Right: a probability distribution for an application that
does not follow the biased Bernoulli distribution.

Lemma 1. If two applications, one outputting data according
to a biased Bernoulli distribution, and the other according
to any other distribution, share a common worst-case output,
D, and mean output, µ, then the biased Bernoulli application
always has the higher variance.

Proof. Consider two applications of common D and µ, but
with different output distributions, a biased Bernoulli (App
1) and some other output distribution (App 2). An example
is shown in Fig. 1. App 2 must have at least one additional
output state between 0 and D, D′, to not trivialize to App
1. Because of this extra state, some executions that would
have been D or 0 for App 1 must now be D′; the difference
in these probabilities is captured as δ1 and δ2, respectively.

So, the probability of App 2 generating D data is p− δ2, the
probability of App 2 generating no data is 1− p− δ1, and the
probability of App 2 generating D′ data is δ1 + δ2.

Now consider a case where

V ar(App 1) ≤ V ar(App 2)

which can be expressed equivalently as

p(D − µ)2 + (1− p)µ2 ≤(p− δ2)(D − µ)2

+ (δ1 + δ2)(D
′ − µ)2

+ (1− p− δ1)µ
2

(1)

Now consider that for both applications, µ must be the
weighted sum of its output states.

µ = pD = (p− δ2)D + (δ1 + δ2)D
′

which lets us isolate δ1,

δ1 =
δ2(D −D′)

D′
(2)

Since, by definition, D > D′, it follows that 0 < δ1 ≤ (1− p)
and 0 < δ2 < p. Thus, substituting (2) into (1) gives

δ2((D − µ)2 − (D′ − µ)2) ≤ δ2(D −D′)

D′ ((D′ − µ)2 − µ2)

(3)

Which can be simplified to

D ≤ D′ (4)

So, in order for V ar(App 1) ≤ V ar(App 2), D′ must be
greater than D, which is a contradiction. Therefore, the
distribution of data generated by an application following the
biased Bernoulli distribution has a larger variance than any
other distribution.

Lemma 2. For two Normal distributions f1(x) and
f2(x) with means µ1 = µ2 = µ and variances σ2

1 > σ2
2

respectively, then for some arbitrary (α = Sµ) > µ,
P (f1(x) > α) > P (f2(x) > α).

Proof. Consider a Normal distribution with mean µ and
variance σ2. Next, consider some α > µ. Since this is a
normal distribution, calculating the probability that a sample
taken from this distribution is larger than α is equivalent
to calculating the probability that a sample taken from the
standard Normal distribution is larger that (α− µ)/σ. The
probability of a sample taken from the standard Normal
distribution is equal to the area under the probability density
function on the interval ((α− µ)/σ,∞). Since this interval
is larger for larger σ, increasing the variance of a Normal
distribution increases the probability of a sample taken from
the distribution being greater than α > µ. Thus, for two
Normal distributions with the same mean, the distribution with
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the larger variance is more likely to produce a sample greater
than some α > µ.

Theorem 1. Messages sent according to the biased Bernoulli
distribution result in the highest probability of buffer overflow
on the sending device.

Proof. Consider again the two applications from Lemma 1.
Assume that both applications execute for some interval n
times. By the Central Limit Theorem, the collection of n out-
comes for both applications converge to Normal distributions.
Lemma 1 implies that App 1 must have a greater variance than
App 2 over these trials. Lemma 2 implies that because App 1
must have the higher variance, then for any value α > µ, App
1 statistically contains more states than App 2 that exceed that
threshold. Because any state where the output is > α causes
a buffer overflow, App 1 is always most likely to fail.

B. Estimating the Probability of Failure

In the following section, we explain how the probability of
failure is bounded from the input parameters b and S. To do
this, we use the biased Bernoulli distribution to model the
amount of data generated by the application. As discussed
in subsection IV-A, any application that does not follow the
biased Bernoulli distribution can be modelled as a biased
Bernoulli distribution, with its mean µ and maximum D.

Before determining what the parameters b and S must
be, the system designer must decide what the reliability of
the application should be. Depending on the application, the
reliability might need to be greater than 0.99 or 0.999. RBS
provides a method for estimating the probability of failure
at each execution of the application given that it has not
failed before, which will be known as f(t). The reliability
of the application over its lifetime is equal to one minus the
probability of failure at every execution in its lifetime. This can
be found by summing f(t) over every execution in its lifetime.
RBS guarantees a known f(t) based on S and b, so several
iterations of adjusting these parameters and recalculating f(t)
might be necessary to reach a reliability requirement.

The application will fail, i.e., lose data, when the amount
of data in the buffer exceeds the size of the buffer. This
condition is met when the application outputs more data over
some number of executions than the available bandwidth can
transmit over the same time. In the worst case where D data
is generated at every execution:

Sµ < Dt− bµ(t− 1)

This allows us to find the first execution, tmin, that a failure
is possible:

tmin = ⌊Sµ− bµ

D − bµ
⌋+ 1 (5)

This does not apply to instances where even a single execution
generates less than the maximum amount of data. In any other
case, for some t > tmin, there exists a myriad of combinations
of generating and non-generating executions, only some of

which will ultimately satisfy the failure condition. To track
these, we introduce a new concept: the failure interval, which
is depicted in Fig. 2. The failure interval is defined as some
number of consecutive executions, i, where the buffer usage
begins at 0. The failure interval ends at execution t, where the
buffer usage exceeds Sµ for the first time. Further, we stipulate
that the buffer usage can never be zero at some intermediate
execution (if it was, a new failure interval would begin). The
failure interval provides a means to count all ways that the
failure condition can be met at some execution t.

Fig. 2. Visualization of a failure interval. The buffer must be empty at the
beginning of the failure interval.

Because all applications are modelled as biased Bernoulli
generators, we can determine the output of some interval of
length t, where actually only n ≤ t executions generated
data, as nD. From that, we can compute how many execu-
tions within a failure interval must generate data in order to
guarantee a failure at the end of the interval, nt.

nt = ⌊Sµ
D

+
(t− 1)bµ

D
⌋+ 1 (6)

This captures how much data must be generated in just one
of many unique failure intervals ending at t. All these failure
intervals can be examined to calculate f(t). A failure interval
of length i might have numerous different combinations of
generating and non-generating (i.e., executions that generate
D data or no data) executions, all of which result in a failure
at the end of the interval. By considering the probability that
any failure interval ending at execution t occurs, f(t) can be
calculated. Finding f(tmin) is simple because there can only
be one failure interval to that point, the worst case, which is
found by:

f(tmin) = p(tmin) (7)

For t > tmin, multiple failure intervals are possible at each t.
Multiple executions of the application corresponds to multi-

ple samples from the biased Bernoulli distribution. Therefore,
the amount of data generated by the application follows the
Binomial distribution, multiplied by the bias term, D. Naively,
to calculate the probability of a failure interval of a particular
length, we could calculate this probability according to a
Binomial distribution:

f(t) =

t∑
i=tmin

pni(1− p)i−ni

(
i

ni

)
(8)

However, this overcounts the number of failure intervals since
it includes those that terminate prior to t and failure intervals
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that have empty buffers part way through the interval. So, we
introduce three terms to tailor the f(t) more accurately: C(t),
P0, and fdec(t).

First, we construct C(t), which we use to eliminate un-
reachable failure intervals. We observe that since any useful
configuration of RBS satisfies bµ < D, by (6), nt is at most
nt−1 + 1. In a vacuum, we can intuit this to mean that when
a failure interval extends by one execution, it requires at most
one additional generating execution to fail at that point.

However, a failure interval of length t > tmin implies the
existence of smaller failure intervals. Therefore, if we have
previously counted the failure intervals of length t − 1, then
the failure intervals where nt = nt−1 + 1 cannot actually fail
at t. This is because failure intervals must end on a generating
execution, and a failure at t would mean that at execution t−1,
there must be at least nt−1 generating executions. This means
that if nt = nt−1+1, then all combinations that would satisfy
the failure interval of length t would also satisfy the failure
interval of length t−1, making the former impossible to occur.

Now, we can construct a correction function, C(t). As just
mentioned, when nt = nt−1 + 1, t cannot have a failure
interval, so C(t) = 0. But otherwise, we return to a binomial
approximation of the true count, C(t) =

(
t
nt

)
. This results in

C(t) being a piece-wise function where:

C(t) =

{
0 ifnt = nt−1 + 1(

t
nt

)
ifnt = nt−1

(9)

This counts many cases that would cause a failure before
t. We accept this inaccuracy because the result is that the
estimate for the probability of failure is higher than it actually
is. This representation also counts many cases in which the
buffer empties completely during the failure interval, which
is a case captured by a smaller failure interval. Again, this
results in an overestimate of the probability of failure, so this
is acceptable.

To provide some insight into this equation, we take the
derivative of (6):

dnt

dt
=

bµ

D
= bp (10)

This value represents the frequency in which nt = nt−1 + 1,
which is the proportion of executions in which C(t) = 0.
When C(t) = 0, f(t) decreases from f(t− 1) because there
are no new failure intervals. Because the probability of an
empty buffer at any execution after the first execution is less
than 1, the probability of a failure interval of length t − 1
ending at execution t is less than the probability of a failure
interval of length t− 1 ending at execution t− 1.

Next, we construct a method to estimate the probability that
the buffer is empty at a particular execution. This is necessary
because failure intervals always begin with an empty buffer.
Let the probability of the buffer being empty at any given
execution be P0. At execution t = 0, P0 = 1, since the buffer
starts empty by definition. Then, at t = 1, P0 = 1− p, and so
on, following the fact that biased the Bernoulli model either

adds D or 0 to the buffer at every t. As t becomes large, P0(t)
converges to a constant which we can apply uniformly, found
by:

P0 = lim
t→inf

tbµ− tpD

tbµ
= 1− 1

b
(11)

This probability is valid in the range 1 < b < 1
p , which is

acceptable for RBS. Selecting some b ≤ 1 means that the mean
bandwidth is the allotted bandwidth, removing any margin for
the application to avoid failing. And selecting b ≥ 1

p implies
that application has been provisioned with enough bandwidth
to handle its worst-case, so RBS is not needed. Thus, when
RBS is useful, b will always be in this range.

Finally, we construct fdec(t) to count failure intervals of
length tmin ≤ i < t. Because the probability of failure at
execution t is equal to the probability of all failure intervals
of length i ≤ t occurring, fdec(t) can be defined as a function
of f(t − 1). Since f(t − 1) has a failure interval starting at
the first execution, this failure interval is not multiplied by P0.
However, to calculate f(t), the failure interval of length t− 1
no longer starts at the first execution. Therefore, the probability
of a failure interval of length t−1 times the probability of the
buffer not being empty must be subtracted out of f(t− 1) in
order to get fdec(t). Thus:

fdec(t) = f(t− 1)− (1− P0)p
nt−1(1− p)t−1−nt−1C(t− 1)

(12)
The intuition for fdec(t) reasons that at every t we’ve com-
puted f(t−1) and can use P0 to avoid counting those intervals
where the buffer reached back to 0. However, the final failure
interval of length t − 1 is not weighed against P0, counting
extra probability for that interval. fdec(t) is just a term that
removes the cases where the buffer was not empty from the
final failure interval of length t− 1.

Now, the probability of failure at any execution t can be
approximated with the following equation by adding a new
term to (12):

f(t) = fdec(t) + pnt(1− p)t−ntC(t) (13)

The new term is the probability of getting the exact number
of data generating executions to cause a failure at t, which
converges to 0. Therefore, this equation converges to some
value > 0. Since f(t) converges, fdec(t) also converges.

The reliability of an application over its lifetime is equal
to one minus the probability of failure before the end of its
life. Because f(t) represents the conditional probability that
the application fails on execution t given that it has not failed
before t, this equation becomes:

R = 1−
t∑

i=0

f(i) (14)

Based on how long a mission is expected to take, the total
number of executions that an application will perform can
be calculated. To simplify calculations, f(t) will be taken as
a constant term at the converging value. This simplification
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underestimates the actual reliability because f(t) approaches
the convergent value from below. Using (14), the reliability
of the application over the entire interval during which it is
expected to operate can be bounded to be above a certain
threshold.

C. Real-Time Characteristics

Because data using RBS is buffered, the real-time guarantees
provided by time-triggered networks do not apply in the
same way. However, given the guarantees of the network, a
calculation for maximum delay can be developed. To start,
some characteristics of time-triggered traffic must be defined.
Let f be the frequency at which messages for a particular
application are sent, l be the maximum message size, and d be
the maximum transmission delay. All of these terms are set or
calculated at design time, so the calculation for maximum data
delay can also be done at design time. Trivially, we know that
the greatest delay will occur when the buffer is full. Therefore,
the maximum data delay is given by:

∆T =
1

f
⌈Sµ

l
⌉+ d (15)

V. IMPLEMENTATION

To evaluate RBS, we used a real testbed consisting of a
Time-Triggered Ethernet (TTE) network switch and two TTE
network interface cards from TTTech Computertechnik. The
network cards were connected to Dell PCs with 4-core Intel i3-
450 processors running Ubuntu 14.04 LTS with kernel 3.13.0-
36-generic x86 64. All physical links were 100Base-TX. The
network equipment was configured to support a single time-
triggered data stream whose bandwidth characteristics were
manipulated for each experiment.

On this testbed, we implemented both a generic traffic-
generator and an application that transmits compressed audio.
The traffic generator runs according to a cyclic executive,
periodically producing data according to a Biased Bernoulli
distribution. We refer to this as the Bernoulli application,
which can be parameterized by its bias, D, and the probability
of producing the bias, p. The compressed audio application
uses the WavPack compression algorithm [28], which is com-
monly used in real-time audio transmission [29].

VI. EVALUATION

In this section, we answer the following questions:
1) How effective is RBS at reducing bandwidth utilization?
2) How reliable are applications scheduled with RBS?
3) How well does RBS perform when used with a real

audio streaming application?

A. Bandwidth Utilization

Experimental Setup. In this experiment, we examined how
much RBS reduces bandwidth utilization. We examined the
impact of changing three parameters of an application: the
amount of data generated, target reliability, and frequency
F . The cases tested were max(f(t)) = {10−6, 10−10}
while F = 40 Hz and D = 500 bytes, F = {5, 200} Hz

while max(f(t)) = 10−10 and D = 500 bytes, and
D = {250, 1000} bytes while max(f(t)) = 10−10 and
F = 40 Hz. These values are based on those found in typical
embedded applications [23], [26], [30], [31].
Results. Our results are shown in Fig. 3. Bandwidth is shown
on the y-axis and buffer length on the x-axis, with several
different graphs for different values of p. Each case could
apply to many different applications, so long as they have the
same D and µ parameters.

The results show that RBS can significantly reduce band-
width utilization. For example, in the case with p = 0.1,
F = 200 Hz, max(f(t)) = 10−10, and D = 500 bytes,
bandwidth is reduced by 660 kbps (82.5%) with a buffer length
of 9900 bytes (19.8 times what is required with worst-case
bandwidth). Similarly, in the case with p = 0.1, F = 40 Hz,
max(f(t)) = 10−6, and D = 500 bytes, bandwidth is reduced
by 108 kbps (67.5%) with a buffer length of 2535 bytes (5.07
times what is required with worst-case bandwidth).

Briefly, we also note that there is a diminishing return on
increasing buffer length. In other words, increasing the buffer
length by more than ×20 the the length of the buffer needed
with the maximum bandwidth does not significantly decrease
the bandwidth utilization.

B. Reliability

Experimental Setup. To examine the impact RBS has on reli-
ability, we performed two experiments on the same Bernoulli
application running at 100 Hz. In each experiment, we ran
the application until failure occurred (i.e., data was dropped).
Both experiments used D = 2048 bytes and p = 0.5. µ was
determined by measuring 100 executions of the application
offline. From this profile, we found µ = 1004. In the first
experiment, the target probability of failure was 10−9 and we
set the bandwidth to 988 kbps, which resulted in a buffer
length of 46148 bytes. In the second experiment, the target
probability of failure was 10−3 and we set the bandwidth to
924 kbps, which resulted in a buffer length of 23092 bytes. In
the first experiment, because the reliability was so high, this
test was not feasible to run in real time. Instead, we simulated
it at ×100000 speed in software. The second experiment was
executed it on real hardware.

In both experiments, we ran the applications until they
failed. We repeated this process (10 times for high probability
of failure, 100 times for low probability of failure) in order
to approximate the Mean-Time-To-Failure (MTTF) of the ap-
plication. We then compared the measured MTTF against the
expected MTTF, which was determined using the probability
of failure found from the model.
Results. Our results are shown in Fig. 4 and Fig. 5. Fig. 4
depicts the time to failure of 100 trials of experiment one.
Using (13), the MTTF for this application was calculated to
be 1.68×109 executions. On average, this setup experienced a
time to failure of 1.18×1010 executions, an order of magnitude
better. Similarly, experiment two’s setup was reliable beyond
the bounds of the model. RBS predicted at least 744 execu-
tions before failure. Over 10 trials, the MTTF was 11, 200
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Fig. 3. Different parameters and their effects on the required bandwidth and buffer length to achieve less than a predefined probability of failure.

executions, with no exceptions below the predicted minimum.
Fig. 5 depicts the trial which failed earliest, showing that buffer
usage at each cycle was safely within limits until well beyond
the MTTF.
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Fig. 4. Execution time before first failure for experiment one in subsec-
tion VI-B (target probability of failure: 10−9).

C. Case Study: Audio Compression
Experimental Setup. We used a compressed audio application
to test how RBS performs on real software. The application
sent audio data over the network using the WavPack com-
pression algorithm [28]. This compression algorithm was used
because it allows for compressing small blocks of audio data,
making it a common choice for real-time communication [29].
The data used was an audio recording of Wikipedia’s article
on Parallel Computing [32], which was selected because of
its length (54 minutes, 15 seconds) and because speech is a
common example of real-time data in embedded systems [33].
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Fig. 5. The buffer usage at each execution for experiment two in subsec-
tion VI-B (target probability of failure: 10−3).

The sample rate used by this recording was 44.1 kHz, a
standard sampling frequency [34]. The application sent com-
pressed data at 25 Hz, meaning each transmission contained
1764 samples. Throughout the entire audio recording, there
were a total of 81375 executions, from which we used the
first 100 to estimate the parameters of the application.

We measured the mean amount of data per execution to
be µ = 1052.92 bytes and the maximum amount of data to
be D = 2160 bytes. These measurements were used as the
parameters for the application’s model, resulting in p = 0.487.
The worst-case bandwidth for compressed audio data was
calculated to be 433 kbps.

We targeted a reliability of at least 0.999 over 15 years,
which matches the reliability requirements of satellite com-
ponents [35]. Two cases were tested. The first used a buffer
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length 5 times the maximum amount of data that could be
generated, or 10800 bytes. The second used a buffer length 20
times the maximum amount of data that could be generated,
or 43200 bytes.
Results. In order to achieve a reliability of
0.999, f(t) at each execution must be less than
(1−R)/(total executions) = 8.45× 10−14. For the first
case with a buffer of 10800 bytes, the bandwidth allocated
to the application was 387 kbps, 89.4% of the worst-case
bandwidth. For the second case with a buffer of 43200 bytes,
the bandwidth allocated to the application was 287 kbps,
66.3% of the worst-case bandwidth. For the first application,
the maximum buffer usage was 4204 bytes or 38.9% of
the maximum buffer length. For the second application, the
maximum buffer usage was 19822 bytes or 45.9% of the
maximum buffer length. These results show that neither
application came close to dropping data. The graphs are
shown in Fig. 6.
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Fig. 6. Buffer length at each execution, Left: buffer length = 10800 bytes,
Right: buffer length = 43200 bytes.

VII. RELATED WORK

Improving Network Performance Many works focus on
improving the performance of real-time networks. Often, these
works introduce ways to reduce the worst case traversal times
of messages [36], [37], or increase the resilience of mes-
sage routing [38], [39]. For example, many software-defined
networks use separate output queues to minimize worst-case
queuing delays at switch egress ports [40]. In general, RBS
is orthogonal to these works — instead attempting to reduce
bandwidth utilization. Some works have similar goals, but
require coding to split messages into fragments, and redundant
paths to forward fragments through the network. In contrast,
RBS works without requiring modifications to the applications,
and works even in non-redundant networks.
Quality Aware Frame Skipping. One solution for transmit-
ting data over resource-constrained channels is quality aware
frame skipping (QAFS), where some data is purposefully
not sent during times of high utilization to prevent network
congestion [41], [42]. QAFS was originally developed for
streaming video in asynchronous networks, but the same
principle could be used in time-triggered networks as well. In
contrast to QAFS, does not require frames to be periodically
skipped, and provided a calculable bound on the probability
that frames are dropped. RBS also allows designers to save

significantly more bandwidth (e.g., > 20%) than what can be
achieved with QAFS, without significantly degrading quality.
Profile-Guided Optimization. A common method for im-
proving performance is to use profile-guided optimization, in
which traces of real executions of a system are processed
offline and used to inform the behavior of the system at run-
time [43]–[45]. One way to use this technique in time-triggered
networks would be to measure the bandwidth requirements of
an application, and directly use it to determine how much
bandwidth to allocate for the application in the network. RBS
takes a more principled approach, in which a representative
model is created from the profile. This model is used to select
the amount of bandwidth and the buffer space required to reach
a reliability target.

VIII. CONCLUSION

This paper presented RBS, a method for reducing the amount
of bandwidth allocated to time-triggered applications. RBS
leverages the observation that many applications have a worst-
case that is both rare and significantly worse than the average
case. RBS exploits this observation by buffering data that
otherwise would far exceed the allocated network bandwidth,
and allowing this data to be transmitted over a longer period of
time. Our experiments show that RBS is effective and efficient
across a broad range of representative embedded applications.
Moreover, RBS reduced the bandwidth required by a real audio
compression application by 34%, while achieving a reliability
greater than 0.999 over 15 years.
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