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Abstract—Potential military threats often manifest as dim point-
source targets embedded in complex clutter and noise back-
grounds, which makes threat detection a significant challenge. A
variety of machine-learning architectures have been developed
in recent years for performing small-object segmentation in
single frames of infrared imagery. Evaluation and comparison
of these techniques has been hampered by a lack of reliably
labeled data and the use of different evaluation metrics. In
this research, we leverage the Air Force Institute of Technology
Sensor and Scene Emulation Tool (ASSET) to generate a dataset
containing independent frames with unique background and
target characteristics. We introduce a standardized method for
generating ground-truth segmentation masks for point-source
targets that eliminates the risk of manual labeling errors that
exist in other small-target segmentation datasets. A local peak
signal-to-clutter-and-noise ratio (pSCNR) is also introduced
and shown to be strongly correlated to probability of detection.
Results show that with the use of the generated dataset, exist-
ing state-of-the-art small-object segmentation networks can be
adapted specifically to the point-source target detection task. A
probability of detection (Pd) greater than 80% is consistently
achieved while maintaining low false alarm rates. In addition
to the task of target detection, we address the problem of target
subpixel localization in a single frame. Accurate subpixel local-
ization is important due to the large physical area included in a
single pixel. Existing work commonly overlooks this problem or
takes the predicted target mask centroid as the subpixel location.
In this research, we introduce a transformer-based subpixel
localization technique that uses both the predicted target mask
and the local pixel intensity to compute an accurate subpixel
location. The proposed architecture reduces mean localization
error by up to 72% compared to other single-frame methods for
target subpixel localization.
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1. INTRODUCTION
Missile early-warning systems rely on electro-optical and
infrared sensors for space-based observation of potential
threats. In overhead persistent infrared (OPIR) imagery, these
threats often manifest as dim point-source targets embedded
in complex clutter and noise backgrounds. The characteristics
of this problem are similar to the generic infrared small-object
detection problem explored for a wide range of applica-
tions. These applications, including the OPIR target detection
and missile-warning tasks, are often characterized by high-
velocity targets, sensor motion, and unpredictable dynamic
backgrounds. These characteristics have led to a shift from
temporal methods of detection towards single-frame methods
for small-object detection in infrared imagery [1]. Early
techniques for single-frame target detection relied on math-
ematical models of target and background characteristics.
Recent research, however, has led to a growth in the use
of machine-learning (ML) methods, which have been shown
to outperform traditional signal processing techniques at the
task of small-object detection. These methods approach
the small-object detection problem as a binary segmentation
task separating target from background. In this research,
we explore the application of state-of-the-art small-object
segmentation networks to the task of point-source target
segmentation and detection in OPIR data.

Evaluation of existing state-of-the-art methods for the task of
point-source target segmentation in OPIR data is hampered
by the limitations of available datasets. Existing datasets are
crafted for the generic small-object segmentation task and
contain targets that are too large in addition to backgrounds
that are inconsistent with OPIR data. These data limitations
have prevented an accurate evaluation of network perfor-
mance specific to the OPIR target detection and missile-
warning tasks. To address these limitations, we generate
a dataset specifically designed for this evaluation using the
AFIT Sensor and Scene Emulation Tool (ASSET) [2], [3].
A peak signal-to-noise-and-clutter metric is introduced and
calculated using the simulated data. This metric is used to
evaluate target detection difficulty and the performance of
the detection methods tested. Additionally, we introduce a
quantitative method for generating ground-truth segmenta-
tion masks based on the output of ASSET. This standard-
ization of ground truth improves overall data consistency
and allows for accurate target- and pixel-level evaluation of
segmentation performance.

The OPIR target detection task requires accurate subpixel
localization because the point-source targets are unresolved.
Little emphasis is placed on subpixel localization for generic
small-object segmentation. However, the characteristics of
OPIR sensors are such that individual pixels cover a large
physical area, meaning that accurate subpixel localization is
required for determining the true position of the target in the
infrared frame. In this research, we introduce a transformer-
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based method for subpixel localization that uses both raw
image data and the predicted segmentation mask to accu-
rately localize the target. This method provides substantial
improvement in localization accuracy while adding limited
additional complexity to the overall detection and localization
pipeline.

2. RELATED RESEARCH
There is a significant amount of related research in the area
of single-frame infrared small-object detection. Most meth-
ods formulate the problem as a segmentation task and then
process clusters to produce final detections. We categorize
existing methods into one of two categories: traditional
methods or ML methods. Traditional methods typically for-
mulate the segmentation and detection around a mathematical
model or filter designed based on prior assumptions about
the targets, background, and noise present in a frame. ML
methods leverage representative data to train networks for
segmentation and detection of targets and are able to learn
complex target representations. These ML methods are the
focus of the evaluation in Section 5 and have consistently
been shown to outperform traditional methods in the research
discussed in the following section.

Traditional Methods

Early methods relied on filtering to amplify target signal.
Methods such as max-mean filtering [4], top-hat filtering [5],
directional high-pass filtering [6], and minimum local Lapla-
cian of Gaussian (min-local-LoG) filtering [7] explored the
design of appropriate filters for the task. These methods
were sufficient for the detection of bright targets with high
signal-to-noise ratios, however, they generally struggled with
dim targets and resulted in high numbers of false alarms.
The infrared patch image (IPI) model formulates the target
segmentation task as an optimization problem where the
target and background components of the frame are consid-
ered sparse and low rank matrices respectively [8]. While
the IPI model exhibited state-of-the-art performance when
introduced, it is sensitive to parameter tuning and fails in
cases where the underlying assumptions about the target and
background characteristics fail.

Many recent traditional methods have relied on the compu-
tation of a local contrast measure (LCM) to amplify target
signal and suppress background in the infrared frame. The
first LCM used for small-object segmentation in a single
frame was introduced in [9] and has served as the basis
for future methods. The multiscale patch-based contrast
measure (MPCM) computes contrast between patches and
successfully adapts to various target sizes by performing
the measurement at multiple scales [10]. Other methods
inspired by LCM include the weighted local difference mea-
sure (WLDM) [11], a multiscale LCM with high boost fil-
tering [12], multiscale relative LCM [13], and homogeneity-
weighted LCM [14]. Beyond local contrast methods, many
other approaches have been proposed, including Gaussian
transformation [15], principal component analysis (PCA)
[16], and entropy-based window selection [17]. Although
traditional methods have improved, they remain vulnerable to
cases where their underlying assumptions fail. These failures
often occur in cases of dim targets embedded in complex
spatial backgrounds as is often the case for point-source
targets in OPIR data.

Machine Learning Methods

ML methods have become the dominant approach for the
generic small-object segmentation task. They have been
shown to consistently outperform the traditional methods
discussed when evaluated across a wide range of datasets.
There have also been some examples of exploration of ML
specific to the target detection task in OPIR data. A 3D
convolution and long short-term memory (LSTM) hybrid net-
work was proposed in [18] for missile detection and tracking.
However, this approach relied on sequential frames and used
a small frame size of only 32 × 32 pixels [18]. For the
reasons outlined in Section 1, we focus in this research on
ML methods that operate on a single frame. A variety of
ML methods meeting that requirement have been proposed.
The following sections present, in order of introduction, the
ML architectures that will be explored in this research for
the task of point-source target segmentation in OPIR data.
These network architectures were originally introduced for
the generic small-object segmentation task that includes de-
tection of planes, ships, and other targets, but have promise
for performance on point-source segmentation.

Miss Detection vs. False Alarm cGAN—One of the earliest
successful ML methods proposed was miss detection vs.
false alarm (MDvsFA) [19]. MDvsFA adversarially trained a
conditional generative adversarial network (cGAN) with two
generators to achieve opposing tasks of minimizing missed
detections and minimizing false alarms. Since MDvsFA,
other research has explored variations of GAN architectures
for infrared target extraction such as in [20].

Asymmetric Context Modulation— The asymmetric context
modulation (ACM) module was introduced in [21] to help
overcome the inherent challenge of small target features
being lost in deep networks. ACM introduces a bottom-up
modulation cross-layer feature fusion approach that allows
for the combination of low and high-level features [21]. ACM
is a module that can be dropped into a host network at cross-
layer connections. It was demonstrated in the U-Net [22]
and feature pyramid network (FPN) [23] host architectures.
The single-frame infrared small target (SIRST) dataset used
commonly in other related research is also introduced in [21].

Attentional Local Contrast Network—Expanding on ACM,
[24] introduces the attentional local contrast network (ALC-
Net). This network is unique as it explicitly includes a local
contrast prior in the end-to-end network. ALCNet introduces
a modified version of MPCM [10] that can be applied to
downsampled feature maps and applies it to the network skip
connections. ALCNet includes similar bottom-up modulation
as introduced in ACM [24]. The authors demonstrate that
the inclusion of the local contrast prior allows state-of-the-art
performance to be achieved with much smaller networks.

Local Similarity Pyramid Module—The network architecture
introduced in [25] computes local similarity across multiple
scales to learn rich target representations. These local simi-
larity pyramid modules (LSPM) are combined with a feature
aggregation module using channel attention to perform cross-
layer fusion. Unlike most other network architectures re-
viewed, LSPM uses a VGG-16 backbone instead of a ResNet
backbone for feature extraction.

Dense Nested Attention Network— Inspired by a stacked
U-Net architecture, the dense nested attention network
(DNANet) uses multiple U-Net encoder-decoder structures to
improve the quality of the resulting segmentation map [26].
Feature maps from each downsampled layer are upsampled
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and feature fusion is performed using both channel and spa-
tial attention. Results reported in [26] show that DNANet
outperforms ACM, ALCNet, and MDvsFA on the dataset
they present called NUDT-SIRST [26]. Importantly, this
dataset includes extended targets as well as point-source and
spot targets, meaning that the comparison performed is not
adequate to predict the performance on a dataset specifically
designed for point-source target detection in OPIR data.

Attention-Guided Pyramid Context Network—The attention-
guided pyramid context network (AGPCNet) [27] is based on
a cross-layer fusion module similar to ACM. Additionally,
AGPCNet introduces a context pyramid module that uses the
non-local operation to compute global context. This global
context is then used as a guide for network attention. Lim-
ited comparisons with other state-of-the-art architectures are
provided in [27] and the network shows more sensitivity to
the architecture configuration than is seen in other networks.
However, favorable results are demonstrated in comparison
to other methods after performing an architecture parameter
search.

Interior Attention-Aware Network— The interior attention-
aware network (IAANet) presented in [28] is unique as it first
uses a region proposal network to select regions potentially
containing a target. A shallow semantic generator then
extracts features for each proposed region. These features
are then used as the input to a transformer-based attention
encoder. The transformer output is then classified to perform
the semantic segmentation for the proposed target region [28].
The use of a transformer for generating rich target features
was demonstrated to show promise in IAANet and [29],
with both proposed networks demonstrating state-of-the-art
results.

Other Machine Learning Architectures— The architectures
previously outlined will be the focus for evaluation in this
research. They were selected based on their varied archi-
tectures, reported success on the generic small-object seg-
mentation task, and common use for comparison in other
works. Other networks that explore small-target segmenta-
tion include PixelGame [30], EAAU-Net [31], ISTDU-Net
[32], and ISNet [33]. Each of these networks formulate the
small-target detection task slightly differently, however, the
use of U-Net-like architectures and cross-layer feature fusion
modules is still a common approach throughout.

Subpixel Localization

Subpixel localization of targets is rarely considered in exist-
ing research. Many of the ML methods use only pixel-level
metrics for evaluation and therefore do not need a continuous
subpixel location for evaluating performance [21], [24], [27].
Methods that do compute subpixel location use the predicted
target mask centroid [8], [26]. Some methods of learned
subpixel object localization have been introduced for micro-
spectroscopy [34], however, to our knowledge, no learned
subpixel localization method has been proposed for the task
of precisely localizing detected targets in infrared imagery.

3. DATASET GENERATION
The acquisition of realistic and reliably labeled data for
training small-target segmentation networks is a significant
challenge. The single-frame infrared small target (SIRST)
dataset attempted to address this issue by creating a stan-
dardized dataset using independent frames of real infrared
imagery [21]. SIRST and augmented versions of it have

been successfully used to train and evaluate networks in-
cluding ACM, ALCNet, and DNANet. However, the SIRST
dataset still suffers from its use of error-prone hand labeled
data and its limited number of samples (only 427 images).
Additionally, the SIRST dataset includes scene and target
characteristics that are inconsistent with a single application
as well as infrared images generated by sensors operating at
different wavelengths. To remedy these issues with existing
datasets, we introduce a process for generating accurately
labeled, OPIR target detection specific datasets for training
and evaluation.

ASSET Simulator Configuration

The lack of publicly available real-world data for the OPIR
target detection task necessitates the use of simulated data.
This research uses the Air Force Institute of Technology
Sensor and Scene Emulation Tool (ASSET) to generate target
scenarios [2], [3]. ASSET uses physics-based models to
generate sensor-realistic scene and target phenomenology.
Other research has trained ML models on data generated
by ASSET, however, the scope of that research remained
limited. Sequences of ASSET-generated frames were used
to train the 3D convolution and LSTM in [18], but frame
sizes were small at only 32 × 32 and variation of target
and background characteristics was limited. ASSET data
was used for unsupervised learning in [35], but with many
physical effects such as weather, cloud motion, and sensor
artifacts removed from the simulation. To our knowledge, this
work represents the most extensive use of ASSET for dataset
generation in literature.

The generated dataset frames are size 128×128, are simulated
from a geostationary orbit, and contain a single inserted
target. Satellite nadir, relative aim-point, target location,
and hardware noise are all randomized. The targets are
simulated with a uniform distribution of signal-to-noise ratio
(SNR) with respect to hardware noise. The value of SNR
ranges from 1 to 750. Using these simulation configura-
tions, 700,000 independent frames were generated. A total
of 420,000 valid frames remained after removing instances
where required simulation output was missing, or the target
fell outside of the frame. These frames were used as the
base dataset from which subsets could be created based on
selection criteria.

Ground Truth Labeling

An accurate method for generation of ground-truth target
masks is required because the task of small-target detection is
approached as a segmentation problem by most state-of-the-
art architectures. A limitation of existing datasets is inaccu-
rate labeling of ground-truth segmentation masks, leading to
inconsistency between training samples. To overcome this, a
standardized method for generating ground-truth masks using
ASSET simulation output is proposed.

Using the point spread function (PSF) and other sensor con-
figuration outputs generated by ASSET, the point response
function (PRF) is obtained and then normalized by the total
sum of the PRF. A threshold is then applied to the normalized
PRF and pixels containing more than the threshold percentage
of the PRF are considered part of the target. All other
pixels are considered background. The pixel that physically
contains the target is always included in the target mask
regardless of the PRF threshold applied. Figure 1 shows
examples of the ground-truth target shapes as the threshold
changes. Note that as the subpixel location of the target
changes, the target energy is distributed over surrounding pix-
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els differently, which results in different PRFs and generated
ground-truth masks.

Figure 1. Example of ground-truth masks generated with
four different PRF threshold values. The same target is

shown with four different subpixel locations to demonstrate
how the shape of the target mask changes.

Target Difficulty Metric

The SNR metric used as an input to ASSET for dataset
generation only relates the target signal to the hardware noise.
It does not account for background variation and clutter. To
allow for evaluation of target detection difficulty, a peak
signal-to-clutter-and-noise ratio (pSCNR) metric is intro-
duced that accounts for spatial variations due to background.
pSCNR is calculated as shown in (1), where St is target
signal inserted by ASSET and σb is the background noise
and clutter estimate. The background noise and clutter is
estimated as the standard deviation of pixel intensity in a local
35 × 35 region around the target. Pixels within a 5 × 5 region
around the target are excluded to prevent target signal from
being included.

pSCNR =
max(St)

σb
(1)

This pSCNR metric is used to select frames from the base
dataset to be included in the primary benchmark dataset.
Targets with a pSCNR less than or equal to 25 are included
in the benchmark dataset to be used for training and eval-
uation of the models being considered. Table 1 shows the
statistics for the benchmark dataset being used. The resulting
distribution of target pSCNR values is shown in Figure 2.
Overall, the dataset is skewed towards more difficult targets
with a mean pSCNR of 10.24.

4. SUBPIXEL LOCALIZATION
This section introduces the methods for subpixel localization
to be evaluated. The proposed transformer-based architecture

Table 1. Statistics for the benchmark dataset.

Frames pSCNR Range pSCNR PRF threshold

161,000 0–25 10.24 2.5%

Dataset pSCNR Distribution

0 5 10 15 20 25
pSCNR

0

500

1000

1500

2000

2500

3000

Fr
eq

ue
nc

y

mean pSCNR

Figure 2. Distribution of pSCNR for all targets in the
benchmark evaluation dataset.

is presented in detail. The three other methods to be used for
comparison are then described.

Network Architecture

Transformer-based models have become dominant in many
vision tasks since the introduction of the vision transformer
(ViT) architecture [36]. Transformers have also shown
promise for application to the small-target segmentation task
[28], [29]. Based on this proven effectiveness for vision
and small-target tasks, a transformer-based architecture is
proposed to perform subpixel localization after targets are
detected.

Figure 3 shows the proposed localization network architec-
ture. The subpixel localization problem is formulated as a
local regression on a 5× 5 masked input chip generated after
detection. Target clusters are first detected and segmented
by the segmentation network selected. A 5 × 5 target chip
is then extracted around the centroid of the predicted target
cluster. The predicted target mask is then used to remove the
information from pixels not identified as part of the target.
This is demonstrated by the red masking over the input chip
in Figure 3. This masked input chip is then passed into
a feature extractor, which first reshapes the input and then
appends a learned position embedding. Three three-headed
transformer encoders with a hidden dimension of 128 are
then used to extract features from the input. Unlike the ViT
architecture, we use individual pixels instead of 16 × 16
patches as the input to the transformer, allowing us to bypass
the patch embedding used in ViT architectures. A simple
multi-layer perceptron (MLP) is used as a regression head
to produce a continuous prediction for the row and column
subpixel location of the target. The ground-truth subpixel
location produced by the ASSET dataset generation is used
for computing loss and evaluation metrics. Mean squared
error loss is used for training and Euclidean distance (L2
error) is used for evaluation and comparison of localization
performance.
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Transformer Encoder (×3)
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ReLU
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Output Shape
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(1, 27)

(1, 128)
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masked input chip

Feature
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Head

Figure 3. Proposed transformer-based localization
architecture. A transformer-based feature extractor and

regression head perform a local regression on a masked 5×5
input chip to predict the subpixel location of the target.

Methods for Comparison

This section describes the three methods for subpixel local-
ization that the proposed method will be compared to. These
methods rely on traditional processing and do not leverage
learned localization. Localization results for each method
will be shown in Section 5.

Moments Centroiding— A traditional signal processing
method of computing a target’s subpixel location is moments
centroiding. A moment-weighted centroid of each non-
negative pixel in the input chip is computed to estimate the
subpixel location of the target. This method requires that spa-
tial background suppression be performed on the input chip
for best results. The background is estimated by computing
the mean pixel intensity from a local 35 × 35 region around
the input chip. This spatial background estimation is then
subtracted from each of the pixels in the input chip before
moments centroiding is performed.

Mask Centroiding—The unweighted prediction mask centroid
is commonly used in the evaluation of performance for small-
target segmentation networks. This method, referred to
as mask centroiding, has the advantage of using only the
predicted mask and does not use the raw pixel intensities
or background suppression. This is the method used for
determining the true detections when calculating Pd because
it relies only on the predicted mask.

Mask Moment Centroiding—The final method for compar-
ison combines moments centroiding with the information
provided by the predicted target mask. Mask moment cen-
troiding first applies the predicted mask to the background
suppressed input chip such that all pixels not predicted as part
of the target are given a value of zero. Moments centroiding
is then applied to the masked input chip. Like moments cen-
troiding, this method requires spatial background suppression
to be performed for best results.

5. EXPERIMENTS AND RESULTS
The following sections outline the experiments performed
and provide analysis of results. First, the evaluation of
the state-of-the-art small-object segmentation networks is
presented. Results and analysis of the transformer-based
subpixel localization network introduced in Section 4 are then
presented.

Segmentation Network Evaluation

This section provides detail and analysis of the segmentation
network evaluation performed using state-of-the-art small-
object segmentation networks and the benchmark dataset in-
troduced. The evaluation metrics used are discussed and then
results and analysis are presented. A thorough comparative
analysis is performed to evaluate which network architectures
perform best for the task of point-source target segmentation
in OPIR data. Although formulated as a segmentation task,
these networks also act as detection networks that can then
be paired with a subpixel localization method and any other
subsequent processing kernels required for target localization
and tracking.

Evaluation Metrics—Three metrics are chosen for the eval-
uation of target segmentation and detection performance.
The first metric selected is the normalized intersection over
union (nIoU ) [21]. This is a metric specifically introduced
for evaluation of the small-target segmentation task. It is
computed as shown in (2) where TP , FP , and FN denote
pixel-level true positives, false positives, and false negatives,
respectively. N is the total number of samples in the evalua-
tion dataset. Because the benchmark evaluation dataset being
used contains one target per frame, nIoU will represent the
average intersection over union for a target in the dataset.

nIoU =
1

N

N∑
i

TP [i]

TP [i] + FP [i]− FN [i]
(2)

The use of nIoU provides insight into the pixel-level per-
formance of the networks, however, for the OPIR target
detection task the primary concern are target-level evaluations
of performance. Probability of detection (Pd) and per-frame
false alarm rate (Fa) are used as target-level metrics for
evaluation. Pd and Fa are computed as shown in (3) and (4),
respectively.

Pd =
true detections

total targets
(3)

Fa =
false detections

total frames
(4)

A predicted target cluster that has a centroid within dthresh
of the true target location is considered a true detection.
Other predicted clusters are considered false detections. Fa is
sometimes reported as a per-pixel false alarm rate, however,
for interpretability and to maintain the target-level nature of
the metric, we report Fa as a per-frame false alarm rate. This
method of computing Fa means that it is dependant on the
size of the input frame, but ensures consistent evaluation at
the target-level. Results will be labeled as Pd − dthresh and
Fa−dthresh to denote the threshold used for the metric calcu-
lation. Thresholds of 1 and 4 are used in this evaluation. Note
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that the use of target-level Pd and Fa prevent the direct use
of a receiver operating characteristic (ROC) curve because
merging of predicted target clusters causes the value of Fa
not to be strictly increasing as the probability confidence
threshold of the network is decreased. For evaluation we
will look specifically at the learned Pd-Fa operating point.
In practice, the experiments performed in this section show
that the trained networks show little sensitivity to changing
probability confidence thresholds.

Experimental Setup—All experiments were performed using
PyTorch 1.11 and CUDA 11.3. Open-source versions of the
models being evaluated were used when available. Networks
were trained for a maximum of 50 epochs or a total of 6.5
million training frame iterations. Validation set performance
was used for early stopping to ensure best network selection.
Identical train, validation, and test splits were used to train all
architectures.

Each network architecture and training procedure was kept
as originally proposed where possible. The stride of the last
convolutional layer in AGPCNet was modified to maintain an
appropriate feature map size with 128 × 128 input frames.
The weight initialization method used in ACM was changed
to Xavier as done in [26] to enable model convergence and
the maxpool layer was removed to ensure appropriate feature
map size. Inference times are collected on an NVIDIA Tesla
P100.

Network Performance Evaluation—The network benchmark
evaluation results are shown in Table 2. The base network
is listed as well as the network backbone used. Backbone
feature extraction networks used include CAN [37], ResNet
[38], VGG-16 [39], and MobileNetV2 [40]. Each network
is paired with a backbone it was initially demonstrated with.
The addition of MobileNetV2 as a backbone for IAANet is
also included. The region proposal network used in IAANet
allows the backbone to be easily changed without impacting
the rest of the architecture. MobileNetV2 was added because
of its common use in edge applications and to increase the
variety of backbones evaluated. Overall, results in Table 2
show that AGPCNet variants achieve the best nIoU and Pd−
1 results, however, at the expense of a high Fa − 1 and high
complexity as indicated by the inference times. To determine
the overall best performing network, we must consider the
network that best balances the often-competing metrics of Pd,
Fa, network size, and inference time. Qualitative examples of
detection results for each network can be seen in Figure 6.

In addition to the overall probability of detection achieved,
the relationship between Pd and the pSCNR of the target
is shown in Figure 4. The value of Pd − 1 achieved shows
a strong dependence on the target pSCNR with the charac-
teristics being similar for all networks that converged. The
average Spearman correlation between Pd − 1 and pSCNR
is 0.834 across all network results. Pd − 1 is approximately
1 for pSCNR > 10 regardless of the network used but
begins to decline rapidly towards zero when pSCNR < 5.
These results validate the use of pSCNR to quantify target
difficulty. AGPCNet can be seen to have a slight advantage
over other networks when pSCNR is between 3 and 5,
however the overall performance of all networks is similar.
Pd is, therefore, insufficient to determine the best network.

Figure 5 shows the calculated Pd and Fa results for each
network with two different values of dthresh. This figure pro-
vides insight into the trade-off between Pd and Fa. Networks
with an operating point located towards the top left of the plot
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Figure 4. Pd − 1 results vs pSCNR on the benchmark
evaluation dataset for each of the architectures tested.
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Figure 5. Pd vs Fa plot showing model benchmark
performance and shift in performance when applying

dthresh values of 1 and 4.

are preferred as they exhibit a high probability of detection
and low false alarm rate. The nature of the OPIR target
detection task means that a low Fa is important. From Fig-
ure 5 it is seen that LSPM and ALCNet both achieve a good
trade-off between Fa and Pd. While AGPCNet-ResNet18
achieves the highest overall Pd, it has a significantly higher
Fa. Switching networks from LSPM to AGPCNet-ResNet18
would result in a 2.43% increase in Pd − 1, but at the cost
of a 328.57% increase in Fa − 1. This increase in false
alarms is unacceptable given the small increase in probability
of detection.

Figure 5 also provides insight into the coarse localization
ability of the network. The subpixel location of the target
for the evaluation of Pd and Fa is found using the centroid
of predicted target clusters. The shift in performance when
the value of dthresh is changed reflects the accuracy of coarse
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Table 2. Benchmark evaluation results for each network architecture considered. Best results are indicated in bold.

Network Backbone Parameters (M) Inference Time (ms)† nIoU Pd − 1 Fa − 1

MDvsFA [19] Custom CAN* 3.77 21.23 ± 0.80 0.705 0.824 0.130
ACM-UNet [21] ResNet-24 1.59 7.82 ± 0.50 – – –
ALCNet [24] ResNet-24 0.37 8.63 ± 0.29 0.769 0.824 0.049
LSPM [25] VGG-16 31.14 7.77 ± 0.27 0.769 0.823 0.028
DNANet [26] ResNet-18 4.70 30.37 ± 0.40 0.771 0.817 0.020
DNANet[26] ResNet-34 8.79 50.85 ± 0.98 0.770 0.816 0.022
AGPCNet [27] ResNet-10 6.08 83.56 ± 1.34 0.785 0.837 0.120
AGPCNet [27] ResNet-18 12.35 87.47 ± 2.18 0.791 0.843 0.120
IAANet [28] ResNet-18 14.05 13.95 ± 2.96 0.760 0.816 0.101
IAANet [28] MobileNetV2 13.50 19.57 ± 2.48 0.762 0.828 0.166

† Inference time reported as mean± std over 5000 inferences on NVIDIA Tesla P100 using PyTorch 1.11 and CUDA 11.3.
* MDvsFA uses a custom context aggregation network (CAN) from [37].
– ACM failed to converge on the selected dataset. Convergence was achieved on easier datasets with higher pSCNR.

Input Frame

Ground Truth

MDvsFA

ALCNet

LSPM

DNANet-ResNet18

DNANet-ResNet34

AGPCNet-ResNet10

AGPCNet-ResNet18

IAANet-ResNet18

IAANet-MobileNetV2

Figure 6. Collection of example results including true detections, false alarms, and missed detections. Low target pSCNR
range is selected to show interesting cases. pSCNR values from left to right are 1, 2, 3, 3.5, 4, 4.5, 5, 8.
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localization. A small shift is desired as that indicates that
when a target is detected, it is done so with small localization
error. Most networks tested provide very good coarse local-
ization with almost no shift. IAANet and MDvsFA are two
noticeable exceptions. Poor localization in IAANet may be
caused by insufficiently detailed target representations being
generated by the shallow semantic generator network.

Complexity Comparisons— The nature of missile early-
warning systems is such that on-orbit inference may be re-
quired. This would necessitate the selection of an architecture
that can perform in real-time as OPIR data is acquired. With
this potential requirement in mind, the complexity of the
network architecture must be considered. Figure 7 and Fig-
ure 8 visualize the model size in parameters and the inference
latency, respectively. From these plots, it is clear that the
ALCNet architecture is the best network when deployment
on a resource constrained platform is required. It has the
fewest parameters by an order of magnitude and exhibits the
second fastest inference time. LSPM is by far the largest
network architecture evaluated with 31.14 million parameters
compared to the 0.37 million parameters used in ALCNet.
However, LSPM should be used in cases where the detection
network is not being deployed to a resource constrained
device, as it can achieve a lower average number of false
alarms.
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Figure 7. Pd − 1 vs Fa − 1 bubble plot with model
parameters.
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Figure 8. Pd − 1 vs Fa − 1 bubble plot with mean inference
time on NVIDIA Tesla P100.
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Figure 9. Mean localization error for each of the methods
tested using DNANet-ResNet18, LSPM, and ALCNet as
detectors. * indicates spatial background suppression is

required.

Subpixel Localization Results

The proposed transformer-based localization method was
trained and evaluated using ALCNet, LSPM, and DNANet-
ResNet18 as the front-end detection and segmentation net-
works. Different front-end segmentation networks result
in different prediction masks and some differences in what
targets are and are not detected. Only targets from the
benchmark dataset that are detected within a 5 × 5 region
of the ground truth are used to train and test the localization
network. The network was trained for 25 epochs using the
Adam optimizer and a learning rate of 1 × 10−4. Early
stopping is used to ensure the best network is used for
evaluation.

The mean L2 localization error is shown in Figure 9. Re-
sults show little dependence on the segmentation network
used. This limited variance indicates that each of the three
segmentation networks used are able to accurately learn the
target shape information such that the localization network
can learn a robust target representation and regression model.
Using the learned prediction mask with moments centroid-
ing improves results over the baseline moments centroiding
method by 58%. This demonstrates that the use of a learned
segmentation network to produce the prediction masks can
significantly improve subpixel localization. Using the pro-
posed transformer-based localization method provides even
further improvement, resulting in a 72% total reduction in
mean error. This improvement is achieved while also elimi-
nating the need for background suppression. Figure 10 shows
the distribution of localization error when ALCNet is used as
the segmentation network for each of the methods tested. The
distributions clearly show the superior performance of the
transformer-based method, as it has the most heavily skewed
distribution and the lowest mean error. Although background
suppression and moments centroiding can sometimes per-
form well, it is susceptible to scenarios where background
suppression fails or the initial coarse localization performed
by the detection network is poor.

The transformer-based localization network proposed has
only 26,231 total parameters and a mean inference time of
2.11 ms. This inference latency would be incurred for
every predicted target cluster, however, multiple subpixel
localizations could be performed in parallel GPU batches or
otherwise parallelized depending on the platform used for
deployment.
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Figure 10. Localization error distributions for the four
methods evaluated. ALCNet was used as the detection

network for these results.

Upsampling Evaluation— Upsampling of input images has
been used in micro-spectroscopy to improve subpixel local-
ization [34]. We perform a comparison of the proposed
architecture and two modified architectures that upsample be-
fore generating features using the transformer encoder. Both
learned (transposed convolution) and unlearned (bilinear in-
terpolation) methods for upsampling are used. The results are
shown in Table 3. Learned upsampling is shown to achieve
a mean error of 0.0017 pixels less than the error achieved by
the proposed method without upsampling. Unlearned bilinear
interpolation decreases localization accuracy. The small error
reduction from learned upsampling is negligible compared
to the 3.99× increase in the number of parameters over the
proposed method. Even without upsampling, the transformer-
based network is able to perform an accurate local regression
on the image patch to find an accurate prediction for the true
subpixel target location.

Table 3. Evaluation of different upsampling methods for
subpixel localization. ALCNet is used as the detection

network for training and evaluation.

Upsampling Method Parameters Mean Error
none (proposed) 26,231 0.0807

transposed convolution 104,611 0.0790
bilinear interpolation 104,606 0.0815

6. CONCLUSION
The task of generic single-frame, small-object segmentation
in infrared data has been widely explored. Prior research
was limited in the evaluation for this task due to the use of
datasets with resolved targets and backgrounds inconsistent
with OPIR imagery. Additionally, existing datasets relied
on hand labeling, making them prone to substantial errors
in ground truth. In this research, we have demonstrated that
these existing state-of-the-art networks can be applied to the
specific task of point-source target segmentation and detec-
tion in OPIR imagery. We generated an OPIR-specific dataset
with randomized background and target characteristics. Sim-
ulated targets with a pSCNR between zero and twenty-five
were used for the benchmark evaluation dataset. Training

and evaluation of state-of-the-art, small-object segmentation
architectures using this dataset enabled detection of point-
source targets embedded in complex backgrounds. Nine of
ten evaluated networks converged with all results showing
Pd − 1 > 0.80 and Fa − 1 < 0.17. Results show that the
probability of detection and target pSCNR have a Spearman
coefficient of 0.843, indicating a strong relationship. This
strong correlation validates the use of pSCNR as a metric
for target detection difficulty. ALCNet and LSPM achieve the
most favorable trade-off between the probability of detection
and the number of false alarms. Additional analysis in terms
of network complexity showed that ALCNet is the best net-
work for implementation on memory constrained embedded
devices, while LSPM is the best option otherwise. LSPM
inference with 128 × 128 input frames using a NVIDIA
P100 can achieve a frame rate of 128.7 FPS, demonstrat-
ing the capability for real-time inference using datacenter-
grade GPUs. For larger input sizes, the frame can be tiled,
and batch inference can be performed on the 128 × 128
tiles. Although real-time performance is achieved on a high-
performance platform, achieving real-time performance on
embedded platforms will require further exploration in future
work. The significantly reduced network size of ALCNet
shows promise for future deployment to embedded platforms,
as its parameters can more easily fit onto edge devices with
limited resources.

Unlike applications where the targets are resolved or the
imaging distance is short, the OPIR target detection task
necessitates accurate subpixel target localization. This pro-
cessing step is often overlooked or implemented by simply
centroiding the predicted target mask. In this research,
we have introduced a learned transformer-based method for
subpixel localization. This method formulates the task as
a local regression on the 5 × 5 target chip of interest. By
leveraging both the predicted target mask and the pixel in-
tensity values of the target chip, the proposed localization
network is able to achieve a 72% reduction in the localization
error compared to a standard signal processing method of
localization. An evaluation is performed to explore the use
of upsampling prior to feature extraction from the target
chip. The use of upsampling is shown to provide negligible
improvement in mean localization error while increasing the
size of the network by nearly 4×. The result of this research
is a proposed subpixel localization network that has only
26,231 parameters. Inclusion of this network into the overall
detection pipeline allows accurate subpixel localization to be
performed by leveraging information from both the predicted
segmentation mask and the raw OPIR data. The addition
of this network to the processing pipeline results in a small
latency overhead, which is easily justified by the substantial
decrease in localization error achieved.

7. FUTURE WORK
The growing importance of missile warning and target detec-
tion using OPIR sensors necessitates continued research in
this area. Future work will explore the deployment of detec-
tion architectures such as ALCNet and the transformer-based
localization network on embedded platforms. Development
of a real-time embedded implementation of the detection
and localization pipeline proposed will enable future on-
board processing of OPIR data with ML algorithms. With
this goal in mind, future work will explore the quantization
and acceleration of the networks presented. As discussed,
ALCNet appears particularly well suited for acceleration on
an embedded platform due to its small memory footprint and
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low overall complexity. To successfully accelerate ALCNet,
the traditional ML kernels must be accelerated, as well as the
modified MPCM kernel used in the architecture.
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