
Performance and Productivity Evaluation of

Hybrid-Threading HLS versus HDLs

Gongyu Wang, Herman Lam, Alan George

NSF Center for High-Performance Reconfigurable

Computing (CHREC), Department of Electrical and

Computer Engineering, University of Florida,

Gainesville, FL

{wangg, hlam, george}@chrec.org

Glen Edwards

 Convey Computer Corporation
Richardson, TX 75081

gedwards@conveycomputer.com

Abstract—FPGA-based reconfigurable computing is finding

its way into a wide range of application areas in which high

performance and low power consumption are paramount.

However, FPGA-application development using hardware-

description languages (HDLs) faces many productivity challenges

that limit its wide adoption, including a steep learning curve and

lengthy compilation. High-level synthesis (HLS) languages and

tools aim to overcome these challenges by providing familiar

high-level languages and tools for FPGA-application

development. In using HLS, however, an important consideration

is the cost-benefit tradeoff for performance and productivity.

Hybrid-threading (HT) is a new open-source HLS toolset from

Convey Computer, Corp. that features a programming language

based on C/C++ and a set of tools for efficient compilation,

verification, and implementation. In this paper, we present a

performance and productivity tradeoff study of HT HLS versus

HDLs using three RC-amenable kernels, each chosen for their

distinctive computational requirements. Our results show that

for all three kernels, HT achieved over 80% performance for a

fraction of development time, in comparison to corresponding

optimized HDL-based designs.

Keywords—FPGA; HLS; HDL; performance; productivity

I. INTRODUCTION

Reconfigurable computing (RC) technology using FPGAs
provides opportunities to achieve better performance and lower
power consumption than the corresponding software
implementations for a wide range of high-performance
applications such as bioinformatics, image processing, and
graph processing (e.g. [6][15][24]). For FPGA-application
development, the most widely used languages are hardware-
description languages (HDLs) such as VHDL and Verilog.
HDLs provide expressive specification capabilities down to the
RTL level, which allows the design of an application to be
mapped to FPGA hardware resources in an optimal manner.
However, it is well known that the usage of HDLs poses
significant productivity challenges [18][23]. Firstly, HDLs are
cumbersome and have a steep learning curve requiring
specifying algorithms at the cycle-accurate RTL level,
resulting in more complex code and lengthier development
time. Secondly, compilation time of non-trivial FPGA designs
is typically hours or even days, which substantially reduces the
achievable number of design iterations per day. Finally,
compounded by first two problems, design validation is one of
the most costly phases in an HDL-based design flow.

Debugging HDL code relies heavily on cycle-accurate
simulators (e.g., ModelSim [21]), which can be time-
consuming due to the low abstraction level of the HDL design.
A design change commonly involves many lines of HDL code;
and if the change requires a complete re-run of the lengthy
compilation process, the design validation cycles become even
more painful.

Aiming to address the productivity problems of FPGA-
application development, high-level synthesis (HLS) languages
and tools (e.g., OpenCL [2], Vivado [14], BSV [22]) enable
familiar high-level languages as design entry (often C or its
variants), which alleviates the learning-curve problem of
HDLs. The validation process is also improved because
debugging via high-level simulation can detect and correct
many functional errors before the lengthy hardware
compilation. However, using HLS languages and tools
commonly incurs certain overhead in the form of performance
and hardware resources [12]. Thus, it is important to consider
the performance/productivity tradeoff in the use of HLS
languages and tools.

Hybrid-threading (HT) is a new open-source HLS toolset
from Convey Computer, Corp. [7]. HT takes a unique approach
to HLS by combining C/C++-like programming language,
flexible architectural customization, thread-based execution
model and an integrated-system approach to simulation using
SystemC. Thus, HT holds the promise of high-level design
entry and programming flexibility needed to achieve maximum
performance for multiple application domains. In this paper,
we present a comparative study between HT HLS and HDLs
by exploring the productivity benefits of HT against the
tradeoff in performance and resource usage, in the context of
three RC-amenable kernels chosen for their distinctive
computational requirements.

The rest of the paper is organized as follows. In the next
section, we present related studies on HLS-HDL comparison.
In Section III, we introduce the Convey HT toolset and identify
the productivity benefits of HT by analyzing and comparing its
design flow with a typical HDL design flow. Section IV
describes the three computational kernels selected from
distinctive domains of high-performance reconfigurable
computing (image processing, graph processing, and
bioinformatics) and the rationale for their selection. In Section
V, comparative results on performance, resource utilization,

978-1-4673-9286-0/15/$31.00 ©2015 IEEE

and productivity are presented and discussed. For all three
kernels, HT achieved over 80% performance while showing an
order of magnitude productivity improvement in comparison to
corresponding optimized HDL-based designs. Section VI
concludes the paper and discusses future work.

II. RELATED WORK

There has been much work published on HLS languages
and tools. A recent survey [11] summarized and characterized
a plethora of HLS tools qualitatively, but it does not provide
any quantitative comparisons between them and HDLs. An
overview of a number of HLS tools was presented in [20], in
which HLS tools were compared to each other and to HDLs in
the context of the Sobel edge detector. The comparison was
limited to quantifying productivity-related features such as
learning curve, documentation, ease of implementation, etc.,
and was lacking in performance results.

Although there were some comparison studies that
considered multiple application domains (e.g., Cong et al. [9]
compared AutoPilot (now Vivado) against HDL for video
processing and cognitive radios), we observe that in most
published studies, HLS tools were evaluated in a specific
application domain. In [8], Impulse C was compared to HDL
for a bioinformatics algorithm, where it showed better
performance and hardware usage. A Scala-based HLS, Chisel
[5], was compared to Verilog for the design of a RISC
processor, showing better performance and productivity.
Bluespec System Verilog (BSV) was compared to Xilinx IPs in
[1] for a Reed-Soloman decoder, showing better performance
and hardware usage. Altera OpenCL and Xilinx Vivado were
shown to achieve comparable performance and resource
utilization to HDLs for a linear algebra algorithm in [25]. In
[3], four HLS tools (BSV, Chisel, LegUp, and OpenCL) were
compared to each other and to Verilog for database algorithms.
The results show that BSV and Chisel performed better than
Verilog with minimum hardware overhead, but not so for the
other two HLS tools.

In this paper, we explore the productivity benefits of HT, a
promising HLS toolset, against the tradeoff in performance and
resource usage, in the context of reference kernels from
multiple application domains.

III. COMPARISON OF DESIGN FLOWS

In this section, we analyze the design flow of the HT
toolset in comparison with a typical HDL design flow. Since
HT is a new toolset, a concise introduction of the HT toolset is
presented before the comparative analysis.

A. Convey HT Toolset

We introduce the HT toolset from three aspects: 1) the
configurable HT infrastructure including the execution model;
2) the HT programming language; and 3) the HT design flow.
More details on HT can be found in [13].

HT infrastructure and execution model. As shown in
Fig. 1, the HT infrastructure (green blocks) is depicted in the
context of a co-processing system. The HT host code can
invoke the software part of HT host interface (HIF) to load the

FPGA images, allocate data structures in memory (e.g.,
message/data queues and application data storage), and
dispatch the coprocessor FPGA logics. The coprocessor logics
consist of one or more HT units. Each unit contains the
hardware part of HIF, one or more HT modules, and optionally
global variables accessible by all modules of the unit. The
infrastructure manages and replicates the units by N times (N is
configurable) so that the designer only needs to program for
one unit. Also, the host code dispatch each unit independently
via the HIF, so each unit can work on separate tasks.

An HT module consists of the user-programmable part and
the infrastructure part. The former is not shown in details in
Fig. 1 so we describe it first to facilitate understanding of the
latter. Each HT module contains one or more HT instructions
programmed by the user using the HT language. HT instruction
is the smallest executable element of an HT module and it is a
set of operations that can execute within a single clock cycle,
such as external-memory interface calls, function calls,
module-wise messaging, and thread-control routines. An
execution instance of a sequence of HT instructions is defined
as an HT thread of the module. The infrastructure part of the
module manages its threads independently so that each thread
has private variables (hence separate states). It is also
configurable in terms of the number of supported threads and
the shared variables accessible by all threads of the module.

Multiple HT threads are time-division multiplexed on the
module by the infrastructure. On every clock cycle, each HT
module takes an instruction X from its infrastructure-
maintained instruction queues and pushes it into the execution
pipelines of variable read, instruction execution, variable write,
and thread control. The variable reads and writes are for global,
shared, or private variables accessed in X. The execution stage
executes the user-programmed operations in X. At the thread-
control stage, X can call another module, return to the calling
module, pause the current thread until awaken by another
thread, continue execution of another instruction, or retry X if
the current execution stage failed for any reason (e.g., busy
external memory).

Fig. 1: HT infrastructure

HT Host Interface (HIF) Host Memory Interface
HT Application

Host Code

HT Inbound
Message or
Data Queue

HT Inbound
Message or
Data Queue

HT Outbound
Message or
Data Queue

HT Outbound
Message or
Data Queue

HT Unit (N-1)

Coprocessor Memory Interface

HT Host Interface (HIF)
HT

Unit
0

...

Application
Data

Storage

H
T

G
lo

b
al

 V
ar

ia
b

le
s HT Module 0

HT Module (n-1)

..
.

HT Shared
Variables

...

*X HT Private Variables for Thread XLegend :

H
o

st

(C
P

U
s)

M
em

o
ry

C
o

p
ro

ce
ss

o
r

(F
P

G
A

s)

*X ...

Exe. Pipelines

Instr. A

Instr. B...

Read Variables

Execute HT
Instruction

Write Variables

Instr.

Calls C
o

n
tin

u
e / R

etry

Thread Control
(Call, Return, Pause,

Continue, Retry, etc.)

...
Queues

Execution Pipelines of
HT Module

978-1-4673-9286-0/15/$31.00 ©2015 IEEE

HT Language. HT modules are programmed using the HT
programming language, a subset of C/C++ with configurable
runtime libraries of commonly used functions. The coprocessor
code consists of two types of source files: HT description
(HTD) file and HT instruction files. The HTD file contains the
declarations of the modules. It also has definitions of
call/messaging interfaces, instructions, and variables (global,
shared, or private) for each module. Each module has its own
HT instruction file, which contains the module’s behavioral
code in C/C++ syntax.

 In Fig. 2, we show a simple HT code example – addOne.
Its HTD file as shown in Fig. 2(a), includes declaration of the
module, three instructions (EX_LD, EX_ST, EX_RTN), one
input host-messaging interface, two private variables (vecIdx,
result), one shared variable (op1Addr), the module entry
interface, the module return interface, and the module’s
memory access interfaces. The HT instruction file of the
example code is shown in Fig. 2(b), which includes the
programmed operations for each instruction. Three important
aspects of the instruction file should be noted: 1) each HT
instruction corresponds to a case of the switch statement over
the infrastructure-managed PR_htInst variable; 2) the user-
defined variables within the HTD file are accessible in each
instruction by prefixing the variable name with P_ (for private
variable) or S_ (for shared variable); and 3) APIs (e.g.,
ReadMem_op1, ReadMemPause, etc.) are generated by HT to
facilitate thread controls and the usage of memory interfaces

and entry/return interfaces. More code examples of HT
programs can be found in [13] or the OpenHT repository [7].

HT design flow. The HT design flow is shown in Fig. 3.
The green-colored blocks are the compiler tools for HT: HT
linker (HTL) and HT Verilog generator (HTV). HTL parses the
HTD file and generates the runtime libraries in the form of
SystemC code, which is then compiled with the HT instruction
files and the host code by GCC into an integrated SystemC
simulator. Using this SystemC-based simulator, designers can
quickly debug a design using familiar techniques (e.g., GDB,
printf, or assertions) and conduct design-space exploration
using the trace of the cycle-accurate simulation. After the
design is verified, the HTV tool is used to generate Verilog
files, which are then compiled by the FPGA vendor tools to
generate an FPGA image.

Currently, HT only supports platforms that implement the
Convey hybrid-core architecture [19]. However, Convey has
released the source code of HT [7], allowing anyone to build
the toolset and add support for other RC platforms.

B. Design-flow Comparison with HDLs

A typical HDL design flow is shown in Fig. 4. The host
code is written in a high-level language such as C/C++ and the
coprocessor code is in HDLs (e.g., VHDL, Verilog). Designers
are required to write testbench code in HDLs for functional
simulation. Additionally, functional co-simulation of both host

Host Code
(*.c / *.cpp)

Host
Executable

FPGA Image

Coprocessor Code
(*.vhd / *.v)

Testbench
Code

(*.vhd /
*.v)

Functional
Simulation with
e.g., ModelSim

Libraries
(*.vhd /

*.v)Library
I/F

Control
Logics &
Datapath

Verified?N

Debug / Tuning

Verified?

Functional Co-simulation

Y
HDL
I/F

code
(*.c)

N

Y
FPGA Vendor Tools

Y

Fig. 4: HDL design flow

Fig. 2: HT language example, addOne, showing (a) HT description (HTD) file, and (b) HT instruction file

#define EX_HTID_W 7

typedef ht_uint48 MemAddr_t;

dsnInfo.AddModule(name=addOne, htIdW=EX_HTID_W);

addOne.AddInst(name=EX_LD);

addOne.AddInst(name=EX_ST);

addOne.AddInst(name=EX_RTN);

addOne.AddHostMsg(dir=in, name=OP1_ADDR)

.AddDst(var=op1Addr);

addOne.AddPrivate()

.AddVar(type=uint32_t, name=vecIdx)

.AddVar(type=uint64_t, name=result);

addOne.AddShared().AddVar(type=MemAddr_t, name=op1Addr);

addOne.AddEntry(func=addOne, inst=EX_LD)

.AddParam(type=uint32_t, name=vecIdx);

addOne.AddReturn(func=addOne)

.AddParam(type=uint64_t, name=result);

addOne.AddReadMem().AddDst(var=op1);

addOne.AddWriteMem();

(a)

#include "Ht.h"

#include "PersAddOne.h"

#define BUSY_RETRY(b) {if (b) {HtRetry(); break;}}

void CPersAddOne::PersAddOne() {

if (PR_htValid) {

switch (PR_htInst) {

case EX_LD: BUSY_RETRY(ReadMemBusy());

ReadMem_op1((MemAddr_t)(S_op1Addr+(P_vecIdx*8)));

ReadMemPause(EX_ST); break;

case EX_ST: BUSY_RETRY(WriteMemBusy());

WriteMem((MemAddr_t)(S_op1Addr+(P_vecIdx * 8)),

(P_op1 + 1));

WriteMemPause(EX_RTN); break;

case EX_RTN: BUSY_RETRY(SendReturnBusy_addOne());

SendReturn_addOne(); break;

default: assert(0);

}}}

(b)

Fig. 3: HT design flow

HT Host Code
(*.c / *.cpp)

Coprocessor Code

HT Unit
Description

(*.htd)

HT Customized
Instruction
(*_src.cpp)

HTL

HTV

FPGA Vendor Tools

Runtime Libraries
(*.h, *.cpp)

SystemC
Simulator

Verified?

Host Executable

FPGA Image

Debug / Performance Tuning

Y

YN

Verilog Files (*.v)

HT
Libraries

(*.h,
*.cpp)

978-1-4673-9286-0/15/$31.00 ©2015 IEEE

and coprocessor code requires designers to develop even more
code – e.g., foreign language interface (FLI) code for VHDL or
programming language interface (PLI) code for Verilog.
Finally, the coprocessor code is compiled by the FPGA vendor
tools to produce an FPGA image. To meet performance
requirements, the above process is generally repeated to
optimize the design.

Comparing the HT design flow with the HDL design flow,
we observe several productivity improvements. Firstly, all the
source code of an HT design are written in a high-level
language, which generally result in less code and faster code
modifications than HDLs. Secondly, validating an HT design is
much simpler than an HDL design. No HDL testbench or
FLI/PLI code is required for HT. Instead, SystemC connects
the host and coprocessor code in an integrated-system
simulation, in which more comprehensive input data can be
used for design validation since SystemC simulation is found
to be orders of magnitude faster than HDL simulations (e.g.,
using ModelSim) [17]. Moreover, cycle-accurate SystemC
simulation can be used to conduct design-space exploration,
which saves even more design time. Finally, the HT
infrastructure provides consolidated FPGA design patterns. For
example, memory partitioning is concretized and abstracted in
the form of global, shared, and private variables. In
comparison, memory partitioning in HDL designs needs much
attention of the developer and has proven to be one of the
major productivity challenges [9].

In addition to the qualitative productivity analysis above,
we also conducted quantitative productivity evaluation of HT.
However, a rigorous productivity study involves independent
testing of a large number of developers of various backgrounds
and skill levels. Conducting such a productivity evaluation is
beyond the scope of our work. Instead, we use two commonly
used productivity metrics: lines of code (LoC) and anecdotal
design time. Design time of the HDL designs was given to us
by their developers and we estimate the design time for HT
designs. LoC is a simple line count of the source files. The
results are summarized in Section V.

IV. REFERENCE COMPUTING KERNELS

In this section, we introduce the selected reference kernels,
present their HT designs, and justify our selection of the
kernels. The reference computing kernels are the Sobel edge
detector from the image processing domain, breadth-first
search from the graph processing domain, and Smith-
Waterman sequence alignment from the bioinformatics
domain.

A. Sobel Edge Detector

The Sobel edge detector is a basic image-processing
algorithm. It is based on the gradient calculation of pixel
intensities in an image, which is essentially a 2D convolution
of the image with two sets of 3-by-3 filters known as Sobel
filters:

𝐺𝑥 =
−1 0 1
−2 0 2
−1 0 1

 ,𝐺𝑦 =
−1 −2 −1
0 0 0
1 2 1

We ported the VHDL code of the Sobel edge detector
(which was developed for another project in our lab [16]) to
our target platform to create the reference HDL design. We
follow that design closely to create the HT design, the
hardware structure of which is shown in Fig. 5. It has a single
HT unit with one module inside. In the module, a smart buffer
is created as an instance of the stencil buffer from the HT
libraries. HT instructions are defined to create, read from, and
write to an HT streaming interface for external memory. The
multiply-add tree is also defined using the HT programming
language. The Sobel module has 221 lines of HT code
(including both the HTD file and the instruction file) as
compared to 2078 lines of HDL code.

B. Breadth-first Search (BFS)

Breadth-first search (BFS) is an important building block
for graph processing algorithms. It is used in many application
domains that require high-performance traversal of large-scale
graphs (e.g., social networking). CyGraph is an optimized
HDL implementation of the BFS algorithm presented in [4]
and is among the best performing BFS implementations
published so far. The authors of CyGraph kindly shared the
VHDL source code with us so we can use it as our reference
HDL design for the BFS kernel.

We created the HT design of BFS following CyGraph as
closely as possible. One unit of the design is depicted in Fig. 6.
The Master module forks threads onto Kernel and NextEnq
modules. Each kernel thread handles one node from the
current-level queue. The Kernel module is functionally similar
to the kernel in CyGraph, except the process of pushing results
into the next-level queue. That process corresponds to the
NextEnq module. Similar to CyGraph, we replicate the HT unit
64 times to utilize all memory ports on the target platform.

Fig. 5: HT design of Sobel edge detector

BRAM
FIFO

Input
Pixel

Stream

Mult-Add Tree

Gx Gy

> Threshold?
0 for non-edge

1 for edge

Output
Pixel

Stream

RegReg RegReg RegReg

RegReg RegReg RegReg
BRAM
FIFO

RegReg RegReg RegReg

HT
instructions

Smart Buffer (inst. Stencil Buffer)

HT Sobel Module

HT Memory
Stream I/FTo

External
Memory

Fig. 6: HT design of BFS kernel

Master Module

HT Instructions

HT
Memory

I/F w/
Atomics

HT Instructions

HT
Memory

I/F

Kernel Module

HT
Messaging

I/F

NextEnq Module

HT
Instructions

HT Memory I/F
w/ Atomics

i-th External
Memory

Controller IP

i-th HT Unit

HT
Messag-
ing I/F

HT Messag-
ing I/F

978-1-4673-9286-0/15/$31.00 ©2015 IEEE

Fig. 7: HT design of Smith-Waterman kernel

Control Module

HT
Instruct

-ions

HT Instructions

HT
Memory

I/F

Query-database Module

i-th
External
Memory

Controller
IP

i-th HT Unit

1 2 6 7...
2

3

6

7

8

3 8

...

3 4

54

11 12

12

13

13

13 14

15149 10

8 9

87

7 8

8

9

9 10...

...

...

Our HT design differs from CyGraph in three ways. Firstly,
explicit FIFOs are not needed by the HT design because the
HT infrastructure provides built-in FIFOs in the module-call
and messaging interfaces. Secondly, memory management
logics of CyGraph (e.g., request multiplexer and responses
decoders) are not needed by the HT design because the HT
memory interfaces provide simple APIs for memory
management. Finally, the version of HT that we use (version
1.3) has a limitation: no messaging interfaces across units.
Consequently, we cannot implement the efficient token-ring
synchronization mechanism of CyGraph. Instead, we resort to
a synchronization mechanism based on memory atomics.

C. Smith-Waterman Sequence Alignment

Smith-Waterman is a fundamental algorithm in the
bioinformatics domain which performs local sequence
alignment to determine similar regions between two strings of
nucleotide or protein sequences. A detailed description of the
algorithm can be found in [15].

An optimized Verilog implementation of Smith-Waterman
from Convey is overviewed in [10]. It features optimized
Verilog code and detailed area constraints using manual
placement and routing. Since such detailed constraints are not
generally available for HDL-based designs, we recompiled the
optimized Verilog code without the manual placement and
routing to derive the reference HDL design.

The longest query that the reference HDL design can
handle in hardware is 480, limited by the number of PEs. HT’s
ease of programming for complex control logics enabled us to
easily overcome this limitation by processing a long query in
segments so that queries of arbitrary lengths can be handled.
The hardware structure of the HT design is shown in Fig. 7.
Each HT unit (64 units in total) has one Control module and
one Query-database module. The Query-database module has
128 threads, each thread handling a pair of query and database
sequence. The module also has a pipelined datapath of 15
stages organized into an 8-by-8 array of PEs. The 128 threads
in module share the HT memory interface and the 8-by-8 array
of PEs. Each thread processes its query and database sequence
in segments of 8 protein residues and the database segments
are double-buffered to hide the latency of database loads.

The HT design has 1409 lines of code as compared to
11461 lines of HDL. Note that we use for-loops to replicate the
PE arrays which are translated into for-generates in HDLs.

D. Rationale for Kernel Selection

The Sobel edge detector is a streaming kernel with limited
amount of computation (12 multipliers, 13 adders) and fixed
input data rate (one pixel per clock cycle). Such streaming
algorithm is amenable for FPGAs and thus serves as a basic
test for HLS tools. The BFS algorithm has limited computation
but much external memory operations. Such memory-bound
algorithm can test an HLS in terms of memory-interface
efficiency and the ease of programming external memory
operations. Finally, the Smith-Waterman algorithm represents
the computation-bound algorithms which require massive
parallelism to achieve high performance. Thus, such algorithm
can test an HLS’s capability to efficiently replicate processing
elements. These three types of algorithms represent common
computation and communication patterns of many algorithms
targeting FPGAs for acceleration and serve as a good test suite
for evaluating the efficiency of an HLS tool against
corresponding optimized HDL designs.

V. RESULTS AND DISCUSSIONS

In this section, we first describe the experiment setup.
Then, the performance, resource usage, and productivity results
of the reference computing kernels are presented and compared
between the HT HLS implementations and the HDL ones.

A. Experiment Setup

Our target platform is the Convey HC-2ex system. This
platform features two Xeon X5670 processors (12 cores in
total) on the host side and four Xilinx Virtex-6 LX760 FPGAs
on the coprocessor side. The system has 64GB host memory
and 16GB coprocessor memory. HT toolset version 1.3 was
used to implement the reference kernels.

Real-world input data were used for the tests. The Sobel
kernel’s input images can have pixels up to 16 bits wide and
three resolutions: 640x480 (VGA), 1280x720 (720p), and
1920x1080 (1080p). The inputs to the BFS kernel are random
graphs with 2^23 vertices and N*2^23 edges. N is the average
degree of the vertices, taking values of 8, 16, 32, and 64. The
Smith-Waterman kernel is tested with the Swiss-Prot protein
database, which features 195,014,757 residues in 547,599
sequences. The query sequences (code-name: P07327, P01008,
P03435, and Q9UKN1) are selected so that their lengths
surround 480, the upper limit of query length of the HDL
design. Note that Q9UKN1 has 5478 residues and it is selected
to verify that the HT version can handle very long query.

B. Performance and Productivity Comparison

The results of performance, resource utilization, and
productivity are summarized in Table 1. The Sobel kernel
shows similar performance for both HT and HDL designs,
which indicates that HT is excellent for the first type of
algorithms (streaming). The HT design uses more resources,
which is due to the overhead of the HT infrastructure (e.g.,
HIF, module wrapper, automatic global/shared variables, etc.)
and the HT streaming interface (e.g., aggressive prefetching
logics). However, productivity metrics such as lines-of-code
(LoC) and design time show an order of magnitude advantage
for HT.

978-1-4673-9286-0/15/$31.00 ©2015 IEEE

For the BFS kernel, the HT design achieves from 60%
performance of the HDL design for the smallest graph to 86%
performance for the largest graph, indicating good performance
for memory-bound algorithms. The main performance
overhead is from the atomic memory operations for
synchronization among HT units. This overhead is not directly
affected by graph size so its percentage of the execution time
decreases for larger graphs. Comparing resource utilization,
HT uses more flip-flops (FF) and look-up tables (LUT) but
fewer block RAMs (BRAM) than HDL. The FF and LUT
overhead are due to the HT infrastructure and the atomic
memory interfaces. As for BRAM, since the FIFOs within the
HT infrastructure are implicitly used, fewer BRAM-based
FIFOs are required as compared to the HDL design. Again, the
productivity metrics show a great advantage for the HT design.

For Smith-Waterman, the performance of the HDL design
drops dramatically for queries that are longer than 480. This is
expected since the HDL design cannot fit more than 480 PEs
on the FPGA and the application resorts to a software-based
alignment instead. The HT design is slower than the HDL
design for query P01008 (13%). The performance overhead
mainly comes from the additional execution time required to
switch from one query segment to the next and the extra
memory operations for buffering intermediate results between
the switching. However, since the HT hardware works for long
queries (>480) as well, HT’s overall performance across all
four queries surpasses that of the HDL design. Also, the HT
design has a higher clock frequency.

Regarding the resource utilization results of Smith-
Waterman, in addition to the infrastructure overhead, the HT
design required more resources for the following two reasons.
Firstly, we were able to fit 1024 PEs (vs. 480) onto the FPGA
due to the regular HT unit/module structures. Secondly, extra
logics are needed to handle arbitrarily long queries (even
longer than the 5478 residues that we tested).

In terms of productivity for Smith-Waterman, HT’s LoC
number is an order of magnitude smaller than HDL. The
design time comparison is less dramatic but the development
process of the HDL design involved more than one developer,
while a single developer is what we had for all three HT

designs. In summary, the Smith-Waterman results indicate that
HT also works well for the computation-bound algorithms.

VI. CONCLUSIONS AND FUTURE WORK

As FPGA technology sees rapid growth in many high-
performance computing domains, productivity challenges of
the traditional HDL-based design flow become a major
obstacle to wide adoption of the technology. HLS provides
familiar high-level languages as design entry and tools to
compile, verify, and implement designs to greatly increase
design productivity. However, HLS commonly incurs overhead
in the form of performance and hardware resource.

The Convey HT toolset is a new and unique HLS that
features familiar design entry, customizable infrastructure, and
fast validation. In this paper, we evaluate HT using designs of
three reference kernels (Sobel edge detector, breadth-first
search, and Smith-Waterman sequence alignment) by
comparing performance, resource usage, and productivity
against optimized HDL designs. The results show that HT can
achieve over 80% performance of optimized HDL designs for
the reference kernels. Although there is non-negligible
resource overhead, the dramatic reduction of LoC and design
time may justify the tradeoff in many applications.

We plan to explore additional productivity benefits of HT
in future work. The focus is on early design-space exploration
using HT’s SystemC-based simulation.

ACKNOWLEDGMENT

This work was supported in part by the I/UCRC Program of
the National Science Foundation under Grant Nos. EEC-
0642422 and IIP-1161022.

REFERENCES

[1] A. Agarwal, M. C. Ng et al., “A comparative evaluation of high level
hardware synthesis using reed–solomon decoder,” Embedded Sys.
Letters, IEEE, vol. 2, no. 3, pp. 72–76, 2010.

[2] Altera SDK for OpenCL Programming Guide Version 13.0 SP1, 2013.

[3] O. Arcas-Abella, G. Ndu, N. Sonmez, M. Ghasempour, A. Armejach, J.
Navaridas, W. Song, J. Mawer, A. Cristal, M. Lujan, “An empirical

Table 1: HT-HDL comparison of performance, resource utilization, and productivity

VGA 720p 1080p

VHDL 321 122 63 70,434 7% 41,977 8% 22 2% 1789 6% 150 2078 60

HT 312 114 60 108,666 11% 86,527 18% 22 2% 2376 9% 150 221 5

2 2̂3 x

8

2 2̂3 x

16

2 2̂3 x

32

2 2̂3 x

64

VHDL 2.00 2.19 2.30 2.35 127,119 13% 126,525 26% 0 0% 8640 33% 150 4273 240

HT 1.19 1.57 1.85 2.02 201,019 21% 232,097 48% 0 0% 6048 23% 150 773 40

P07327,

375

P01008,

464

P03435,

567

Q9UKN1,

5478

all 4

queries

Verilog 179.81 223.16 50.95 67.11 130.05 112,431 11% 147,785 31% 0 0% 2844 10% 110 11461 350

HT 189.23 194.70 206.23 212.25 201.17 259,874 27% 337,834 71% 16 1% 10656 41% 125 1409 80

Billion traversed edges per second (GTEPS)

Frames per second (FPS)

Resource Utilization (number and percentage)
Freq.

(MHz)

Data size: node x

avg. degree

Design

entries

Smith-Waterman Billion cell updates per second (GCUPS)

Query name,

query length

Design

entries

LoC
Design

time (hrs)Image resolution

Design

entries

BFS

BRAM (Kb)DSPLUTFF

Performance Productivity

Sobel

978-1-4673-9286-0/15/$31.00 ©2015 IEEE

evaluation of High-Level Synthesis languages and tools for database
acceleration,” In Proc. 24th FPL, pp. 1-8. 2014.

[4] O.G. Attia, T. Johnson, K. Townsend, P. Jones, J. Zambreno, “CyGraph:
A Reconfigurable Architecture for Parallel Breadth-First Search,” In
Proc. IPDPSW, 2014, pp. 19-23.

[5] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avizienis, J.
Wawrzynek, and K. Asanovic, “Chisel: constructing hardware in a scala
embedded language,” in Proc. 49th DAC, 2012, pp. 1216–1225.

[6] B. Betkaoui, Y. Wang, D. Thomas, W. Luk, “A Reconfigurable
Computing Approach for Efficient and Scalable Parallel Graph
Exploration,” in Proc. ASAP, 2012, pp. 8–15.

[7] T. Brewer, OpenHT. https://github.com/TonyBrewer/OpenHT.

[8] A. Cornu, S. Derrien, and D. Lavenier, “HLS tools for FPGA: Faster
development with better performance,” in Reconfigurable Computing:
Architectures, Tools and Applications. Springer, 2011, pp. 67–78.

[9] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang,
“High-level synthesis for FPGAs: From prototyping to deployment,”
IEEE Trans. on Computer-Aided Design of ICs and Systems, vol. 30,
no. 4, pp. 473–491, 2011.

[10] Convey Computer, Convey Computer Smith-Waterman personality.
http://www.conveycomputer.com/files/1113/5085/5467/ConveySmithW
aterman6202011.pdf

[11] L. Daoud, D. Zydek, and H. Selvaraj, “A survey of high level synthesis
languages, tools, and compilers for reconfigurable high performance
computing,” in Advances in Systems Science, 2014, pp. 483–492.

[12] B. da Silva, E. D’Hollander, D. Stroobandt, A. Touhafi, “Exploiting
High-level Synthesis Tools for High-performance Applications on
FPGAs,” 15th FEA Research Symposium Faculty of Engineering and
Architecture, Ghent, Belgium: UGent, 2014.

[13] G. Edwards, Convey HT overview. http://www.conveycomputer.com/
files/7914/0539/0689/Convey_HT_Overview.pdf, 2013.

[14] Tom Feist, Vivado design suite. Technical report, Xilinx, Inc., 2012.

[15] L. Hasan, Z. Al-Ars, “An Overview of Hardware-Based Acceleration of
Biological Sequence Alignment,” in Computational Biology and
Applied Bioinformatics, pp. 187, Dec. 2011.

[16] K. Hill, S. Craciun, A.D. George, H. Lam, “Comparative Analysis of
OpenCL vs. HDL with Image-Processing Kernels on Stratix-V FPGA,”
in 26th IEEE International Conference on Application-Specific Systems,
Architectures and Processors (ASAP), July 2015.

[17] A. Hoffman, T. Kogel, H. Meyr, “A framework for fast hardware-
software co-simulation,” In Proc. DATE, pp. 760-765. 2001.

[18] Y. Iskander, C. Patterson, S. Craven, “High-Level Abstractions and
Modular Debugging for FPGA Design Validation,” ACM Trans.
Reconfigurable Technol. Syst. 7, 1, Article 2, February 2014.

[19] B. Klauer, “The Convey Hybrid-Core Architecture,” In High-
Performance Computing Using FPGAs, pp. 431-451. 2013.

[20] W. Meeus, K. VanBeeck, T. Goedem, J. Meel, and D. Stroobandt, “An
overview of todays high-level synthesis tools,” Design Automation for
Embedded Systems, vol. 16, no. 3, pp. 31–51, 2012.

[21] Mentor Graphics. "ModelSim." 2007.

[22] R. Nikhil, “Bluespec System Verilog: efficient, correct RTL from high
level specifications,” Formal Methods and Models for Co-Design, 2004.
MEMOCODE '04. Proceedings. Second ACM and IEEE International
Conference on , vol., no., pp.69,70, 23-25 June 2004.

[23] R. Rashid, J.G. Steffan, V. Betz, “Comparing performance, productivity
and scalability of the TILT overlay processor to OpenCL HLS,” Field-
Programmable Technology (FPT), 2014 International Conference on,
vol., no., pp.20,27, 10-12 Dec. 2014.

[24] S. Singh, S. Saurav, R. Saini, A. K. Saini, C. Shekhar, A. Vohra,
“Comprehensive Review and Comparative Analysis of Hardware
Architectures for Sobel Edge Detector,” ISRN Electronics, vol. 2014,
Article ID 857912, 9 pages, 2014.

[25] D.J. Warne, N.A. Kelson, R.F. Hayward, “Comparison of High Level

FPGA Hardware Design for Solving Tri-diagonal Linear Systems,”

Procedia Computer Science 29: 95-101. 2014.

978-1-4673-9286-0/15/$31.00 ©2015 IEEE

