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Abstract—FPGA-based reconfigurable computing is finding 

its way into a wide range of application areas in which high 

performance and low power consumption are paramount. 

However, FPGA-application development using hardware-

description languages (HDLs) faces many productivity challenges 

that limit its wide adoption, including a steep learning curve and 

lengthy compilation. High-level synthesis (HLS) languages and 

tools aim to overcome these challenges by providing familiar 

high-level languages and tools for FPGA-application 

development. In using HLS, however, an important consideration 

is the cost-benefit tradeoff for performance and productivity. 

Hybrid-threading (HT) is a new open-source HLS toolset from 

Convey Computer, Corp. that features a programming language 

based on C/C++ and a set of tools for efficient compilation, 

verification, and implementation. In this paper, we present a 

performance and productivity tradeoff study of HT HLS versus 

HDLs using three RC-amenable kernels, each chosen for their 

distinctive computational requirements. Our results show that 

for all three kernels, HT achieved over 80% performance for a 

fraction of development time, in comparison to corresponding 

optimized HDL-based designs. 
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I. INTRODUCTION 

Reconfigurable computing (RC) technology using FPGAs 
provides opportunities to achieve better performance and lower 
power consumption than the corresponding software 
implementations for a wide range of high-performance 
applications such as bioinformatics, image processing, and 
graph processing (e.g. [6][15][24]). For FPGA-application 
development, the most widely used languages are hardware-
description languages (HDLs) such as VHDL and Verilog. 
HDLs provide expressive specification capabilities down to the 
RTL level, which allows the design of an application to be 
mapped to FPGA hardware resources in an optimal manner. 
However, it is well known that the usage of HDLs poses 
significant productivity challenges [18][23]. Firstly, HDLs are 
cumbersome and have a steep learning curve requiring 
specifying algorithms at the cycle-accurate RTL level, 
resulting in more complex code and lengthier development 
time. Secondly, compilation time of non-trivial FPGA designs 
is typically hours or even days, which substantially reduces the 
achievable number of design iterations per day. Finally, 
compounded by first two problems, design validation is one of 
the most costly phases in an HDL-based design flow. 

Debugging HDL code relies heavily on cycle-accurate 
simulators (e.g., ModelSim [21]), which can be time-
consuming due to the low abstraction level of the HDL design. 
A design change commonly involves many lines of HDL code; 
and if the change requires a complete re-run of the lengthy 
compilation process, the design validation cycles become even 
more painful.  

Aiming to address the productivity problems of FPGA-
application development, high-level synthesis (HLS) languages 
and tools (e.g., OpenCL [2], Vivado [14], BSV [22]) enable 
familiar high-level languages as design entry (often C or its 
variants), which alleviates the learning-curve problem of 
HDLs. The validation process is also improved because 
debugging via high-level simulation can detect and correct 
many functional errors before the lengthy hardware 
compilation. However, using HLS languages and tools 
commonly incurs certain overhead in the form of performance 
and hardware resources [12]. Thus, it is important to consider 
the performance/productivity tradeoff in the use of HLS 
languages and tools. 

Hybrid-threading (HT) is a new open-source HLS toolset 
from Convey Computer, Corp. [7]. HT takes a unique approach 
to HLS by combining C/C++-like programming language, 
flexible architectural customization, thread-based execution 
model and an integrated-system approach to simulation using 
SystemC. Thus, HT holds the promise of high-level design 
entry and programming flexibility needed to achieve maximum 
performance for multiple application domains. In this paper, 
we present a comparative study between HT HLS and HDLs 
by exploring the productivity benefits of HT against the 
tradeoff in performance and resource usage, in the context of 
three RC-amenable kernels chosen for their distinctive 
computational requirements. 

The rest of the paper is organized as follows. In the next 
section, we present related studies on HLS-HDL comparison. 
In Section III, we introduce the Convey HT toolset and identify 
the productivity benefits of HT by analyzing and comparing its 
design flow with a typical HDL design flow. Section IV 
describes the three computational kernels selected from 
distinctive domains of high-performance reconfigurable 
computing (image processing, graph processing, and 
bioinformatics) and the rationale for their selection. In Section 
V, comparative results on performance, resource utilization, 
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and productivity are presented and discussed. For all three 
kernels, HT achieved over 80% performance while showing an 
order of magnitude productivity improvement in comparison to 
corresponding optimized HDL-based designs. Section VI 
concludes the paper and discusses future work. 

II. RELATED WORK 

There has been much work published on HLS languages 
and tools. A recent survey [11] summarized and characterized 
a plethora of HLS tools qualitatively, but it does not provide 
any quantitative comparisons between them and HDLs. An 
overview of a number of HLS tools was presented in [20], in 
which HLS tools were compared to each other and to HDLs in 
the context of the Sobel edge detector. The comparison was 
limited to quantifying productivity-related features such as 
learning curve, documentation, ease of implementation, etc., 
and was lacking in performance results. 

Although there were some comparison studies that 
considered multiple application domains (e.g., Cong et al. [9] 
compared AutoPilot (now Vivado) against HDL for video 
processing and cognitive radios), we observe that in most 
published studies, HLS tools were evaluated in a specific 
application domain. In [8], Impulse C was compared to HDL 
for a bioinformatics algorithm, where it showed better 
performance and hardware usage. A Scala-based HLS, Chisel 
[5], was compared to Verilog for the design of a RISC 
processor, showing better performance and productivity. 
Bluespec System Verilog (BSV) was compared to Xilinx IPs in 
[1] for a Reed-Soloman decoder, showing better performance 
and hardware usage. Altera OpenCL and Xilinx Vivado were 
shown to achieve comparable performance and resource 
utilization to HDLs for a linear algebra algorithm in [25]. In 
[3], four HLS tools (BSV, Chisel, LegUp, and OpenCL) were 
compared to each other and to Verilog for database algorithms. 
The results show that BSV and Chisel performed better than 
Verilog with minimum hardware overhead, but not so for the 
other two HLS tools. 

In this paper, we explore the productivity benefits of HT, a 
promising HLS toolset, against the tradeoff in performance and 
resource usage, in the context of reference kernels from 
multiple application domains.  

III. COMPARISON OF DESIGN FLOWS 

In this section, we analyze the design flow of the HT 
toolset in comparison with a typical HDL design flow. Since 
HT is a new toolset, a concise introduction of the HT toolset is 
presented before the comparative analysis.  

A. Convey HT  Toolset 

We introduce the HT toolset from three aspects: 1) the 
configurable HT infrastructure including the execution model; 
2) the HT programming language; and 3) the HT design flow. 
More details on HT can be found in [13]. 

HT infrastructure and execution model. As shown in 
Fig. 1, the HT infrastructure (green blocks) is depicted in the 
context of a co-processing system. The HT host code can 
invoke the software part of HT host interface (HIF) to load the 

FPGA images, allocate data structures in memory (e.g., 
message/data queues and application data storage), and 
dispatch the coprocessor FPGA logics. The coprocessor logics 
consist of one or more HT units. Each unit contains the 
hardware part of HIF, one or more HT modules, and optionally 
global variables accessible by all modules of the unit. The 
infrastructure manages and replicates the units by N times (N is 
configurable) so that the designer only needs to program for 
one unit. Also, the host code dispatch each unit independently 
via the HIF, so each unit can work on separate tasks.  

An HT module consists of the user-programmable part and 
the infrastructure part. The former is not shown in details in 
Fig. 1 so we describe it first to facilitate understanding of the 
latter. Each HT module contains one or more HT instructions 
programmed by the user using the HT language. HT instruction 
is the smallest executable element of an HT module and it is a 
set of operations that can execute within a single clock cycle, 
such as external-memory interface calls, function calls, 
module-wise messaging, and thread-control routines. An 
execution instance of a sequence of HT instructions is defined 
as an HT thread of the module. The infrastructure part of the 
module manages its threads independently so that each thread 
has private variables (hence separate states). It is also 
configurable in terms of the number of supported threads and 
the shared variables accessible by all threads of the module.  

Multiple HT threads are time-division multiplexed on the 
module by the infrastructure. On every clock cycle, each HT 
module takes an instruction X from its infrastructure-
maintained instruction queues and pushes it into the execution 
pipelines of variable read, instruction execution, variable write, 
and thread control. The variable reads and writes are for global, 
shared, or private variables accessed in X. The execution stage 
executes the user-programmed operations in X. At the thread-
control stage, X can call another module, return to the calling 
module, pause the current thread until awaken by another 
thread, continue execution of another instruction, or retry X if 
the current execution stage failed for any reason (e.g., busy 
external memory).  

Fig. 1: HT infrastructure 
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HT Language. HT modules are programmed using the HT 
programming language, a subset of C/C++ with configurable 
runtime libraries of commonly used functions. The coprocessor 
code consists of two types of source files: HT description 
(HTD) file and HT instruction files. The HTD file contains the 
declarations of the modules. It also has definitions of 
call/messaging interfaces, instructions, and variables (global, 
shared, or private) for each module. Each module has its own 
HT instruction file, which contains the module’s behavioral 
code in C/C++ syntax.  

 In Fig. 2, we show a simple HT code example – addOne. 
Its HTD file as shown in Fig. 2(a), includes declaration of the 
module, three instructions (EX_LD, EX_ST, EX_RTN), one 
input host-messaging interface, two private variables (vecIdx, 
result), one shared variable (op1Addr), the module entry 
interface, the module return interface, and the module’s 
memory access interfaces. The HT instruction file of the 
example code is shown in Fig. 2(b), which includes the 
programmed operations for each instruction. Three important 
aspects of the instruction file should be noted: 1) each HT 
instruction corresponds to a case of the switch statement over 
the infrastructure-managed PR_htInst variable; 2) the user-
defined variables within the HTD file are accessible in each 
instruction by prefixing the variable name with P_ (for private 
variable) or S_ (for shared variable); and 3) APIs (e.g., 
ReadMem_op1, ReadMemPause, etc.) are generated by HT to 
facilitate thread controls and the usage of memory interfaces 

and entry/return interfaces. More code examples of HT 
programs can be found in [13] or the OpenHT repository [7].  

HT design flow. The HT design flow is shown in Fig. 3. 
The green-colored blocks are the compiler tools for HT: HT 
linker (HTL) and HT Verilog generator (HTV). HTL parses the 
HTD file and generates the runtime libraries in the form of 
SystemC code, which is then compiled with the HT instruction 
files and the host code by GCC into an integrated SystemC 
simulator. Using this SystemC-based simulator, designers can 
quickly debug a design using familiar techniques (e.g., GDB, 
printf, or assertions) and conduct design-space exploration 
using the trace of the cycle-accurate simulation. After the 
design is verified, the HTV tool is used to generate Verilog 
files, which are then compiled by the FPGA vendor tools to 
generate an FPGA image.  

Currently, HT only supports platforms that implement the 
Convey hybrid-core architecture [19]. However, Convey has 
released the source code of HT [7], allowing anyone to build 
the toolset and add support for other RC platforms.  

B. Design-flow Comparison with HDLs 

A typical HDL design flow is shown in Fig. 4. The host 
code is written in a high-level language such as C/C++ and the 
coprocessor code is in HDLs (e.g., VHDL, Verilog). Designers 
are required to write testbench code in HDLs for functional 
simulation. Additionally, functional co-simulation of both host 
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Fig. 2: HT language example, addOne, showing (a) HT description (HTD) file, and (b) HT instruction file 

#define EX_HTID_W 7 

typedef ht_uint48 MemAddr_t; 

dsnInfo.AddModule(name=addOne, htIdW=EX_HTID_W); 

addOne.AddInst(name=EX_LD); 

addOne.AddInst(name=EX_ST); 

addOne.AddInst(name=EX_RTN); 

addOne.AddHostMsg(dir=in, name=OP1_ADDR) 

.AddDst(var=op1Addr); 

addOne.AddPrivate() 

.AddVar(type=uint32_t, name=vecIdx) 

.AddVar(type=uint64_t, name=result); 

addOne.AddShared().AddVar(type=MemAddr_t, name=op1Addr); 

addOne.AddEntry(func=addOne, inst=EX_LD) 

.AddParam(type=uint32_t, name=vecIdx); 

addOne.AddReturn(func=addOne) 

.AddParam(type=uint64_t, name=result); 

addOne.AddReadMem().AddDst(var=op1); 

addOne.AddWriteMem(); 

(a) 

#include "Ht.h" 

#include "PersAddOne.h" 

#define BUSY_RETRY(b) {if (b) {HtRetry(); break;}} 

 

void CPersAddOne::PersAddOne() { 

if (PR_htValid) { 

switch (PR_htInst) { 

case EX_LD: BUSY_RETRY(ReadMemBusy()); 

ReadMem_op1((MemAddr_t)(S_op1Addr+(P_vecIdx*8))); 

ReadMemPause(EX_ST); break; 

case EX_ST: BUSY_RETRY(WriteMemBusy()); 

WriteMem((MemAddr_t)(S_op1Addr+(P_vecIdx * 8)), 

(P_op1 + 1)); 

WriteMemPause(EX_RTN); break; 

case EX_RTN: BUSY_RETRY(SendReturnBusy_addOne()); 

SendReturn_addOne(); break; 

default: assert(0); 

}}} 

(b) 

Fig. 3: HT design flow 
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and coprocessor code requires designers to develop even more 
code – e.g., foreign language interface (FLI) code for VHDL or 
programming language interface (PLI) code for Verilog. 
Finally, the coprocessor code is compiled by the FPGA vendor 
tools to produce an FPGA image. To meet performance 
requirements, the above process is generally repeated to 
optimize the design.  

Comparing the HT design flow with the HDL design flow, 
we observe several productivity improvements. Firstly, all the 
source code of an HT design are written in a high-level 
language, which generally result in less code and faster code 
modifications than HDLs. Secondly, validating an HT design is 
much simpler than an HDL design. No HDL testbench or 
FLI/PLI code is required for HT. Instead, SystemC connects 
the host and coprocessor code in an integrated-system 
simulation, in which more comprehensive input data can be 
used for design validation since SystemC simulation is found 
to be orders of magnitude faster than HDL simulations (e.g., 
using ModelSim) [17]. Moreover, cycle-accurate SystemC 
simulation can be used to conduct design-space exploration, 
which saves even more design time. Finally, the HT 
infrastructure provides consolidated FPGA design patterns. For 
example, memory partitioning is concretized and abstracted in 
the form of global, shared, and private variables. In 
comparison, memory partitioning in HDL designs needs much 
attention of the developer and has proven to be one of the 
major productivity challenges [9].  

In addition to the qualitative productivity analysis above, 
we also conducted quantitative productivity evaluation of HT. 
However, a rigorous productivity study involves independent 
testing of a large number of developers of various backgrounds 
and skill levels. Conducting such a productivity evaluation is 
beyond the scope of our work. Instead, we use two commonly 
used productivity metrics: lines of code (LoC) and anecdotal 
design time. Design time of the HDL designs was given to us 
by their developers and we estimate the design time for HT 
designs. LoC is a simple line count of the source files. The 
results are summarized in Section V. 

IV. REFERENCE COMPUTING KERNELS 

In this section, we introduce the selected reference kernels, 
present their HT designs, and justify our selection of the 
kernels. The reference computing kernels are the Sobel edge 
detector from the image processing domain, breadth-first 
search from the graph processing domain, and Smith-
Waterman sequence alignment from the bioinformatics 
domain.  

A. Sobel Edge Detector 

The Sobel edge detector is a basic image-processing 
algorithm. It is based on the gradient calculation of pixel 
intensities in an image, which is essentially a 2D convolution 
of the image with two sets of 3-by-3 filters known as Sobel 
filters:  

𝐺𝑥 =  
−1 0 1
−2 0 2
−1 0 1

 ,𝐺𝑦 =  
−1 −2 −1
0 0 0
1 2 1

  

 

We ported the VHDL code of the Sobel edge detector 
(which was developed for another project in our lab [16]) to 
our target platform to create the reference HDL design. We 
follow that design closely to create the HT design, the 
hardware structure of which is shown in Fig. 5. It has a single 
HT unit with one module inside. In the module, a smart buffer 
is created as an instance of the stencil buffer from the HT 
libraries. HT instructions are defined to create, read from, and 
write to an HT streaming interface for external memory. The 
multiply-add tree is also defined using the HT programming 
language. The Sobel module has 221 lines of HT code 
(including both the HTD file and the instruction file) as 
compared to 2078 lines of HDL code.  

B. Breadth-first Search (BFS) 

Breadth-first search (BFS) is an important building block 
for graph processing algorithms. It is used in many application 
domains that require high-performance traversal of large-scale 
graphs (e.g., social networking). CyGraph is an optimized 
HDL implementation of the BFS algorithm presented in [4] 
and is among the best performing BFS implementations 
published so far. The authors of CyGraph kindly shared the 
VHDL source code with us so we can use it as our reference 
HDL design for the BFS kernel. 

We created the HT design of BFS following CyGraph as 
closely as possible. One unit of the design is depicted in Fig. 6. 
The Master module forks threads onto Kernel and NextEnq 
modules. Each kernel thread handles one node from the 
current-level queue. The Kernel module is functionally similar 
to the kernel in CyGraph, except the process of pushing results 
into the next-level queue. That process corresponds to the 
NextEnq module. Similar to CyGraph, we replicate the HT unit 
64 times to utilize all memory ports on the target platform.  

Fig. 5: HT design of Sobel edge detector 
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Fig. 7: HT design of Smith-Waterman kernel 
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Our HT design differs from CyGraph in three ways. Firstly, 
explicit FIFOs are not needed by the HT design because the 
HT infrastructure provides built-in FIFOs in the module-call 
and messaging interfaces. Secondly, memory management 
logics of CyGraph (e.g., request multiplexer and responses 
decoders) are not needed by the HT design because the HT 
memory interfaces provide simple APIs for memory 
management. Finally, the version of HT that we use (version 
1.3) has a limitation: no messaging interfaces across units. 
Consequently, we cannot implement the efficient token-ring 
synchronization mechanism of CyGraph. Instead, we resort to 
a synchronization mechanism based on memory atomics.  

C. Smith-Waterman Sequence Alignment  

Smith-Waterman is a fundamental algorithm in the 
bioinformatics domain which performs local sequence 
alignment to determine similar regions between two strings of 
nucleotide or protein sequences. A detailed description of the 
algorithm can be found in [15]. 

An optimized Verilog implementation of Smith-Waterman 
from Convey is overviewed in [10]. It features optimized 
Verilog code and detailed area constraints using manual 
placement and routing. Since such detailed constraints are not 
generally available for HDL-based designs, we recompiled the 
optimized Verilog code without the manual placement and 
routing to derive the reference HDL design.  

The longest query that the reference HDL design can 
handle in hardware is 480, limited by the number of PEs. HT’s 
ease of programming for complex control logics enabled us to 
easily overcome this limitation by processing a long query in 
segments so that queries of arbitrary lengths can be handled. 
The hardware structure of the HT design is shown in Fig. 7. 
Each HT unit (64 units in total) has one Control module and 
one Query-database module. The Query-database module has 
128 threads, each thread handling a pair of query and database 
sequence. The module also has a pipelined datapath of 15 
stages organized into an 8-by-8 array of PEs. The 128 threads 
in module share the HT memory interface and the 8-by-8 array 
of PEs. Each thread processes its query and database sequence 
in segments of 8 protein residues and the database segments 
are double-buffered to hide the latency of database loads.  

The HT design has 1409 lines of code as compared to 
11461 lines of HDL. Note that we use for-loops to replicate the 
PE arrays which are translated into for-generates in HDLs.  

D. Rationale for Kernel Selection 

The Sobel edge detector is a streaming kernel with limited 
amount of computation (12 multipliers, 13 adders) and fixed 
input data rate (one pixel per clock cycle). Such streaming 
algorithm is amenable for FPGAs and thus serves as a basic 
test for HLS tools. The BFS algorithm has limited computation 
but much external memory operations. Such memory-bound 
algorithm can test an HLS in terms of memory-interface 
efficiency and the ease of programming external memory 
operations. Finally, the Smith-Waterman algorithm represents 
the computation-bound algorithms which require massive 
parallelism to achieve high performance. Thus, such algorithm 
can test an HLS’s capability to efficiently replicate processing 
elements. These three types of algorithms represent common 
computation and communication patterns of many algorithms 
targeting FPGAs for acceleration and serve as a good test suite 
for evaluating the efficiency of an HLS tool against 
corresponding optimized HDL designs. 

V. RESULTS AND DISCUSSIONS 

In this section, we first describe the experiment setup. 
Then, the performance, resource usage, and productivity results 
of the reference computing kernels are presented and compared 
between the HT HLS implementations and the HDL ones.  

A. Experiment Setup 

Our target platform is the Convey HC-2ex system. This 
platform features two Xeon X5670 processors (12 cores in 
total) on the host side and four Xilinx Virtex-6 LX760 FPGAs 
on the coprocessor side. The system has 64GB host memory 
and 16GB coprocessor memory. HT toolset version 1.3 was 
used to implement the reference kernels.  

Real-world input data were used for the tests. The Sobel 
kernel’s input images can have pixels up to 16 bits wide and 
three resolutions: 640x480 (VGA), 1280x720 (720p), and 
1920x1080 (1080p). The inputs to the BFS kernel are random 
graphs with 2^23 vertices and N*2^23 edges. N is the average 
degree of the vertices, taking values of 8, 16, 32, and 64. The 
Smith-Waterman kernel is tested with the Swiss-Prot protein 
database, which features 195,014,757 residues in 547,599 
sequences. The query sequences (code-name: P07327, P01008, 
P03435, and Q9UKN1) are selected so that their lengths 
surround 480, the upper limit of query length of the HDL 
design. Note that Q9UKN1 has 5478 residues and it is selected 
to verify that the HT version can handle very long query.  

B. Performance and Productivity Comparison 

The results of performance, resource utilization, and 
productivity are summarized in Table 1. The Sobel kernel 
shows similar performance for both HT and HDL designs, 
which indicates that HT is excellent for the first type of 
algorithms (streaming). The HT design uses more resources, 
which is due to the overhead of the HT infrastructure (e.g., 
HIF, module wrapper, automatic global/shared variables, etc.) 
and the HT streaming interface (e.g., aggressive prefetching 
logics). However, productivity metrics such as lines-of-code 
(LoC) and design time show an order of magnitude advantage 
for HT. 
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For the BFS kernel, the HT design achieves from 60% 
performance of the HDL design for the smallest graph to 86% 
performance for the largest graph, indicating good performance 
for memory-bound algorithms. The main performance 
overhead is from the atomic memory operations for 
synchronization among HT units. This overhead is not directly 
affected by graph size so its percentage of the execution time 
decreases for larger graphs. Comparing resource utilization, 
HT uses more flip-flops (FF) and look-up tables (LUT) but 
fewer block RAMs (BRAM) than HDL. The FF and LUT 
overhead are due to the HT infrastructure and the atomic 
memory interfaces. As for BRAM, since the FIFOs within the 
HT infrastructure are implicitly used, fewer BRAM-based 
FIFOs are required as compared to the HDL design. Again, the 
productivity metrics show a great advantage for the HT design. 

For Smith-Waterman, the performance of the HDL design 
drops dramatically for queries that are longer than 480. This is 
expected since the HDL design cannot fit more than 480 PEs 
on the FPGA and the application resorts to a software-based 
alignment instead. The HT design is slower than the HDL 
design for query P01008 (13%). The performance overhead 
mainly comes from the additional execution time required to 
switch from one query segment to the next and the extra 
memory operations for buffering intermediate results between 
the switching. However, since the HT hardware works for long 
queries (>480) as well, HT’s overall performance across all 
four queries surpasses that of the HDL design. Also, the HT 
design has a higher clock frequency. 

Regarding the resource utilization results of Smith-
Waterman, in addition to the infrastructure overhead, the HT 
design required more resources for the following two reasons. 
Firstly, we were able to fit 1024 PEs (vs. 480) onto the FPGA 
due to the regular HT unit/module structures. Secondly, extra 
logics are needed to handle arbitrarily long queries (even 
longer than the 5478 residues that we tested). 

In terms of productivity for Smith-Waterman, HT’s LoC 
number is an order of magnitude smaller than HDL. The 
design time comparison is less dramatic but the development 
process of the HDL design involved more than one developer, 
while a single developer is what we had for all three HT 

designs. In summary, the Smith-Waterman results indicate that 
HT also works well for the computation-bound algorithms. 

VI. CONCLUSIONS AND FUTURE WORK 

As FPGA technology sees rapid growth in many high-
performance computing domains, productivity challenges of 
the traditional HDL-based design flow become a major 
obstacle to wide adoption of the technology. HLS provides 
familiar high-level languages as design entry and tools to 
compile, verify, and implement designs to greatly increase 
design productivity. However, HLS commonly incurs overhead 
in the form of performance and hardware resource.  

The Convey HT toolset is a new and unique HLS that 
features familiar design entry, customizable infrastructure, and 
fast validation. In this paper, we evaluate HT using designs of 
three reference kernels (Sobel edge detector, breadth-first 
search, and Smith-Waterman sequence alignment) by 
comparing performance, resource usage, and productivity 
against optimized HDL designs. The results show that HT can 
achieve over 80% performance of optimized HDL designs for 
the reference kernels. Although there is non-negligible 
resource overhead, the dramatic reduction of LoC and design 
time may justify the tradeoff in many applications. 

We plan to explore additional productivity benefits of HT 
in future work. The focus is on early design-space exploration 
using HT’s SystemC-based simulation. 
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