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Reduced-precision redundancy (RPR) has been shown to be a viable alternative to triple modular redundancy (TMR) for digital
circuits. This paper builds on previous research by offering a detailed analysis of the implementation of RPR on FPGAs to improve
reliability in soft error environments. Example implementations and fault injection experiments demonstrate the cost and benefits
of RPR, showing how RPR can be used to improve the failure rate by up to 200 times over an unmitigated system at costs less
than half that of TMR. A novel method is also presented for improving the error-masking ability of RPR by up to 5 times at no
additional hardware cost under certain conditions. This research shows RPR to be a very flexible soft error mitigation technique
and offers insight into its application on FPGAs.

1. Introduction

Field-programmable gate arrays (FPGAs) are an attractive
target for high-performance digital signal processing and
real-time communication systems [1]. FPGAs have been
used to implement communication-specific processors for
well over a decade. Their ability to combine flexibility with
good performance makes FPGAs popular for software-de-
fined radios. Reconfigurable radios are also becoming
more attractive for space-based applications. The ability to
reconfigure the FPGA resources with an updated radio
configuration reduces the amount of hardware needed on
the spacecraft [2]. FPGAs are increasingly used in space for
reconfigurable radios and other high-performance comput-
ing tasks [3–5].

The problem with using the popular SRAM- (static-
random-access-memory-) based FPGAs in space is the
presence of high-energy particles that may alter the operation
of the digital circuitry or the state of static memory cells.
These errors, called soft errors, do not cause any physical
damage to the device but interact with state of memories or
other digital circuits [6]. For example, charged particles can
occasionally invert the contents of a memory cell. Such an
event is called a “single event upset” (SEU) [7].

Because most of the FPGA area is devoted to static mem-
ory cells to store the FPGA configuration memory, FPGAs
are very sensitive to radiation. Any FPGA design operating in
space must consider the effects of high-energy radiation and
implement some form of SEU mitigation. Triple modular
redundancy (TMR) is the most popular SEU mitigation
technique for FPGAs. TMR protects the FPGA circuit by
creating three copies of a circuit and choosing the output
based on a majority vote between the three. TMR masks the
effects of SEUs as well as the less critical transient and soft
data errors.

Although TMR is very effective at protecting FPGA cir-
cuits from soft errors, it is costly in terms of the circuit area,
power, and circuit timing [8, 9]. A less expensive hardware
mitigation strategy for arithmetic circuits is a technique
called reduced-precision redundancy (RPR). RPR is designed
to protect against large magnitude errors in arithmetic
circuits by providing redundant, lower precision arithmetic
circuits and comparing their results (the details of RPR will
be described in Section 3). Although the use of RPR may
introduce low precision errors, its area savings make it an
attractive alternative for protecting FPGA signal processing
circuits against SEUs, transient, and soft data errors.
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RPR is a relatively new technique and is more difficult
to implement than TMR. There are a number of important
design decisions that must be made for each circuit protected
by RPR. These choices include selecting the precision of
the reduced-precision circuits and determining the threshold
for detecting low-magnitude errors. This paper expands on
previous work by clarifying the design space of these design
choices and defining the trade-offs associated with these
parameters (threshold selection is described in Section 5 and
bit-width selection is described in Section 6). By understand-
ing the impact of these design choices, more efficient SEU
mitigation can be achieved. Using this insight, this paper
introduces a new method to increase the effectiveness of
RPR by up to 5 times for some systems with no additional
hardware cost. The benefits of these techniques are validated
on a matched filter for a binary pulse amplitude modulation
(PAM) communication system. Using a well-proven fault
injection technique, these experiments demonstrate signif-
icant hardware savings of RPR over TMR and acceptable
levels of SEU mitigation.

2. Previous Work

RPR was introduced by Shim et al. as part of a power reduc-
tion technique for ASIC- (application-specific-integrated-
circuit-) based DSP systems [10, 11]. Shim et al. used RPR
to overcome errors introduced by voltage overscaling, which
reduces the supply voltage of a circuit to save power. This
voltage reduction slows the operation of the circuit and
can cause intermittent errors at the circuit output when the
longer logic paths are excited. RPR was used to reduce the
effects of these intermittent errors, which had the tendency to
occur in the most significant bits of the circuit output since
those generally correspond to the longer paths through the
logic.

Shim and Shanbhag later modified this RPR technique
and analyzed it as a means for protecting against deep sub-
micron noise and soft errors in ASIC-based DSP systems
[12]. Reviriego et al. used this modification of RPR to
protect an adaptive equalizer circuit in an ASIC system and
took advantage of that circuit’s error-correcting properties
to reduce the cost of mitigation even further [13]. This soft
error style of RPR is more suited towards SEU mitigation for
FPGAs than the original. In a radiation environment, SEUs
are distributed uniformly across an FPGA similar to soft
errors in ASIC systems. These errors are not biased towards
the most significant bits as in the VOS case. Still, because
SEUs may impact the logic implemented by the FPGA, soft
errors in ASIC systems tend to be less severe than those of
concern in FPGAs.

Snodgrass presented an alternate RPR configuration and
demonstrated it on FPGAs in [14]. Sullivan later provided
details on how to implement this type of RPR on several
elementary arithmetic operations and characterized the per-
formance of some RPR systems in simulation [15]. Both of
these authors confirmed that RPR could be a valuable SEU
mitigation technique for certain FPGA-based systems.

Previous work demonstrated the viability of RPR for nu-
merical systems. To use RPR in practice requires the designer
to make a number of important design decisions such as
the precision of the reduced-precision replicas used and the
threshold for determining which of the three RPR modules,
if any, is in error. This work extends the previous work by
providing tools for making these choices, which trade off the
area cost and performance of the RPR implementation. This
paper offers more insight into the implementation of RPR on
FPGA systems by introducing and discussing these trade-offs
as well as providing detailed experimental results for systems
using varying parameters. In addition, this paper suggests a
novel experimental method for improving the performance
of RPR with no additional hardware cost for certain systems.

3. Reduced-Precision Redundancy

RPR is implemented by creating two identical reduced-pre-
cision (RP) versions of the module to be protected, as
illustrated in Figure 1. The outputs of the two RP modules
are used to determine if there is a fault in the full-precision
(FP) module. If the FP output differs from the RP outputs by
more than a preset threshold, Th, the FP module is assumed
to be in error. When the FP module is found to be in error,
the output of the RP modules is used instead as an estimate
of the FP output. If the FP output differs from the RP outputs
by less than Th, the FP module is assumed to be correct and
its output is used.

The arithmetic circuits protected by RPR may be of any
size or complexity. The circuit may be an elementary arith-
metic operation such as an adder or a more complex com-
bination of operators such as a finite impulse response (FIR)
filter (the effects of the size and complexity of the module to
be protected on the efficiency and effectiveness of RPR are
discussed in [15, 16]). This paper refers to the combination
of full-precision and reduced-precision modules along with
the decision hardware as an RPR system or RPR module.

Implementing RPR on a module requires the choice
of two main parameters: the bit width of the reduced-
precision module (Br) and the decision threshold (Th). The
two values are linked and together greatly affect the cost
and performance of RPR. The following two subsections
introduce these parameters while Sections 5 and 6 describe
the trade-offs for selecting the values of Th and Br in more
detail.

3.1. RPR Bit Widths. The bit widths of the signals operated
on in the RPR system have a great effect on both the cost
and performance of the system. In Figure 1, the full n-bit
input is truncated or rounded to a k-bit value (where k < n)
before being passed to each of the RP modules. With a lower-
precision input, the RP module can be made smaller than the
FP module, reducing the cost of RPR compared to TMR. The
lower the precision, however, the poorer the estimate the RP
module offers of the FP result. This affects the ability of RPR
to mask errors in the system. Section 6 describes these trade-
offs in detail.
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Figure 1: Simplified block diagram of an n-bit (B = n) full-precision module protected with RPR using two k-bit (Br = k) reduced-precision
modules, where k < n.

This paper refers to the bit widths of the full-precision
and reduced-precision modules as B and Br , respectively. For
consistency, the numbers represented in this paper are in
fixed point, twos complement format in the range [−1, 1)
with B/Br bits to the right of the binary point and only the
sign bit to the left. Thus the full-precision module has B + 1
input bits, and the reduced-precision modules have Br + 1
input bits.

3.2. Decision Block. As shown in Figure 1, a decision block
is included in RPR to determine if an error has occurred.
Like TMR, RPR assumes that no more than a single upset
occurs at one time. The decision block compares the outputs
of the full-precision (FP) and two reduced-precision (RP1
and RP2) modules as follows:
if ((|FPout − RP1out| > Th) AND (RP1out = RP2out)) then

output ⇐ RP2out

else
output ⇐ FPout

end if.
Thus the full-precision output is used when no error is

found or when the two reduced-precision modules disagree.
When the reduced-precision modules disagree, one of these
must be in error rather than the full-precision module. Oth-
erwise, one of the reduced-precision outputs is used, provid-
ing an estimate of the correct full-precision output.

For a particular instantiation of RPR (i.e., for a particular
module and Br value), there is an optimal range for Th. If Th

is too large, the full-precision output will be used even when
there are significant errors in that module. A Th that is too
small will cause the RP output to be chosen even when there
are no errors in the FP module, resulting in the false detection
(FD) upset case. The limits on the optimal range of Th will be
discussed in Section 5.

3.3. RPR Output Noise. The performance of an RPR system
in the presence of soft errors can be measured by the de-
viation of its output from the unmitigated system in the
absence of soft errors. In the context of DSP systems, this
deviation could be termed “noise.” The performance of an
RPR DSP system, then, can be described in terms of the noise
of the system in the presence of upsets.

Each individual upset causes a different amount of noise
to be added to the system output. The amount of noise added
to the output depends on the location of the upset within the
circuit. For example, an upset affecting a high-order bit of
computation is expected to cause more noise than an upset
affecting a low-order bit.

Several noise signals and values are important in defining
the operation and performance of RPR. The noise signal at
the output of the RPR system is defined as difference between
RPR system and the output of the full-precision module in
the absence of upsets (the true output)

εRPR = FPtrue − RPRout. (1)

The noise signal added by an upset in the full-precision mod-
ule is the upset error

εu = FPout − FPtrue. (2)

The difference between the full-precision and reduced preci-
sion outputs is the estimation error signal

εe = FPout − RPout. (3)

And the value of the maximum estimation error is

εmax = max|εe| = |FPout − RPout|. (4)

3.4. RPR Upset Cases. The upsets in a system protected with
RPR can be categorized by the location of the upset and its
effect on the system. There are four possible upset cases for
RPR in general.

(i) Detected Upset (DU). An upset occurs in the full-
precision module and the RPR decision block deter-
mines that there is an error in the full-precision
module.

(ii) Undetected Upset (UU). An upset occurs in the full-
precision module but the RPR decision block does
not indicate an error because the error does not ex-
ceed the threshold.

(iii) False Detection (FD). Though there is no upset in
the full-precision module, the RPR decision block
indicates that there is an error. This could occur if
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the natural difference between the full-precision and
reduced-precision outputs (εe) is greater than the
chosen value of Th for some set of inputs, that is,
Th < εmax.

(iv) No Upset (NU). No upset exists in the full-precision
module and there is no false detection.

The DU and the FD upset cases result in the RPR system
choosing the reduced-precision output, operating in re-
duced-precision mode. The details of the RPR implementation
control the distribution of upsets between the upset cases.

Each upset case has a distinct probability of occurrence
and a distinct noise level or range that is added to the system
output. The probability of these upset cases depends on sev-
eral factors.

(i) Pupset is the probability of a soft error in the full-pre-
cision module, altering its output in some way. This
is a function of the environment upset rate and the
size of the unmitigated design.

(ii) a is the detection factor, the fraction of upsets which
trigger the reduced-precision mode in a particular RPR
implementation. This factor depends on the detection
capability of the specific RPR implementation: the
type and magnitude of upsets that can be detected.

(iii) Pfp is the probability of a false positive detection
event, which occurs when RPR erroneously chooses
the reduced-precision output over the full-precision
output even when the full-precision module was
correct. The frequency of occurrence depends on the
RPR implementation and the properties of the signals
being processed.

Table 1 lists the probabilities of the four upset cases and
shows the limit of the noise signal, ERPR, in each case.

3.5. Average RPR Noise Limit. In order to summarize the
effect of changing RPR parameters on the performance of
the system, we define an average noise limit for RPR, ERPR-avg.
The average RPR noise limit is based on the probabilities and
noise limits of Table 1:

ERPR-avg = Pr(DU) · εmax + Pr(UU) · Th + Pr(FD) · εmax

= Pupset · a · εmax + Pupset · (1− a) · Th

+
(

1− Pupset

)
· Pfp · εmax.

(5)

This takes into account the probability of occurrence of each
upset case and gives an average value of the noise limit ERPR

over time.

4. Example System and
Experimental Configuration

The discussion offered in this paper is kept as general as
possible. When appropriate, however, an example system is
used to illustrate the concepts presented and to provide

Table 1: Summary of the possible upset cases for a general RPR
module.

Upset case Probability
Noise signal

added
Absolute noise

limit (ERPR)

DU Pupset · a εe εmax

UU Pupset · (1− a) εu Th

FD (1− Pupset) · Pfp εe εmax

NU (1−Pupset)·(1−Pfp) 0 0

practical demonstrations. This example system is a digital
communications circuit. Specifically, a simple demodulator
is implemented on an FPGA and is assumed to be operating
in a radiation environment.

The architecture of the demodulator and the effects of
soft errors on the system are used to illustrate the points
made in this paper. Fault injection experiments simulated
the effects of radiation and provided the data gathered. This
section briefly describes the example system, the method of
testing the system using fault injection, and the classification
of upsets seen in the experiments.

4.1. Example System. Figure 2 shows the block diagram of
a simple binary pulse amplitude modulation (PAM) com-
munications system with a Gaussian noise channel. The
binary PAM system is the basis for many complex systems
including other PAM systems and phase-shift keying (PSK)
systems. The demodulator portion of the system is the focus
of the analysis and fault injection experiments reported on
here.

The matched filter was implemented as a 25-tap FIR filter
with symmetric coefficients, which allows the filter to be
implemented with 13 multipliers. The filter used a square-
root-raised-cosine (SRRC) pulse shape with excess band-
width α = 0.5 using Lp = 3 [17]. The matched filter operated
at N = 4 samples/bit and used 16-bit coefficients. The inputs
and filter registers had the same bit widths as the coefficients.

The other two blocks of the demodulator circuit are
much simpler than the matched filter. The downsample
block passes on every fourth sample and throws away the rest.
The decision block is a simple threshold detector, checking
the sign of each sample to determine if a 1 or 0 was most
likely to have been originally sent based on the received data.

The matched filter makes up the bulk of the demodulator
portion of the system in terms of FPGA resources. (The
downsample block is simply an enabled register, and the
decision block reads and inverts the MSB of the downsample
block output as a comparison against zero in two’s comple-
ment arithmetic). To simplify the analysis of the fault in-
jection results, the filter was the only block implemented on
the test FPGA.

4.2. Fault Injection Experiments. Fault injection experiments
were used to test the effect of SEUs on the matched filter and
on the functionality of the demodulator system. The fault
injection experiments were conducted as follows.
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Figure 2: Model of a binary pulse amplitude modulation (PAM) communications systems with an additive white Gaussian noise (AWGN)
channel.

(1) The FIR filter design was targeted to a Xilinx Virtex 4
SX-55 FPGA (the DUT FPGA).

(2) The sensitive bits of the filter (those FPGA configura-
tion bits which affect a particular design) were iden-
tified according to the method described in [18].

(3) One of the bits in the set defined in Step (2) was
inverted in the original, clean configuration bit file,
and the FPGA was configured using this corrupt file.

(4) For this configuration upset, a bit error rate curve
was generated by processing the modulated signal
from the FuncMon with the system defined by the
corrupted configuration bit file.

(5) For the noncatastrophic SEUs, the bit error rate curve
produced by the previous step was compared to the
curve for the system in the absence of upsets. The
performance loss (in terms of SNR) is estimated by
taking the difference of the SNR value of each curve
at a bit error rate of 10−5.

Steps (3) through (5) were repeated for each of the sensitive
configuration bits, as defined in Step (2). This process sim-
ulated the occurrence of all relevant SEUs, each being present
one at a time as expected in an FPGA system with a proper
scrubbing system.

4.3. SEU Classes. The fault injection experiments resulted
in different types of errors in the system, depending on the
particular configuration bit upset. We divided the upsets into
what we consider to be four types of effects [19]. We label
these SEU categories “Class 1 SEU” through “Class 4 SEU.”

(1) A Class 1 SEU causes virtually no perturbation in the
bit error rate performance of the matched filter detec-
tor. The measured loss is less than 0.2 dB, allowing for
measurement error of the SNR loss value.

(2) A Class 2 SEU degrades the bit error rate performance
in the same way an additional source of additive noise
degrades performance.

(3) A Class 3 SEU produces an unusably high bit error
rate floor. These SEUs are considered catastrophic.

(4) A Class 4 SEU produces a bit error rate of 1/2. These
SEUs are also catastrophic.

Tables 3 and 6 report the results of the fault injection ex-
periments, tallying the number of SEUs in each of these four
classes.

5. Threshold Selection

As described in Section 3, Th is the error detection threshold
of RPR. Th is an important parameter which controls the
magnitude of errors that are detected by RPR. This value
controls the noise limits of the RPR output.

In previous work, Th was set to the maximum estimation
error, εmax, as suggested by Shim et al. [11] and as used in
[19]. Shim’s Th value is the optimal value in the general case,
where the probability distribution of the estimation error
signal is unknown. If the designer of a particular system has
additional information about this εe signal, however, a lower
threshold value may offer better RPR performance.

This section describes the factors involved in setting the
value of Th and suggests a method for obtaining higher per-
formance with a value of Th < εmax for a fixed Br value.
This novel method is made possible by limiting the scope
of the RPR implementation to a particular system and will
not offer higher performance for all systems. Fault injection
experiments then demonstrate the potential benefit of these
new Th values.

5.1. Reduction of Th. The value for Th affects both the
distribution of UU and DU events as well as the noise
limits for each of these event types. This shift is represented
by the change in the value a in (5) (Table 5 reports on
some measured values of the a factor for changing Th

values.) Increasing Th causes more UU events and fewer DU
events, decreasing a. Decreasing Th has the opposite effect.
Decreasing Th also affects the noise limit in the UU upset
case, as seen in the second term of (5). This makes it difficult
to determine the overall effect of altering Th on ERPR-avg.

A low value of Th (lower than εmax) is desirable because it
lowers the noise limit in the UU case. However, there are two
possible disadvantages to a lower Th value.

(1) There are possible false-positive error detection
events, as discussed earlier. This introduces noise
equal to εe even when no upsets exist in the system.

(2) Upsets that cause errors with magnitude above Th

but below εmax are replaced with the estimation error
which has a bound at εmax. The resulting error, then,
could be larger than the error caused by the upset
itself in some cases.

In each of these cases, the RPR system introduces a higher-
magnitude noise than would otherwise be present (in the
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unmitigated module). Each of these cases will now be
described in detail.

5.1.1. False Positive Error Events. In previous work, Th was
set to the maximum estimation error, εmax to ensure that
the false detection upset case did not occur [11, 19]. If the
probability of a false detection event, Pr(FD), is sufficiently
small, however, it may be desirable to lower Th to allow
some false positive events. Knowledge of the input signal
characteristics or the operating environment could allow one
to predict Pr(FD) for lower Th values. Similarly, knowledge of
the statistical properties of the εe signal directly can provide
enough information to be able to lower Th to obtain a better
ERPR-avg.

In some cases, with knowledge of the input signal and the
properties of a specific module, it is possible to choose Th <
εmax to avoid false positive detection events a large portion of
the time. In this case, Pr(FD) � 1, but may be nonzero. This
alters the final term in (5), which is zero when using Th =
εmax since Pr(FD) = 0. However, the first and second terms
are also altered since the value a is dependent on Th and Th

itself is the noise limit in the UU case. Without knowing the
value of a as a function of Th, it is difficult to predict the
effect on ERPR-avg. This function is dependent on the specific
module being protected and the upset environment and is
difficult to generalize.

A more direct method is to examine the distribution of
the estimation error signal, εe. Shim and Shanbhag showed
that, for a uniformly distributed εe signal, the optimal value
for Th is εmax [12]. This is reasonable because all values of
εe between 0 and εmax are equally probable, including those
above any value Th less than εmax. Thus Pfp increases sharply
as Th is lowered below εmax. This, in turn, increases the
frequency of the FD upset event which decreases the overall
performance of RPR.

If, on the other hand, the distribution of the εe signal is
such that higher values of εe are less probable than lower
values, the increase in Pfp may not be enough to severely
affect the performance of the system. For example, if the
distribution of εe is Gaussian (the actual εe signal cannot
be a true Gaussian, of course. The εe signal has an actual
cutoff at εmax while a true Gaussian distribution has infinite
support.) the false error probability can be predicted based
on the relation of Th to the standard deviation (σ) of the
distribution. Table 2 shows the relation of Pfp to Th for this
case. A system with Th = σ can expect a false positive every
third clock cycle, on average. Values of Th = 5σ and Th = 6σ ,
however, result in false positive error rates of less than 10−6.
With rates this low, it can certainly be feasible to lower Th

without fear of significantly increasing the FD upset case
probability.

The distribution of εe is highly dependent on the type
of module being protected as well as the signal environment
at its input. Consider, for example, the FIR filter module of
Section 4.1 and its submodules: registers, adders, and mul-
tipliers. A simple register with a uniformly distributed input
would have a uniformly distributed εe signal. In our testing, a
constant coefficient multiplier showed varying distributions

Table 2: Pfp values for a Gaussian-distributed εe signal.

Th Pfp

σ 0.317

2σ 0.0455

3σ 2.70× 10−3

4σ 6.33× 10−5

5σ 5.73× 10−7

6σ 1.97× 10−9

for εe based on the coefficient value and the Br value. For
each of these combinations, a different amount of trunca-
tion occurred in the coefficient resulting in several error
distributions. These included distributions that appeared
approximately uniform, Gaussian, or triangular. For a full
FIR filter with a modulated input signal, however, the εe
signal appeared Gaussian when the input signal had a signal-
to-noise ratio (SNR) less than 30 dB [16]. This property is
exploited in Section 5.2 in order to find a valid Th < εmax.

5.1.2. Midrange Upset Errors. The second problem men-
tioned with lowering Th below εmax is the possible increase in
the error level for some upsets. In this case, the noise induced
by some upsets will be replaced by the noise of the RPout

signal: εe. This results in the εmax value being the noise limit
a higher percentage of the time while the reduced threshold
value, T∗h , is the noise limit a lower percentage of the time.
Depending on the noise induced by the SEU, this could result
in a higher overall noise level.

For example, consider the probability mass functions
(pmf) shown in Figure 3 representing some error signals of a
hypothetical RPR system (The pmfs displayed were created
to be zero-mean Gaussian distributions for illustration
purposes. It is important to note that these error signals do
not always have this type of distribution.) Figure 3(a) shows
the pmf of the estimation error signal, εe, of an RPR module
along with its noise limit, εmax. Figure 3(b) shows the pmf
of the upset error signal, εu, of the SEU with the largest
undetected error signal for a given reduced threshold, T∗h .
Figure 3(c) shows the pmf of another upset error signal for
which the maximum value of εu is T∗h < εu-max < εmax.

In the case of Figure 3(c), the upset causes noise higher
than T∗h and is detected as an error. The RPR system thus
enters the reduced-precision mode and the error signal
of Figure 3(c) is replaced with that of a reduced-precision
module as shown in Figure 3(a). In this case, the error of the
system is increased due to the lowered threshold value.

This discussion shows that the effect of lowering Th

below εmax can have mixed consequences. With additional
knowledge about a specific system (including characteristics
of the input signal, the noise induced by each upset, and the
estimation error of the reduced-precision modules) it would
be possible to predetermine the optimal value for Th. In the
end, however, the most general acceptable rule is that Th

should not be lowered below εmax, as stated by Shim. With
that in mind, the following section introduces a method for
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Figure 3: (a) The pmf of the estimation error, εe, of an RPR module, (b) the pmf for the maximum undetected upset error signal, εu, and
the pmf for (c) a midrange upset which crosses the reduced threshold, T∗h .

finding an acceptable lower value for Th experimentally for
certain systems.

5.2. Experimental Determination of Th. Although the the-
oretical value of Th = εmax is sure to avoid the negative
issues presented in Section 5.1, this value may be higher than
necessary for Th in practice. Rather than using the theoretical
value, the maximum value of εe can be determined exper-
imentally. We label this experimentally determined value
ε∗max, which is used to determine the experimental decision
threshold labeled T∗h , where ε∗max < εmax and T∗h < Th.

For the FIR filter circuit, we have experimentally mea-
sured the signal εe for several different RPR bit widths. To
do this, we created bit-accurate simulation models of the
full-precision and reduced-precision FIR filter circuits using
Matlab. We then generated several representative modulated
input signals, each with a different SNR level (SNR values
of 2, 4, 6, 8, and 10 dB). These models were then used as
follows.

(1) Each of the input signals was processed by the FP
filter and the output signals recorded.

(2) The same input signals were processed by each RP
filter and the output signals recorded.

(3) For each RP filter and each SNR, the estimation error
signal, εe, was calculated.

(4) The absolute maximum value of each εe signal was
recorded as ε∗max.

(5) The mean (μe) and standard deviation (σe) of each εe
signal were calculated.

For this design and these input characteristics, the
signal εe was roughly Gaussian distributed, though not with

a mean of zero as in the examples in Figure 3 (The nonzero
mean of these error signals is due to the truncation of the
signals associated with the reduced-precision module. The
truncation operation introduces a positive error bias to the
error signal εe.) As expected, the ε∗max value was dependent
on the test duration. We also discovered that the SNR of the
input signal did not have a significant impact on the statistics
of the εe signal.

Using the Gaussian distribution of εe and the values in
Table 2 as a hint, we calculated the experimental threshold as

T∗h = μe + 6σe. (6)

We confirmed this to be a valid threshold (i.e., T∗h > ε∗max)
for simulation durations up to 106 samples. With this value
of T∗h , we expected Pfp to be very low in practice, as suggested
by Table 2.

Table 4 shows the different threshold values obtained
for several different reduced-precision FIR filters. Both the
theoretical (Th) and experimental (T∗h ) threshold values
are shown for each filter as well as the mean (μ) and
standard deviation (σ) values for the signal εe. Notice that
the experimentally-determined threshold values, in these
cases, become increasingly lower than their theoretical coun-
terparts as Br decreases. This can greatly increase the number
of errors detected for a particular bit width and has the
potential to make even lower Br values feasible for a par-
ticular system, decreasing the area overhead of RPR.

The Th values shown in the table are the calculated
maximum values of εe [16]. The next sections will present
experimental results for designs using both the Th and T∗h
values. The results will show that the lowered threshold
values can have a significant impact on the performance of
RPR, especially for the lower values of Br tested.
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Table 3: Number of SEUs causing each class of effect for an FIR filter protected with TMR and several levels of RPR using experimentally
determined thresholds (T∗h ), compared to mathematically determined thresholds (Th).

Design Slices used Class 1 bits Class 2 bits Class 3 bits Class 4 bits Total catastrophic (% reduction) Improv. in failure rate

Unmitigated 1,030 59,156 6,472 1,501 943 2,444 (—%) —

RPR, Br = 7, Th 1,755 106,751 6,239 11 2 13 (99.47%) 188×
RPR, Br = 7, T∗h 1,755 106,863 6,191 11 2 13 (99.47%) 188×
RPR, Br = 5, Th 1,470 84,284 7,819 226 2 228 (90.67%) 10.7×
RPR, Br = 5, T∗h 1,470 84,583 7,709 42 2 44 (98.20%) 55.5×
RPR, Br = 3, Th 1,313 73,992 6,875 1,598 666 2,264 (7.36%) 1.08×
RPR, Br = 3, T∗h 1,313 74,129 8,267 634 36 670 (72.59%) 3.65×

Table 4: Mathematical (Th) versus experimental (T∗h ) threshold values for RPR FIR filter designs with several different reduced-precision
bit widths (Br). The mean (μe) and standard deviation (σe) values for the signal εe are also shown.

Br Th T∗h % Change μe σe

7 0.1597 0.1049 −34.3% 0.05380 0.008500

6 0.3106 0.1844 −40.6% 0.08365 0.01563

5 0.6046 0.3182 −47.4% 0.1431 0.02891

4 1.2212 0.5849 −52.1% 0.2453 0.0562

3 2.3871 0.9222 −61.4% 0.3659 0.09465

5.3. Reduced Threshold Experiments. To demonstrate the ef-
fects of using the experimentally determined T∗h values, fault
injection experiments were run on a set of FIR filter designs.
The configuration of these experiments was as described in
Section 4.2. Three levels of RPR were implemented using
Br = 3, 5, and 7.

Table 3 shows the results of these experiments. The
results are presented as in a previous paper [19], categorizing
the SEUs into four classes, as explained in Section 4.3.

Notice that there was no change in the number of cat-
astrophic upsets for Br = 7, which had the smallest per-
centage change from Th to T∗h shown in Table 4. For the
lower Br values, the difference in threshold value is larger
and the effect on performance is greater. The coverage of
catastrophic errors increased by 8% for Br = 5 and by 65%
for Br = 3.

Table 5 reports on measured values of the RPR detection
factor, a, for both threshold values. This value is the fraction
of upsets in the full-precision module that were detected by
the RPR system and for which the reduced-precision output
was used. Note that, as expected, the a factor increases with
the lower threshold T∗h for each Br value.

6. Bit-Width Selection

The previous section discussed setting Th for a fixed reduced-
precision bit width, Br . This section presents the con-
siderations necessary when setting Br . The value of Br de-
termines the quality of the estimate that the reduced-pre-
cision modules produce relative to the full-precision module.
This in turn controls the valid range of Th and the level of
noise that is detectable by the system.

In general, a higher Br has a higher area cost and gives
better performance. A higher Br gives a better estimate of the
full-precision output, resulting in a lower and smaller range

Table 5: Detection factor (a) for an FIR filter protected with several
levels of RPR using experimentally determined thresholds (T∗h ),
compared to mathematically determined thresholds (Th) at an SNR
of 8 dB.

Design a

RPR, Br = 7, Th 0.0754

RPR, Br = 7, T∗h 0.1082

RPR, Br = 5, Th 0.0519

RPR, Br = 5, T∗h 0.0859

RPR, Br = 3, Th 0.0495

RPR, Br = 3, T∗h 0.0699

for Th. The effect on performance can be seen in (5); since
both εmax and Th decrease with an increase in Br , the average
noise limit of RPR decreases as well.

This section emphasizes that the selection of Br has
a large impact on the performance and cost of RPR. It
describes this impact and presents how to calculate the
valid range of Br available for a particular module. It
also demonstrates the trade-offs between the cost and
performance factors with fault injection experiments.

6.1. Bit-Width Effects. The primary effect of setting Br is to
set the accuracy of the estimate of the full-precision module
and thus the estimation error signal, εe. This affects not only
the noise of the system in reduced-precision mode, but also the
level of SEU-induced noise that is detectable.

6.1.1. Effect on Performance. The Br value directly sets the
noise level of the RPR system while it is in reduced-precision
mode. RPR operates in this mode when an error is detected in
the full-precision module and the reduced-precision output
is used. Thus the noise level in this mode depends solely on
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Table 6: Number of SEUs causing each class of effect for an FIR filter protected with TMR and several levels of RPR using experimentally
determined thresholds (T∗h ), compared to the unmitigated filter.

Design Slices used
Slices

overhead
Class 1

bits
Class 2

bits
Class 3

bits
Class 4

bits
Total utilized bits

Total
catastrophic

(% reduction)

Improv. in
failure rate

Unmitigated 1,030 — 59,156 6,472 1,501 943 68,072 2,444 (—%) —

TMR 3,171 208% 218,304 0 0 2 218,306 2 (99.9%) 1222×
RPR, Br = 7 1,755 70.4% 106,863 6,191 11 2 113,067 13 (99.5%) 188×
RPR, Br = 6 1,602 55.5% 95,980 7,731 9 2 103,722 11 (99.6%) 222×
RPR, Br = 5 1,470 42.7% 84,583 7,709 42 2 92,336 44 (98.2%) 55.5×
RPR, Br = 4 1,394 35.3% 79,334 8,252 254 2 87,842 256 (89.5%) 9.55×
RPR, Br = 3 1,313 27.5% 74,129 8,267 634 36 83,066 670 (72.6%) 3.65×
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Figure 4: Bit error rate curves for several FIR filters with different
bit-widths.

the performance of the reduced-precision module, which is
dependent upon its bit width.

For example, Figure 4 shows several BER curves for the
binary PAM system described in Section 4.1, each for an FIR
filter with a different input bit width. If one of the application
requirements specifies that the BER in reduced-precision
mode should be at most 10−4 at an SNR of 10 dB, the input
bit width of the RP modules must be Br ≥ 5.

The Br value also controls the level of SEU-induced noise
that is detectable. A smaller Br value means that the reduced-
precision module produces a poorer estimate of the full-
precision output, resulting in a larger possible difference
between the two outputs. Thus a higher threshold, Th, is
needed for a smaller Br .

6.1.2. Effect on Error Detection Threshold. Lowering the Br

value decreases the performance of an RPR system, resulting
in a cutoff of its usefulness as Br approaches zero. As Br

is lowered, Th must become larger. Obviously, there are
few interesting circuits that would be estimated well by a
reduced-precision module with Br = 0 (a 1-bit signed
number). Depending on the application, the value for Th

could be too large to be usable even at Br values significantly
higher than 0.

Using the binary PAM system as an example, the output
of the full-precision FIR filter has a bit width of B + 1 = 16
with a range of [−2, 2). From Table 4, the theoretical value of
Th for Br = 3 is 2.3871. This is over 50% of the total range of
the output signal of the filter. In fact, the output range of the
filter is typically smaller than this.

As an example of a system with a valid threshold, Figure 5
gives a representation of the signals used by the RPR decision
block to determine if there is an error in the system. This
figure was generated from the outputs of an RPR FIR filter
with Br = 6 and Th = 0.3106 and no errors present. By
adding and subtracting Th to and from the RPout signal,
the upper and lower bounds for the FPout signal can be
visualized. Note that in this system, the noise limits are
fairly close to the full-precision output. An error in the
full-precision module which caused the output to exit these
bounds would be flagged as an error and the reduced-
precision output would be used instead.

By adding and subtracting Th = 0.3106 to and from the
RPout signal, the upper and lower bounds for the FPout signal
can be visualized. In contrast, Figure 6 shows the signals for
the FIR filter with Br = 3 and Th = 2.3871. The figure
illustrates the system with a catastrophic error in the full-
precision module: FPout is frozen at 0. With this value of Th,
the erroneous FPout signal is always completely within the
displayed bounds. Thus the RPR decision block determines
that no error is present in the full-precision module and uses
the frozen output as RPRout.

This Th value is too large to handle this type of error.
This type of error is fairly common for this FPGA design
when the clock or reset line is upset. This explains the poor
performance of RPR with Br = 3 and Th = 2.3871 in terms
of preventing catastrophic errors as reported in Table 3. For
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Figure 5: RPR filter decision signals for RPR with Br = 6 and Th =
0.3106. No errors are present in the system. The upper and lower
comparison bound signals are calculated by adding and subtracting
Th to and from RPout.
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Figure 6: RPR filter decision signals for RPR with Br = 3 and
Th = 2.3871. The FPout signal is frozen at zero. The upper and lower
comparison bound signals are calculated by adding and subtracting
Th to and from RPout.

this design, then, a larger Br value must be used to give
adequate performance. With a larger Br and a lower Th value,
the frozen full-precision output would be more likely to be
outside the noise limits. Using the theoretical Th values, a
bit-width of Br = 6 or Br = 7 would be more appropriate
for a signal with this output range.

6.2. General Bit-Width Selection. Selecting the best value of
Br is highly dependent on the application in question. This
section presents a general overview of selecting possible Br

values for an RPR module.

6.2.1. Upper Bound. The upper bound of Br depends on
several factors. The most obvious of these is Br < B (the full-
precision bit width) since Br = B is essentially TMR, which
gives full protection against single upsets. Even values close to
B are undesirable due to the increased overhead of the large
RPR decision blocks compared to minimal TMR voters.
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Figure 7: ERPR-avg of the FIR filter design for several bit widths and
using two failure rates.

Another simple upper bound is an area or power limit
imposed by application constraints. Besides the area and
power costs of higher Br values, there is no general downside
to increased precision in the reduced-precision modules.
This can only increase the performance of the RPR system.

6.2.2. Lower Bound. The lower bound of Br is determined by
the point at which the detection capabilities of RPR degrade
to unusable levels. Section 6.1 described an example where
a low Br value caused the Th value to increase such that
critical errors went undetected. Similar methods can be used
for other systems.

In a more general sense, the Th value is the general noise
limit on the RPR system, as seen in (5). The designer of the
RPR module can thus define an acceptable noise limit at the
output of the RPR decision block and increase Br until the
calculated or measured value of Th falls below this bound.

6.2.3. Optimization. These bounds, of course, are only a
starting point for selecting Br for a particular module. At this
point, the designer must find the optimal trade-off between
the cost of implementation and the performance of the
system. If the upset rate of the target environment is very
low, ERPR-avg will be small even with a low Br value. If the
upset rate is higher, it may be more important to use a high
Br value to keep the noise low in the DU upset case.

For example, Figure 7 plots the value of ERPR-avg of the
FIR filter design for several bit widths in two different upset
environments: GPS orbit and Polar orbit (the upset rates for
these orbits and this filter design are available in [16].) If the
target ERPR-avg for this system is 10−6, the system in the Polar
orbit requires a Br of 5. With the higher upset rate of the GPS
orbit, however, the system requires a Br of at least 7 to meet
the noise limit target.
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In this case, using ERPR-avg as the measure of performance
of the RPR system, the upsets are not frequent enough
in the Polar orbit to warrant a high cost of RPR. In the
GPS orbit, however, the RPR system is predicted to enter
reduced-precision mode much more often, increasing ERPR-avg

significantly.
The effects of these trade-offs are highly dependent on

the application in question and cannot be generalized. What
is important is that RPR can give many options for increasing
the performance of a system in the presence of SEUs. The
next section presents results from fault injection experiments
that demonstrate these options, which trade-off circuit area
for performance.

6.3. Bit-Width Experiments. In order to demonstrate the
effects of varying the reduced-precision bit width (Br) for
RPR, the fault injection experiments of Section 5.3 were
expanded. This section reports on the performance of the
simple communications system of Section 4.1 for Br = 3
to 7. The designs tested used the experimentally determined
thresholds T∗h in Table 4. The results emphasize the flexibility
of RPR by demonstrating the wide range of cost and
performance trade-off points that RPR offers this system.

Table 6 shows the SEU classification results from the fault
injection experiments. As expected, increasing the bit width
of the reduced-precision filters improved the handling of
catastrophic SEUs. The cost of implementation increased
with Br as well.

The SEUs may also be quantified by the SNR loss
they cause at the output of the filter. These results are
summarized in Figure 8. These data define a cumulative
distribution of the SNR loss for each of the 6 designs at a
bit error rate of 10−5. (Note that Class 3 and Class 4 SEUs
have infinite SNR loss and are included in the percentages
shown.) As an example, consider the unmitigated filter
design. Approximately 9% of all SEUs within the filter circuit
lead to an SNR loss in excess of 1 dB. In other words, 91%
of all the SEUs affecting the filter give an SNR loss less than
1 dB.

Figure 8 plots the SNR loss values for the various versions
of this filter. Notice that the increase in Br does more than
increase the design’s resistance to catastrophic SEUs. As the
size of the reduced-precision filters increases, the number of
higher-noise SEUs decreases as well. As expected, the more
costly the RPR system, the lower the overall noise and the
higher the performance.

TMR was much more effective at protecting the receiver
system against SEUs than RPR in our experiments. However,
in the case of the RPR implementation with Br = 6, the
overhead cost of implementing RPR was about one quarter
that of TMR. This version of RPR reduced the number of
catastrophic bits by over 99% and significantly reduced the
number of high-noise SEUs. Although the RPR implementa-
tion with Br = 7 did not offer any improvement in protection
against catastrophic SEUs over the Br = 6 design, Figure 8
reflects the improvements in SNR loss offered by the extra
hardware required. Even the implementation with Br = 3
offers a significant improvement: at a cost of only 28% more
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Figure 8: Normalized percentage of SEUs causing certain SNR
losses at a BER of 10−5 for an FIR filter protected with several levels
of RPR compared to the unmitigated design.

hardware, the number of catastrophic bits decreased by over
70%.

These results emphasize that RPR offers flexibility in
its implementation options. It is fairly straightforward to
increase the performance of an RPR system in the presence
of SEUs by increasing the amount of redundancy in the
reduced-precision modules. The range of options RPR
offers a particular application depends on the system to be
protected and the application requirements. It is clear,
however, that RPR can offer intriguing trade-offs between
cost and performance.

7. Conclusion

This paper has confirmed that reduced-precision redun-
dancy has great potential to reduce the cost of soft error
mitigation in FPGA-based circuits. Experiments shown here
demonstrate improvements in failure rate over an unmiti-
gated system by as much as a 200 times at less than half the
area overhead cost of TMR.

As a further contribution, this paper provides an in-
depth analysis of the parameters involved in using RPR:
the error detection threshold, Th and the reduced-precision
bit width (Br). The discussion and examples provided
emphasize the effects of these parameters on the size and
performance of the resulting system. Detailed fault injection
experiments and reports on the area cost of RPR give greater
insight into the actual results of implementing RPR in an
FPGA system. In addition, an experimental method for
improving the performance of RPR under certain conditions
by optimizing the Th parameter for a particular system was
presented. This was shown to result in an improvement of
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up to 5 times at no additional hardware cost over the original
RPR implementation.

Although the examples given in this paper are FPGA-
based systems with the intent of masking the effects of SEUs,
the RPR technique can, of course, be expanded further.
Fault-masking techniques such as TMR as well as error-
reducing techniques such as RPR can also protect against the
lesser transient and soft data errors. In addition, RPR can
be applied outside of SRAM-based FPGA systems, just as
TMR has been in many instances. The insights into the
implementation of RPR presented here can also be utilized in
the protection of the more robust ASIC and in other FPGA
technologies. Future work could include similar detailed ex-
perimental analysis on ASIC-based circuits as well as other
types of circuit structures aside from the digital filter example
presented here.
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