
Spectral Method Characterization on
FPGA and GPU Accelerators

Karl Pereira and Peter Athanas
Department of Electrical and Computer Engineering
Virginia Polytechnic Institute and State University

Blacksburg,USA
{karlvt08,athanas}@vt.edu

Heshan Lin and Wu Feng
Department of Computer Science

Virginia Polytechnic Institute and State University
Blacksburg,USA

{hlin2,feng}@cs.vt.edu

Abstract—As CPU clock frequencies plateau and the dou-
bling of CPU cores per processor exacerbate the memory
wall, hybrid core computing, utilizing CPUs augmented with
FPGAs and/or GPUs holds the promise of addressing high-
performance computing demands, particularly with respect to
performance, power and productivity. This paper compares the
sustained performance of a complex, single precision, floating-
point, 1D, Fast Fourier Transform (FFT) implementation on
state-of-the-art FPGA and GPU accelerators. As results show,
FPGA floating-point performance is highly sensitive to a mix
of dedicated FPGA resources; DSP48E slices, block RAMs and
FPGA I/O banks in particular. Estimated results show that for
the floating-point FFT benchmark on FPGAs, these resources are
the performance limiting factor. For fixed-point FFTs, however,
FPGAs exploit a flexible data path width to trade-off circuit
cost with speed of computation in applications requiring smaller
precision to improve performance, power and device utilization.
GPUs cannot fully take advantage of this, having a fixed data-
width architecture.

Keywords-FFT, floating-point, integer-point, HPC, FPGA, GPU

I. INTRODUCTION

The increasing demand for High Performance Computing
(HPC) across a myriad environments, ranging from traditional
supercomputers to embedded devices has outpaced the con-
ventional processor’s ability to deliver performance. The tech-
nique of simply scaling a single-core processor’s frequency
according to Moore’s law for increased performance has run
its course due to power dissipation escalating to impractical
levels. Both of these factors have given rise to the notion of
co-processors that augment a CPUs capabilities by offloading
data- and compute-intensive portions of an application to
dedicated hardware ranging from GPUs [1], FPGAs [2] to
special ASICs [3].

This paper focuses on FPGA and GPU accelerators, primar-
ily because they have shown potential in meeting the demands
of current and future HPC applications. GPUs, traditionally
used for graphical operations, have become attractive to high-
performance scientific applications due to a combination of
high floating-point performance, low cost and ease of program-
ming. FPGAs, on the other hand, provide massive parallelism
and have the flexibility to be tuned to meet the specific needs
of an application without the cost or delay of designing a
custom co-processor. The Fast Fourier Transform (FFT) is

an efficient algorithm to compute the discrete fourier trans-
form and its inverse. This paper provides a multi-dimensional
evaluation of the FFT on FPGA and GPU accelerators with
respect to performance, power and productivity. Application
performance on these heterogeneous architectures is highly
dependent on a balance of memory volume and bandwidth,
input/output bandwidth and the availability of specific compute
resources.

Productivity is another major issue concerning HPC. The
time to a solution can sometimes be as important as perfor-
mance itself. Factors such as the level of programming ab-
straction and the availability of standardized interfaces directly
translate to ease of programming, scalability, portability and
re-usability. This paper gives some insights into FPGA and
GPU productivity and efforts to close the productivity gap. The
need for low power directly impacts both space availability and
cost of maintenance. Despite the importance of price, the paper
focuses on the technical aspects of this computational space;
hence, economic factors are not considered in this work.

This paper is organized as follows: Section II provides
relevant work and how this paper adds value. The architectural
features of the accelerators used in the study, and some as-
sumptions made are discussed in Section III. Section IV details
the approach used for the analysis and the optimization on the
accelerators. Section V gives initial results and discussions.
Finally, Section VI summarizes the findings.

II. RELATED WORK

Many modern devices ranging from x86 processors to GPUs
to FPGAs have been compared by their raw computation
density, power consumption, I/O bandwidth and memory band-
width [4]. While these peak numbers are good to understand
qualitative trends, an actual running application gives better
quantitative insight and permits better assessment of these
advanced architectures. Govindaraju et al. have analyzed GPU
memory system behavior by using an FFT as the algorithm
for evaluation [5]. A GeForce 7900 GTX performed a 1 M
sample FFT in 19 ms and provided a 2X improvement over an
Intel processor. An equivalent Virtex-4 FPGA implementation
with a Sundance floating-point FFT core, operating at 200
MHz, performed a 1 M sample FFT in 21 ms. The GPU was
demonstrated in this case to be superior.



Figure 1: Mix of accelerators and corresponding metrics

Ben et al. compared GPUs and FPGAs using five different
benchmark algorithms [6]. It was found that the FPGAs were
superior over a GPUs for algorithms requiring a large number
of regular memory accesses, while GPUs were better suited
to algorithms with variable data reuse. It was concluded that
FPGAs with a customized datapath outperform GPUs at the
expense of a larger programming effort. Reduced bit-width
floating-point units for FPGAs resulted in much higher speed-
ups compared to a full floating-point implementation for a
face detection algorithm studied by Yingsoon et al [7]. While
still retaining 94% of face detection accuracy, a significant
reduction in area utilization by 50% and power by 15%, was
recorded.

Brahim et al. performed extensive comparison of the
NVIDIA Tesla C1060 GPU and the Convey Hybrid Core
(HC-1) FPGA system using four benchmarks having different
computational densities and memory locality characteristics
[8]. It was shown that the Convey HC-1 had superior per-
formance and energy efficiency for the FFT and a Monte
Carlo simulation. The GPU in [8] achieved a meagre 25 Giga
Floating-point Operations Per Second (GFLOPS) for the 1D
in-place FFT, possibly due to the unoptimized mapping of
NVIDIA’s CUDA FFT on the NVIDIA Tesla. The work done
by Brahim et al. [8] concluded that for applications requiring
random memory accesses, the Convey HC-1 with its optimized
memory system for non-sequential memory accesses performs
better than GPUs, which incur a higher performance penalty
for non-contiguous memory block transfers.

In this paper, the authors demonstrate that GPUs fare much
better for the floating-point 1D FFT compared to FPGAs
due to immense floating-point capability and high memory
bandwidth. A standalone FPGA has the advantage of a higher
power efficiency and superior integer-point performance. The
work reports higher floating-point performance on the Convey
HC-1 over previous efforts. This paper supplements an existing
base of knowledge by analyzing some of the reasons for the
performance discrepancy between GPUs and FPGAs, that can
help future design of FPGA accelerators for HPC.

III. ARCHITECTURAL CONSIDERATIONS

As shown in Fig. 1, this study considers two generations of
promising FPGA and GPU accelerators, based on technology
size and a set of metrics. A Convey HC-1 node served as
the Virtex-5 platform. A Pico EX-500 PCIe card (housing the
M-503 module) was used as a representative Xilinx Virtex-6
platform. The architecture and programming model details of

the Convey HC-1 and the Pico M-503 are available at [9], [10].
The Convey HC-1 is a high-performance, high-power, socket-
based server system while the Pico M-503 is a PCIe-based
system suited for low-power embedded applications. Similarly,
a NVIDIA Tesla C2050 PCIe card based on the latest genera-
tion Fermi architecture with a large number of computational
cores was used to supplement a previous generation NVIDIA
GTX 280 PCIe card based on the GT200 architecture [11],
[12].

Convey provides Math Libraries (CML), auto-loop unrolling
techniques and a set of pre-defined personalities. A personality
is a particular configuration (i.e. a bitstream) of the compute
FPGAs, available as a custom instruction on the host-side
application. For instance, Convey provides a single-precision
vector personality with 32 function pipes. Each pipe provides
four Fused-Multiply Add (FMA) operations. Hence, the per-
formance peaks at 76.8 GFLOPS (32 pipes * 4 FMA/pipe * 2
FLOPS/FMA * 300 MHz). The Convey supplied math library
for a 1D FFT also peaks around 65 GFLOPS [9]. A sustained
performance of 76 GFLOPS was recorded for a floating-
point matrix multiply [13]. These numbers are low considering
the abundant compute resources available in these high-end
architectures. None of the personalities, libraries or auto-code
generation techniques were used for the implementation in
this study. The design in this paper is custom developed using
Convey’s Personality Development Kit (PDK), Verilog and
the FFT IP core from Xilinx [14]. The Pico M-503 system
architecture with the FFT cores is shown in Fig 3. It has two
2GB DDR3 memory modules providing an aggregate memory
bandwidth of roughly 17 GB/s.

Scientific computing typically requires both single precision
and double precision floating-point operations. There is a clear
advantage for GPUs, which already support IEEE-754 single
precision and double precision built into the architecture for
native floating-point graphic rendering operations. FPGAs, on
the other hand, usually have no native support for floating-
point arithmetic and many applications use fixed-point im-
plementations for ease of development. FPGA developers use
on-chip programmable resources to implement floating-point
logic for higher precisions, but these implementations consume
significant resources and tend to require deep pipelining to get
acceptable performance [15]. Peak performance on CPUs and
GPUs can be defined as the product of the number of floating-
point operations per clock, number of floating-point cores and
clock frequency. For FPGAs, calculating the peak performance
is more complex considering the different combinations of
functional units that can be generated and the level of maturity
of the floating-point cores [16]. As seen in Table I, GPUs
clearly benefit with roughly 3X-4X times higher floating-
point performance compared to FPGAs. The peak predicted
in the case of FPGAs is the estimate made in [16] after
factoring in logic due to the I/O interface, place and route,
and reduced clock frequency for timing considerations. The
question remains as to how much of that peak can be sustained.

In the Convey HC-1, the host CPU communicates with
the co-processor board via the Front Side Bus (FSB), that



Device Absolute Peak Predicted Peak
Virtex-5 XC5VLX330 135 [16] 110 [16]
NVIDIA Geforce GTX 280 933 [12] N/A
Virtex-6 XC5VSX315T 380 [16] 355 [16]
NVIDIA TESLA FERMI C2050 1030 [11] N/A

Table I: Peak device performance in GFLOPS

becomes a bottleneck for streaming applications. Hence, for
experiments in this study, data is appropriately allocated in the
device memory and the communication overhead is ignored.
The peak bandwidth of both PCIe (x16) and FSB are roughly
8.5 GB/s, so the assumption does not bias either platform.
The performance of a streaming FFT illustrates how impor-
tant inter-processor bandwidth is for accelerators. Consider a
1024-pt FFT, where the real and imaginary components are
represented with 32-bit floating-point numbers. Assume the
sustained FSB bandwidth is an optimistic 4.8 GB/s, and that
the accelerator is infinitely fast, such that no time is spent
performing the calculations. This operation then requires 8
KB (1024 X 8 Bytes) of data to be transferred 629 K times
(4.8 GB/s / 8KB) per second over the I/O link. The resulting
performance of the overall system is around 32 GFLOPS as
illustrated in Equation 1.

(629k × 1024 × 5 × log2 1024) / 1 s = 32 GFLOPS (1)

As seen in Table I, FPGAs are capable of higher floating-
point performance. However, the FSB in the Convey HC-
1 avails in keeping application data coherent with the pro-
cessor memory space compared to PCIe-based accelerators.
Emerging heterogeneous computing architectures that fuse
the CPU and GPU on the same die, for example, AMD’s
Fusion Accelerated Processing Unit (APU) and Intel’s Knights
Ferry, hold the promise of addressing the PCIe bottleneck in
GPU accelerators. Clearly, higher I/O bandwidth is required
if sustained performance is to be achieved for streaming
applications in FPGA accelerators.

IV. APPROACH

The FFT was selected to characterize the accelerators, being
memory and computation intensive, and a recurrently seen
kernel in myriad signal processing applications in both high
performance servers and embedded computers. It is one of
the thirteen computational idioms identified by Berkeley to
benchmark modern parallel architectures [17]. The FFT was
implemented using the Xilinx FFT IP core, that provides
the ability to make all necessary algorithmic and imple-
mentation specific trade-offs to select the most resource-and
performance-efficient solution for any transform size [14].
Both pipelined and burst implementations were considered
to balance resource utilization, transform time and external
memory bandwidth. The complex, floating-point data samples
with real and imaginary parts, each of 32 bits are stored in
external memory. The metric for performance used is FLOPS
given by Equation 2.

FLOPS =
Nc ∗ 5N log2(N)

Tt
(2)

where Nc = Number of FFT cores, N = FFT transform size,Tt

= Transform time. The “5” from the equation comes from the
number of floating-point operations in a single butterfly stage
of the FFT. There are a total of ten floating-point operations
taking place. A N -point FFT using radix-2 decomposition
has log2(N) stages, with each stage containing N/2 radix-
2 butterflies.

The FPGA implementation for the Convey HC-1 used the
Verilog HDL, the Xilinx FFT IP and the Convey-supplied
Personality Development Kit (PDK). The Pico implementation
used the Verilog HDL, the Xilinx Memory Interface Generator
[18], a Pico-designed PCIe endpoint module and driver API
[10]. The GPU used the FFT that is a part of the Scalable
Heterogeneous Computing (SHOC) benchmark suite written
in OpenCL [19]. Both implementations use the well known
Cooley-Tukey algorithm.

A. Optimizing FFT on the Convey HC-1

(a) Un-optimized mapping (b) Optimized mapping

Figure 2: FFT mapping on the Convey HC-1
By utilizing all available DSP48E slices, sixteen radix-2

burst FFT cores were implemented on each compute FPGA.
Fig. 2a shows the case for a single FPGA. The number
of cores correspond to the sixteen 150 MHz memory ports
available for reading and writing. The burst FFT cores use an
iterative approach to save resources, thus, the core does not
load the next data frame until it finishes processing the current
data frame. An implementation with 16 pipelined, streaming
cores would be limited by DSP48E slices. Fewer cores would
reduce utilized memory ports, making the implementation
unbalanced. To improve performance, eight streaming cores
with lower DSP48E usage (and more Virtex-5 CLBs) were
implemented. For a pair of memory ports, the first port was
used for streaming data in and the second port was used to
write-back results. As seen in Fig. 2b, dedicated read and write
datapaths eliminate bus turn-around penalties and improve
performance.

B. Optimizing FFT on the Pico M-503

Custom DDR3 SDRAM memory controllers with a burst-
length of eight were developed using the Xilinx memory



interface generator [18], running at 400 MHz, to ease timing
closure. Based on the width of the user-interface provided
by the memory controllers (i.e. 256 bits), four FFT cores
were mapped, running at half the memory frequency. The
SRAM banks were not useful since they provide only 18
bits at a time, while the FFT core requires 64 bits of real
and imaginary data in a single clock cycle. As in the Convey
HC-1, continuous data streaming was possible with the first
memory controller performing reads from sequential locations
and the second memory controller writing results as illustrated
in Fig. 3. Since DDR3 memory peak specified frequency
is 533 MHz, higher performance could only be achieved
by increasing the frequency of the memory controllers and
optimizing memory access patterns. Timing constraints were
met with additional stages being added to the datapath. Finally,
the memory controllers were fine-tuned for performance by
increasing the number of bank machines, at the expense of
slightly higher resource utilization.

Figure 3: FFT mapping on the Pico M-503
C. Power Measurement Setup

Power was measured by a Watts Up meter that connected
the system or the device under test to the power supply. It
is important to note the distinction between the system and
device powers. System power (in Convey and NVIDIA GTX
280), is the power measured when both the host processor
and the device share the same power supply. Device power (in
Pico and NVIDIA Fermi), signifies the power consumed by
the device alone, from a dedicated power supply. Idle power,
in the case of the system power, is the difference in power
when the card or co-processor is attached to the host and
when it is disconnected. This is done because the GPU and
the Convey HC-1 have different base CPU configurations and
power supplies. For the device, the idle power is recorded
when the GPU is not running any algorithm, and the Pico M-
503 module does not have a bitstream loaded. The load in all
the devices is a 1024-point FFT run long enough (around 10
seconds) to average out any fluctuations and start-up delays.
Thus, load power indicates power level when system or device
is running the FFT, in addition to the idle power.

V. RESULTS AND DISCUSSION

The performance across the platforms is shown in Fig.
4a, including integer-point numbers for the FPGA. GPUs

inherently support floating-point computation and the width
of the datapath is fixed, so a reduced precision is not effi-
cient. For a long integer-point FFT (32-bits) implementation,
the GPU performance would be similar to the floating-point
performance and this analysis makes that assumption. For all
practical purposes, the performance would degrade, due to the
additional datapath scaling needed to accommodate bit-growth
after each stage of the transform.

A. Performance

For the Convey HC-1, performance of all four compute
FPGAs is considered against a single GPU. This is done for
three reasons:

1) All the FPGAs being confined to the same co-processor
board, makes it hard to isolate a single FPGA, specially
when measuring aggregate power of the co-processor,

2) Comparing external memory bandwidth in excess of 140
GB/s in GPUs, against a single FPGA in the Convey
HC-1 having around 19.2 GB/s (8 B * 300 Mhz * 8
memory controllers) of memory bandwidth, makes the
results biased for the GPU, and

3) Finally, utilizing all FPGAs can help to evaluate the
performance degradation caused by multiple FPGAs ac-
cessing the same memory controller and link saturation.

The maximum performance attained using sixteen burst
FFT cores was 75 GFLOPS, roughly the same as the Con-
vey library. However, measuring memory bandwidth indi-
cated that the memory controllers were not fully utilized.
The Convey optimized implementation prior to 512-points
used all memory ports and eight computational FFT cores
per FPGA, implemented with all available DSP48E slices.
Performance was limited by available memory ports. After
512-point, performance was bound by DSP48E slices. This
reduced the number of FFT cores, and required a subset of
the cores to use the Virtex-5 Look-Up Tables (LUTs) instead
of the DSP48E slices to implement the complex multipliers.
Performance peaks at 190 GFLOPS for a 1024-point trans-
form. With six FFT cores synthesized using DSP48Es and
one core compiled exclusively from the LUTs, one memory
port was left idle. The performance curve after 1024-point
keeps falling-off primarily because of DSP48E limitations and
reduced memory bandwidth utilization. Performance beyond
4096-pt is bound by available block RAMs. Despite being
designed for non-unity stride memory accesses, the Convey-
designed scatter-gather memory modules gave approximately
6% superior performance [20]. The NVIDIA GTX 280 suffers
after a 512-pt transform due to the capacity limits of the shared
memory, resulting in a high latency to the global memory.

For the Pico M-503, performance is limited entirely by
available memory ports. A linear increase in performance gives
the Pico card an advantage for a large FFT transform, due to
the ample DSP48E slices available in the Xilinx Virtex-6. The
DDR3 memory clocked at 533 MHz improved performance
linearly from 400 MHz. The maximum performance that can
be achieved on the Virtex-6 SX315T was estimated to be
around 98 GFLOPS, with a maximum of four DDR3 memory



(a) Performance (b) Power Consumption (c) Power Efficiency

Figure 4: Performance, power consumption and power efficiency of architectures

controllers. The performance limitation is the Virtex-6 I/O
banking architecture. The Virtex-6 requires a minimum of four
I/O banks to implement a single memory controller. A different
part of the Virtex-6 family, the XC6VLX760 with more I/O
banks can support upto six memory controllers, resulting in a
maximum performance of 192 GFLOPS, estimated from the
current configuration. Another limitation is that only center
I/O columns in the Virtex-6 can run at the fastest possible
frequency (i.e. 533 MHz). In order to instantiate all six
controllers, the outer columns (i.e. non-center columns) would
have to be used, limiting the highest frequency to 400 MHz.

Unlike the Convey HC-1, FFT performance on the Pico
M-503 module is not limited by local block RAMs, giving
results upto a 32 K point transform. Fermi performs fairly
well until 1024-pt, after which it falls sharply due to the
thrashing of the L1 cache. In Fermi, the 64 KB L1 cache
is configurable to support 48 KB of shared memory and 16
KB of L1 cache or 16 KB of shared memory and 48 KB
of L1 cache. The benchmark used the former configuration.
Reversing the configuration could improve performance, but
is yet to be tested. The integer-point FFT implementation on
the FPGAs enabled the number of FFT cores to be doubled,
while permitting shorter pipelines. A 2.5-fold speed-up in the
case of the Convey HC-1 resulted in a maximum of 470 Giga
Operations Per Second (GOPS).

Despite having just two memory ports, the Pico M-503
edged the performance of a single Convey HC-1 FPGA after a
2048-pt transform, due to the abundant DSP48Es in the Virtex-
6. This is also attributed to its low-latency, high-bandwidth
DDR3 memory clocked at a higher rate. The NVIDIA GTX
280 has eight 64-bit memory channels to the GDDR3 memory
having a clock rate of 1.1 GHz, almost 3.5X faster than Convey
HC-1’s memory frequency, and 2X faster than Pico’s memory
[12]. This clock rate and abundant floating-point multiply-
accumulate units is what makes the FFT GPU performance
impressive. The NVIDIA Fermi has almost double the number
of compute cores compared to the GTX 280 and only six
memory controllers. However, the reduced memory interface is
compensated by the high-bandwidth GDDR5 memory, clocked
at 1.5 GHz [11].

The Convey HC-1 and the Pico M-503 achieve 88% of
the estimated performance without considering the effects of
memory, demonstrating the efficient utilization of the memory
subsystem by the FPGAs. As Fig. 5a illustrates, the Convey
HC-1 utilizes nearly 90% of the slices and DSP48Es for large
FFT transforms. The Convey-designed interfaces itself occupy
10% of the FPGA area and 25% of the block RAMs. The two
DDR3 memory controllers, the PCIe interface, the FFT cores
and custom interfacing logic occupy hardly 30% of the Pico
M-503 module, as seen in Fig. 5b.

(a) A single Convey HC-1 FPGA re-
source utilization

(b) Pico M-503 resource utilization

Figure 5: Device utilization on FPGA architectures

B. Power

The higher core and memory frequencies increase the power
consumption in GPUs, as seen in Fig. 4b. The large power
consumption in the Convey HC-1 server system is attributed to
the presence of nearly 16 FPGAs and supporting peripherals,
resulting in the least power-efficient floating-point solution.
The Pico M-503 draws the least power at idle and at load. As
the graphs in Fig. 4c depict, this results in a higher power effi-
ciency over the NVIDIA Fermi that performs almost 6X faster.
Despite its low performance, Pico maintains a good power
efficiency for large floating-point FFT transforms compared
to GPUs, which suffer after a 2048-point FFT. The FPGA
devices also exhibit a lower dynamic power consumption from
idle to load. The integer-point FFT on the Pico M-503 is the
most power-efficient solution, as apparent from its superior
performance and lower power dissipation.



C. Productivity

GPUs are easily programmable via high-level programming
languages like CUDA and OpenCL. Programming FPGAs us-
ing HDLs is time consuming and requires low-level hardware
design experience. The use of open-source and proprietary
cores optimized for each generation of FPGA devices can
reduce development time, unlike CUDA or OpenCL code
which will run on a new architecture, but may not be optimal
[21]. FPGA development involves a greater effort to design a
custom datapath and optimize memory accesses. The Convey
HC-1 helps speed-up development time by providing the
necessary interfaces, optimized math libraries and abstracting
away communication details from the developer. However, a
major FPGA productivity bottleneck is the compilation time
that can run into hours or even days for large implementations
(i.e. many large-size FFT cores), aggravating debug time.
There are on-going collaborative efforts to increase FPGA
design productivity by using front-end high-level synthesis
tools such as ImpulseC to develop Convey personalities.

VI. CONCLUSIONS

The sustained FPGA performance is less than 50% of the
estimated peak floating-point performance for the Virtex part.
The FFT benchmark on FPGA accelerators reveals that higher
sustained performance is limited by key device resources. For
instance, the DSP48Es are pivotal to floating-point butterfly
computations and attaining higher frequencies using fewer
programmable device resources. In addition, block RAMs are
needed to cache reused data (i.e phase factors) for large FFT
transforms. Finally, I/O banks are required to achieve greater
external memory bandwidth. GPUs attain the same percentage
of the peak performance and need architecture-specific opti-
mizations to get higher performance [21]. The Convey HC-1
performs worse than the NVIDIA GTX 280, despite having
four FPGAs and the same number of memory ports. This is
primarily due to the high latency to external memory, arising
from a low clock frequency, that limits the operation of the
FFT cores. As the Pico M-503 system demonstrates, this low
frequency translates to a high power efficiency, that makes it
suited for power-constrained environments.

FPGA floating-point FFT performance can be improved
by having an appropriately balanced number of DSP48Es,
BRAMs, I/O banks and integrating faster memory parts.
Estimates show that the Convey HC-1ex [22], with a large
Virtex-6 part can potentially deliver upto 350 GFLOPS for the
1D floating-point FFT, owing to the abundant DSP48Es. GPUs
having the highest external memory bandwidth and abundant
floating-point units excel at the floating-point 1D FFT, as seen
in the Fermi. Integer-point FFT results for the FPGA show that
reduced-precision can deliver almost 2-2.5X speed-up over the
floating-point FFT, making it more power-efficient compared
to GPUs.

ACKNOWLEDGMENT

The authors would like to thank sponsoring members of
the Center for High-Performance Reconfigurable Computing

(CHREC), Glen Edwards of Convey Corporation, Pico Com-
puting and Prasanna Sundararajan of Xilinx for supporting the
work.

REFERENCES

[1] J. Owens, M. Houston, D. Luebke, S. Green, J. Stone, and J. Phillips,
“GPU Computing,” Proceedings of the IEEE, vol. 96, no. 5, pp. 879
–899, may 2008.

[2] P. Sundararajan, “High Performance Computing Using FPGAs,” Xilinx,
Tech. Rep., 2010.

[3] M. Gschwind, F. Gustavson, and J. F. Prins, “High Performance Com-
puting with the Cell Broadband Engine,” Sci. Program., vol. 17, pp. 1–2,
January 2009.

[4] J. Richardson, S. Fingulin, D. Raghunathan, C. Massie, A. George,
and H. Lam, “Comparative Analysis of HPC and Accelerator Devices:
Computation, Memory, I/O and Power,” in High-Performance Reconfig-
urable Computing Technology and Applications (HPRCTA), 2010 Fourth
International Workshop on, nov. 2010, pp. 1 –10.

[5] N. K. Govindaraju, S. Larsen, J. Gray, and D. Manocha, “A Memory
Model for Scientific Algorithms on Graphics Processors,” in Proceedings
of the 2006 ACM/IEEE conference on Supercomputing, ser. SC ’06.
New York, NY, USA: ACM, 2006.

[6] B. Cope, P. Cheung, W. Luk, and L. Howes, “Performance Compari-
son of Graphics Processors to Reconfigurable Logic: A Case Study,”
Computers, IEEE Transactions on, vol. 59, no. 4, pp. 433 –448, april
2010.

[7] Y. Lee, Y. Choi, S.-B. Ko, and M. H. Lee, “Performance Analysis of
Bit-Width Reduced Floating-Point Arithmetic Units in FPGAs: A Case
Study of Neural Network-Based Face Detector,” EURASIP Journal on
Embedded Systems, vol. 2009, pp. 4:1–4:11, January 2009. [Online].
Available: http://dx.doi.org/10.1155/2009/258921

[8] B. Betkaoui, D. Thomas, and W. Luk, “Comparing Performance and En-
ergy Efficiency of FPGAs and GPUs for High Productivity Computing,”
in 2010 International Conference on Field-Programmable Technology
(FPT), dec. 2010, pp. 94 –101.

[9] T. M. Brewer, “Instruction Set Innovations for the Convey HC-1
Computer,” IEEE Micro, vol. 30, pp. 70–79, March 2010.

[10] M-503 Hardware Technical Manual, Rev B, Pico Computing Inc.
[11] The Tesla C2050/C2070 GPU Computing Processor: Supercomputing at

1/10th the cost, NVIDIA Corp. [Online]. Available: http://www.nvidia.
com/docs/IO/43395/NV DS Tesla C2050 C2070 jul10 lores.pdf

[12] NVIDIA GeForce GTX 200 GPU datasheet, NVIDIA Corp. [Online].
Available: http://www.nvidia.com/docs/IO/55506/GPU Datasheet.pdf

[13] J. Bakos, “High-Performance Heterogeneous Computing with the Con-
vey HC-1,” Computing in Science Engineering, vol. 12, no. 6, pp. 80
–87, nov.-dec. 2010.

[14] Xilinx, Xilinx LogicCore IP FFT, 7th ed., March 2011.
[Online]. Available: http://www.xilinx.com/support/documentation/ip
documentation/xfft ds260.pdf

[15] R. Scrofano, G. Govindu, and V. K. Prasanna, “A Library of Param-
eterizable Floating-Point Cores for FPGAs and Their Application to
Scientific Computing,” in Engineering of Reconfigurable Systems and
Algorithms, pp. 137–148.

[16] D. Strenski, P. Sundararajan, and R. Wittig, “The Expanding Floating-
Point Performance Gap Between FPGAs and Microprocessors,”
HPCwire, November 2010.

[17] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. Kubia-
towicz, N. Morgan, D. Patterson, K. Sen, J. Wawrzynek, D. Wessel, and
K. Yelick, “A View of the Parallel Computing Landscape,” Commun.
ACM, vol. 52, pp. 56–67, October 2009.

[18] Virtex-6 FPGA Memory Interface Solutions User Guide, UG406, Xilinx,
June 2011.

[19] A. Danalis and G. Marin, “The Scalable Heterogeneous Comput-
ing (SHOC) benchmark suite,” in Proceedings of the 3rd Workshop
on General-Purpose Computation on Graphics Processing Units, ser.
GPGPU ’10. New York, NY, USA: ACM, 2010, pp. 63–74.

[20] K. Pereira, “Characterization of FPGA-based High Performance Com-
puters,” Master’s thesis, Virginia Tech, 2011.

[21] M. Daga, “Architecture-Aware Mapping and Optimization on Heteroge-
neous Computing Systems,” Master’s thesis, Virginia Tech, 2011.

[22] Convey’s Hybrid-Core Technology: The HC-1 and the HC-1ex, Convey
Corporation, November 2010.


