
978-1-5090-3707-0/16/$31.00 c©2016 IEEE

Packing a Modern Xilinx FPGA Using RapidSmith
Travis Haroldsen, Brent Nelson, and Brad Hutchings

Department of Electrical and Computer Engineering
NSF Center for High-Performance Reconfigurable Computing (CHREC)

Brigham Young University, Provo, UT 84602
Email: travisdh@byu.edu, brent nelson@byu.edu, brad hutchings@byu.edu

Abstract—Academic packing algorithms have typically been
limited to theoretical architectures. In this paper, we describe
RSVPack, a packing algorithm built on top of RapidSmith to
target the Xilinx Virtex 6 architecture. We integrate our packer
into the Xilinx ISE CAD flow and demonstrate our packer tool
by packing a set of benchmark circuits and performing routing
and timing analysis inside ISE.

I. INTRODUCTION

Academic research into packing algorithms for modern
Xilinx architectures has been hindered by the lack of CAD
infrastructure for these devices. RapidSmith [1], through the
use of the Xilinx Design Language (XDL), has allowed
researchers to interweave novel CAD approaches into the
standard Xilinx ISE tool flow. With the improvements in
RapidSmith 2 [2], RapidSmith now provides the infrastructure
requisite to exploring new packing algorithms and integrating
them into the ISE tool flow.

In this paper, we present the RSVPack algorithm for packing
the Xilinx Virtex 6 FPGA. This algorithm satsifies the many
requirements imposed by the Virtex 6 architecture. It is built on
top of RapidSmith 2 and, combined with a simulated annealing
placer, is interwoven into the ISE tool flow. This allows it to
accept a high-quality synthesized netlist of a design from ISE,
pack and place the netlist and return the placed design to be
routed and analyzed inside the ISE tools. We demonstrate our
packer and flow by packing a set of benchmark circuits and
analyzing their critical paths inside ISE. Lastly, we describe
the challenges associated with packing a modern Xilinx FPGA
and the approaches we used to overcome these challenges.

The rest of this paper is outlined as follows. Section II
provides background on the structure of the Xilinx Virtex 6
FPGA architecture and reviews the popular VPR tool suite and
previous efforts to utilize it to represent a Xilinx architecture.
Section III describes the RSV flow and RSVPack algorithm
developed in this work. Results of the algorithm and flow are
presented in Section IV. Section V concludes this paper.

II. BACKGROUND

A. Xilinx Architecture

Xilinx structures their FPGAs into three levels of hierarchy.
The elements at each level, from top to bottom, are called tiles,

This work was supported in part by the I/UCRC Program of the National
Science Foundation within the NSF Center for High-Performance Reconfig-
urable Computing (CHREC), Grant No. 1265957.

primitive sites (or sites) and Basic Elements of Logic (BELs).
1) Tiles: Xilinx architectures are organized as a 2 dimen-

sional grid of tiles with columns alternating between logic
performing tiles (CLBs, DSPs, Block Ram) and one or more
associated interconnect tiles, also called switch boxes (see
Figure 1). In general, each column consists of a single type
of tile replicated from the bottom to the top of the chip.
With the exception of a few dedicated carry chain wires, all
routing between the logic performing tiles in the device is
accomplished through the switch boxes.

Switch 
Box CLB Switch 

Box DSP

Switch 
Box CLB Switch 

Box DSP

Fig. 1. Organization of tiles in a Virtex 6 architecture

The switch boxes are made up of wires connecting to other
switch boxes (general routing), wires connecting to the logic
performing tiles and programmable interconnect points (PIPs)
that optionally connect different wires inside the switch box.
The PIPs provide the routing flexibility of the FPGA.

Unlike other architectures, Xilinx FPGAs do not contain
an explicit routing crossbar inside the logic performing tiles.
Instead, outputs from the logic performing tiles must all exit
to the switch box, even if their nets immediately return to
the same tile they came from. A small set of PIPs inside
the switch boxes, called bounce PIPs, provide local routing
flexibility by connecting the tile outputs to inputs on the same
tile without leaving the switch box. Bounce PIP connections
are not fully populated and some outputs may require bouncing
through several of these PIPs before returning to the tile. If
a net requires multiple bounce PIPs to route, the rest of the
design is left with fewer routing resources making the circuit
harder to route and leading to slower clock speeds.

2) Sites: Logic performing tiles each contain one or more
sites. The sites in turn are composed of a number of BELs
connected by muxes. In XDL, many of the sites, such as the
DSPs and BRAMs, consist of a single BEL with a set of
configuration properties. The configuration properties of these
BELs are determined by the synthesis and technology mapping

Authorized licensed use limited to: Brigham Young University. Downloaded on May 11,2022 at 19:47:49 UTC from IEEE Xplore.  Restrictions apply. 



tools and provide little to no packing flexibility. The most
common sites, the slices, however, have their contents exposed
and can be manipulated during the packing phase.

D

D

Q

Q

F7MUX

LUT6

LUT5

LUT5

Carry Chain

FF6

FF5

CIN

COUT

AX

AMUX

AQ

A

O6

O5

= Configuration Mux

Fig. 2. Simplified view of Virtex 6 Logic Element

The slice contains the LUT/flip-flop pairs in the FPGA. In
modern Xilinx FPGAs, the slices also contain other complex
structures in addition to the LUTs and flip-flops. In Virtex 6
devices, two slices are combined to make a single CLB tile.
Each slice in turn contains four similar, but not identical, units
of closely coupled resources we refer to as logic elements
(LEs) (see Figure 2). The features in each LE include:

• A fracturable 6 input LUT which can be treated as
two 5 input LUTs sharing the lower five pins. Some
slices, called SLICEMs, support configuring the LUTs as
LUTRAMs which can be used as either small RAMs or
16 bit shift registers (SRLs). The SLICEMs also contain
additional routing to combine the LUTRAMs into larger
or more complex RAM or shift register types.

• An F7 or F8 mux, depending on the LE in the slice, to
combine either 2 or 4 LUTs together into a 7 or 8 input
logic equation. Each slice contains two F7 muxes, which
feed into one F8 mux. These muxes prevent the slice from
being represented as four identical LEs.

• A carry logic component which is shared between all LEs
in the slice. This component provides additional circuitry
which can be used in conjunction with the LUTs to
implement chains of adder circuitry. The carry component
supports a carry in and carry out signal to chain multiple
slices into larger adders.

• Two flip-flops, one with a D input configured to come
from the O5 LUT output or the AX input pin, and the
other shared between the different components in the LE.

• A dedicated output (A) for the O6 LUT output and an
AMUX output shared between the different components
in the slice. This second output is frequently a point of
contention when trying to fill the slice during packing.

B. RapidSmith 2

RapidSmith [1] is a CAD framework supporting interop-
erability with Xilinx devices. RapidSmith supports device
representation of Xilinx devices and a netlist of packed Xilinx
components. Using the XDL language, RapidSmith allows
users to import a placed design, make modifications to the
design and return the modified design to the Xilinx ISE
tools. This has enabled research into novel CAD approaches
targeting commercial devices.

In RapidSmith 2 [2], the device representation is extended
to expose the internal circuitry of the sites. Additionally,
RapidSmith 2 converts the site-level netlist used in RapidSmith
into a netlist of BEL-level components, referred to as cells.
This netlist can come from an ISE synthesized design and the
placed netlist returned to ISE for routing. These two additions
enable packing the design.

C. Verilog To Routing

1) Review: Verilog-to-Routing (VTR) [3], formerly Versa-
tile Place and Route (VPR), is an academic tool for FPGA
architecture and CAD research. VTR provides users the ability
to describe a variety of FPGA architectures and a suite of
CAD tools to implement designs onto these architectures. With
recent releases, VTR now supports architectures with complex
structures such as carry chains and includes front-end synthesis
and the AAPack packing algorithm to pack these clusters.

VTR allows users to describe custom architectures. The
logic blocks (CLBs for example) are described in a hi-
erarchical manner, with each level of hierarchy describing
the different configuration modes and the components and
interconnects in the block for each mode. This permits a wide
variety of architectures to be described.

The AAPack packing algorithm [4] is a greedy seed-
based algorithm for packing designs onto VTR’s architectures.
AAPack focuses first on being compatible with the large
number of complex cluster structures describable by VTR’s
architectural descriptions. The algorithm works by seeding a
cluster with a single cell, choosing the type for the cluster
and then greedily filling the cluster with related cells. Cells
are absorbed into the cluster, usually one at a time, at which
point the algorithm must confirm that the cluster has a feasible
route. As verifying a route exists for the cluster can be a slow
process, AAPack uses a set of techniques such as speculative
packing and pin counting to avoid performing a full routing
feasibility check after packing each cell when possible. These
optimizations are described in [5].

2) Virtex 6 in VTR: Hung et al., in [6] and [7] describe
work towards representing a Virtex 6 device in VTR and using
the VTR CAD tools to implement circuits on the device. This
required creating an architectural description of the Virtex 6
CLB inside VTR. While the authors were able to represent and
pack the slice structures in VTR, their modeled slice lacked
important features including:

• the F7/F8 muxes (see Figure 2)
• the LUTRAM and SRL capabilities of the SLICEMs
• the slice clock enable and set/reset signals

VTR also uses a different cluster routing structure than
Xilinx FPGAs. VTR expects a crossbar in front of the clusters.
As previously noted, Xilinx instead uses bounce PIPs to
provide the routing flexibility within its tiles. Hung’s work
does not represent the bounce PIPs, instead representing them
as a mostly populated crossbar. As such, Hung’s work is
unable to distinguish between reentrant paths that use a single
or no PIPs and less optimal paths that require several PIPs.

Authorized licensed use limited to: Brigham Young University. Downloaded on May 11,2022 at 19:47:49 UTC from IEEE Xplore.  Restrictions apply. 



XST
(synthesis)

MAP
(pack and place)RTL

PAR
(routing)

RSVPack
(pack)

Simulated 
Annealing 

Placer

ISE

RapidSmith

Fig. 3. ISE and RSV Flows

While these device features could possibly be described in
VTR’s architectural model, they are not supported by VTR’s
front-end synthesis and therefore are unavailable to the rest
of the VTR flow. The lack of these features masks many
additional challenges inherent in packing commercial CLB
structures such as verifying that incompatible features are
not used within the same slice. Further, Hung found that the
lower quality synthesis supplied to VTR itself accounted for a
significant deterioration in the average critical path delay [7].

III. APPROACH

A. RSVPack Overview

In traditional FPGA CAD flows, a packing step is employed
to group individual components of a technology-mapped de-
sign into relatively-placed structures called clusters. This step
acts as a localized placement phase, bundling closely related
logic together to shorten routing paths between elements and
to reduce the total amount of global routing required for the
circuit. This, along with abstracting away the constrained rout-
ing environment and other complexities of the CLB internals,
helps simplify the subsequent global placement.

The primary objective of RSVPack is to be intregratable into
the Xilinx ISE CAD flow. This requires being able to accept
an ISE synthesized and technology-mapped netlist, accurately
representing the tile structures in the device and creating a
set of clusters that can be returned to the ISE tool flow and
realized in a bitstream.

In our RSV CAD flow (the bottom path in Figure 3), the
packer accepts an XST synthesized netlist and produces a set
of clusters where each cluster consists of a group of relatively-
placed cells. Ideally, we would fully isolate the packer from the
ISE flow and allow ISE to place our packed design. However,
since the Virtex 5 family, Xilinx ISE tools no longer accept
packed but unplaced designs but merge packing and placement
into a single MAP. The placed circuit is then routed by PAR.
To integrate our packed circuit back into the ISE tool flow,
we are required to place our packed circuit ourselves. We
use a simulated annealing placer using a Half-Perimeter Wire
Length cost model to place the packed netlist. The placed
design can then be returned to ISE using the XDL language
and handed to PAR to route the design.

The RSVPack algorithm is specifically targeted toward
Virtex 6 FPGAs. By focusing on a particular architecture,
we are able to identify and address the specific challenges
and requirements associated with the targeted architecture. It
also allows the algorithm to focus on supporting the device’s
unique feature set and to optimize toward generating high-
quality circuits for the architecture. Due to similarities between

successive generations, the algorithm should be easily portable
to more recent Xilinx families.

The packing algorithm takes as input an unplaced,
technology-mapped netlist. In this particular work, the input is
expected to come from a Xilinx generated netlist. This netlist
will thus make use of a wide variety of features supported by
the Virtex 6 architecture including LUTRAMs, shift-registers
and the F7 and F8 muxes. The netlist that comes from Xilinx
already identifies which resources should be mapped to special
purpose hardware, for example, whether a RAM should be
implemented using hard block RAMs or as LUTRAMs. The
role of this packing algorithm is therefore solely to group these
components into clusters.

The RSVPack algorithm uses a seed-based, greedy heuristic
similar to [5][8][9]. This heuristic leads to a straightforward
implementation and allows for simple testing to ensure the
generated clusters are legal. However, as is often the case with
greedy heuristics, decisions are only locally optimal possibly
leading to non-optimal global packing or even to impossible
configurations. Care, therefore, must be taken in creating
selection criteria that acknowledge the global nature of the
problem and avoid using resources that will be required by
future clusters. Due to a lack of complete timing information
for Xilinx devices, the packer currently does not support any
timing-driven features.

B. Packing Units

The packer produces clusters made from a single logical tile
combined with its associated switch boxes, hereafter referred
to as packing units. The tile hierarchy is chosen over the site
hierarchy, which itself contains all of the BELs and inflexible
interconnect necessary for creating a valid packing, because
some tiles contain multiple sites sharing the same switch
box (such as the CLBs which contain two slices). Including
the switch boxes in the packing units is important as the
switch box PIPs determine whether a site output can reach
another input in the same tile without leaving the local routing
structures. Choosing locations for cells that allow the nets to
use only local routing resources and thereby minimize the
number of PIPs required to route them is likely to lead to
a circuit with less routing contention and shorter routes.

The RSVPack algorithm works on a flattened packing unit,
as opposed to AAPack’s hierarchical model. This flat model
more closely aligns with the device representation presented by
XDL from which we create our models. This allows the mod-
els of the clusters to be generated based on the XDL. It also
acknowledges that the individual LEs are not self-contained
structures but overlap and share fast connections between one
another that do not fit cleanly within a hierarchical structure.

C. RSVPack Algorithm

1) Filling the Clusters: RSVPack begins each cluster by
choosing a seed from the remaining unpacked cells. Currently
RSVPack chooses the remaining cell with the most external
pins. This seed could potentially seed valid clusters based
on different packing units – for example, a LUT cell could

Authorized licensed use limited to: Brigham Young University. Downloaded on May 11,2022 at 19:47:49 UTC from IEEE Xplore.  Restrictions apply. 



be the seed for clusters made from a CLBLL (a CLB with
two SLICELs) or a CLBLM (a CLB with a SLICEL and
a SLICEM). Rather than predicting which packing unit will
yield the best cluster given the seed, RSVPack creates clusters
from all possible packing units for the seed and chooses the
highest quality cluster from the resulting valid clusters. While
this approach can lead to longer pack times, the increase is
not prohibitive as there are generally very few packing units
which contain any BELs the seed can be placed at.

For each packing unit to be explored, the algorithm fills
the packing unit by selecting an unpacked cell, choosing a
BEL in the cluster, packing the cell at the chosen BEL and
repeating until the cluster is considered complete. Currently
a cluster is considered complete when either it is full or no
more connected cells are available to pack into the cluster.

RSVPack uses the same attraction function as non-timing
driven AAPack – namely, it prioritizes cells that share many
nets with the current cluster. In contrast to AAPack, currently
the selection criteria limits its search to cells that are a
single hop from the cluster. With a cell selected, the packer
identifies a BEL in the packing unit on which to place the cell.
The BEL selection criteria seeks to minimize the number of
routing resources required to route the cluster. This includes
prioritizing BELs which fully absorb nets inside a site and
reducing the number of bounce PIPs in the switch box required
to route the nets. This approach leads to shorter routes and less
contention for valuable routing resources.

2) Cluster Validation: After each cell is packed into the
cluster, the algorithm ensures that the cluster is in or can be
made into a valid state. Validation is checked through a series
of tests. These include the following tests:

• Routing Feasibility Ensures that the cluster is packed
in a manner that can be routed. This includes checking
that connections within the cluster are routable and that
connections coming from or to the cluster can reach their
intended destinations outside the cluster. To perform this
check in a timely manner we use a table lookup-based
validation algorithm described in section III-D.

• Carry Chain Preservation Ensures carry chains between
clusters are maintained. Since the carry chains span multi-
ple clusters and have limited routing flexibility, the packer
must check that all elements in the chain are packed such
that the carry chain is preserved. Section III-E describes
the requirements in more detail.

• Control Sets Consistency Some properties of the clus-
ters, such as the flip-flop synchronicities in the slices, are
configurable at the site level instead of being configurable
for each BEL. These control sets require that all cells in
the site share the same configurations. This check ensures
that the packer does not allow cells requiring conflicting
properties to be placed in the same site.

• LUTRAM Validation When the input netlist is flattened,
the hierarchical LUTRAM cells are broken into individual
pieces. The Virtex 6 architecture has requirements about
where each piece of the LUTRAM can be placed in the

slice. This check ensures that the LUTRAM cells are
packed into the same cluster and at compatible locations.

If the cell/BEL combination being evaluated is determined
to lead to an illegal cluster by any of the checks, the cell
is unpacked from its location and another BEL is chosen for
the cell. This process continues until either a valid BEL is
identified for the cell or all possible locations are exhausted.

3) Conditional Lookahead: While filling clusters, it is
possible for the cluster to enter a state where it is no longer
valid in its given configuration, but may return to being
valid by absorbing other cells. Rather than invalidating this
configuration, the algorithm enters into a conditional mode.

D Q

Carry Chain

FF6

CIN

CO AMUX

AQO

(a)

D Q

Carry Chain

FF6

CIN

AMUX

AQ

CO

O

(b)

Fig. 4. (a) Adding the carry chain leads to an unroutable cluster causing
RSVPack to enter conditional mode. (b) Upon absorbing the flip-flop, the
cluster is again routable.

For example, upon adding a carry chain element using both
the O and CO outputs to a cluster (Figure 4a), there are
insufficient outputs to route the cluster. This causes RSVPack
to enter conditional mode. Upon adding the flip-flop being
driven by the O output to the cluster (Figure 4b), the cluster
is again routable and RSVPack returns to its normal mode.

While in conditional mode, the algorithm continues to add
cells to the cluster under the assumption that the cluster will
return to a valid configuration. If RSVPack is unable to return
the cluster to a valid state by absorbing more cells, it will
roll back the cluster to its previous checkpoint, invalidate
the cell/BEL pair that caused it to enter conditional mode
and resume normal operation. As returning to a valid state
may require adding more than one cell to the cluster, the
checkpoint and roll back mechanism operates in a recursive
manner. AAPack contains a similar speculative mode.

The recursive nature of the conditional mode mechanism
can potentially lead to exponential run times. To limit the time
spent in conditional mode, RSVPack guides the cell selection
process to cells that will quickly bring the cluster to a valid or
invalid state. These cells are identified by the validation tests.

D. Routing Feasibility

The Virtex 6 slice contains a highly-specialized routing
structure. The clusters generated by the packer must be capable
of being routed using that structure. A simple method to
verify that a cluster is routable is to simply attempt to route
the cluster. If a valid route is found, the cluster is routable;
otherwise, the cluster in its current state is not routable.

The initial approach we used to validate routing used
the popular PathFinder routing algorithm [10]. Although
PathFinder can identify routable clusters, we found it to be too
slow to be used inside the critical loop of an exhaustive-search
packing algorithm. It is particularly inefficient at identifying
unroutable circuits, being only able to infer the circuit is

Authorized licensed use limited to: Brigham Young University. Downloaded on May 11,2022 at 19:47:49 UTC from IEEE Xplore.  Restrictions apply. 



Slice Slice

Carry Chains

CLB

Slice Slice
CLB

(a)

Slice Slice
CLB

Slice Slice
CLB

x x x x x

(b)

Slice Slice
CLB

CLB

Unpacked
Slice

Slice Slice

(c)

Slice Slice

Slice Slice

Slice Slice

(d)

Fig. 5. (a) Each slice in a CLB has a single carry chain. (b) An invalid carry
chain. (c) An unpacked slice hiding a broken carry chain. (d) Two merged
carry chains driving different clusters.

unroutable after failing several iterations of attempting to
negotiate the congested circuit. With the search used by our
algorithm, we found that an unroutable circuit was the most
common case when adding a cell to the cluster.

Instead of using PathFinder, RSVPack uses a comparison-
based method to check routability. This approach quickly com-
pares the current cluster’s configuration against each possible
routing configuration for the packing unit (as dicated by the
various routing mux configurations in the packing unit). The
possible routing configurations are each enumerated as entries
in a table. As cells are added to a cluster, the resulting cluster is
compared against all of the table’s entries to see if the cluster’s
connectivity is compatible with any of those entries. If one or
more compatible entries exist, the cluster is routable. If none
exist, the cluster is not routable.

Using this algorithm, we saw an order of magnitude speed
up over using a re-entrant version of PathFinder. This approach
also runs in about the same amount of time for both routable
and unroutable clusters. This has allowed us to perform full
feasibility checks of the cluster routing after adding each cell.

E. Handling Carry chains

Carry chains provide a fast, dedicated connection between
arithmetic units. As the arithmetic chains can be long, a 32-bit
adder requires a chain of 8 CLBs, and can often be the critical
path in a design, utilizing these paths is critical for creating
high-quality circuits.

Xilinx uses carry chains in their DSPs, BRAMs and CLB
tiles. In the case of the CLB, both slices contains their own
distinct carry chain connected to their corresponding slice in an
adjacent CLB (see Figure 5a). To use the carry chain feature,
the cells involved in the operation must be packed so that the
chain is preserved when going between different clusters. If
not packed correctly (see Figure 5b), then the circuit could
suffer significantly reduced quality or not even be realizable.

The routing feasibility checker previously described checks
that adjacent carry chains are packed, or can be packed, in

locations that will preserve the carry chain routing. However,
the routing feasibility checker only performs a local validation
and situations can arise that lead to invalid packings that the
routing feasibility checker is insufficient to prevent.

Two such cases are shown in Figures 5c and 5d. In the first
situation (5c), two non-adjacent cells in the same carry chain
are packed before all of the in between cells are packed. The
localized nature of the routing feasibility check is insufficient
to detect that this situation will ultimately lead to an unroutable
circuit. In the second situation (5d), two cells from different
carry chains are packed into the same CLB. When packing the
adjacent carry chain cells, the routing feasibility check only
validates the current cluster and not the previously created
cluster. It is therefore possible that the two adjacent carry chain
cells end up in different clusters resulting in an invalid circuit.

RSVPack uses a couple different strategies to ensure carry
chains are properly handled. First, RSVPack will not pack
any cell involved in a partially-packed carry chain unless
it is adjacent to a previously packed cell. This prevents
packing carry chain cells until their required positioning can be
determined from their previously-packed neighbors. Second,
when two carry chains’ cells are packed into the same CLB
as in the lower half of Figure 5d, RSVPack merges the adjacent
carry chain cells to ensure that they are later packed together.

IV. RESULTS

The goal of this work is to present a packing algorithm that
can be integrated into the Xilinx ISE tool flow. As part of
this, we have applied our packing to creating clusters for five
designs. The five designs are:

• a viterbi decoder
• a 128 bit AES cipher
• a Xilinx Microblaze processor
• a 1024 tap FIR filter
• a double precision floating point divider

Resource utilizations for each design are presented in Ta-
ble II. Each design was successfully implemented on an
xc6vlx75tff484 part using the RSV flow.

We use the standard ISE flow as a reference point. The
presented results are obtained from averaging 100 runs using
different placer seeds. Figure 6 shows the average run times for
both flows. As mentioned, ISE combines packing and place-
ment into a single step in their MAP executable. Therefore,
times for the placer are included for a more representative
comparison. PAR times are also included as the quality of the
packing and placement will influence the time required to route
the design. With the exception of the Microblaze processor,
all circuits are implemented with a clock constraint set to
the circuit’s maximum achievable clock rate. The non-timing
driven RSVPack ignores this timing constraint, but forwards
the constraint on to PAR.

For the tested designs, RSVPack on average packed at a rate
of 74.0 cells per second. In general, the run times of RSVPack
and the placer were comparable to the Xilinx MAP runtime.
In each design, PAR took slightly longer to route the design
coming from RSVPack than the design coming from map.

Authorized licensed use limited to: Brigham Young University. Downloaded on May 11,2022 at 19:47:49 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I
PACKER RESULTS

Num Slices Exposed Nets Minimum Period Total Wire Length

ISE RSV RSV
ISE

ISE RSV RSV
ISE

ISE RSV RSV
ISE

ISE RSV RSV
ISE

Viterbi Decoder 2621 2482 0.9 12534 13294 1.1 6.14 10.8 1.8 183054 203486 1.1
AES Cipher 3818 5755 1.5 12916 16599 1.3 3.47 6.53 1.9 236920 495418 2.1
Microblaze 4762 5422 1.1 19620 22302 1.1 9.75 15.1 1.5 276630 491350 1.8

FIR filter 2245 2284 1.0 18502 19262 1.0 2.56 4.52 1.8 202561 229973 1.1
FP Divider 1074 1336 1.2 7497 7760 1.0 3.10 4.26 1.4 88359 116597 1.3

TABLE II
BENCHMARK DESIGN RESOURCE UTILIZATION

5-LUTs* LUTRAMs FFs DSPs BRAMs

Viterbi Decoder 11,653 0 2,535 0 4
AES Cipher 18,554 0 11,447 0 12
Microblaze 15,612 827 10,853 6 19
FIR Filter 449 5,471 10,108 130 0

FP Divider 5,343 201 5,934 0 0

xc6vlx75tff484 93,120 — 93,120 288 156
* 6-LUTs are counted as two 5-LUTs

0

400

800

1200

1600

2000

ISE RSV ISE RSV ISE RSV ISE RSV ISE RSV

Viterbi	Decoder AES	Cipher Microblaze FIR	filter FP	Divider

Ru
nt
im
e	
(s
)

RSVPack SA	Place MAP PAR
Fig. 6. Flow Run Times

Table I presents statistics from the packed circuits. The num-
ber of used slices and number of nets exposed to the general
fabric (Exposed Nets) are direct functions of the packer. The
total wire length, as measured as the total manhattan distance
of all wires used in the design, and minimum achievable clock
period on the other hand are products of the entire flow.

RSVPack generally leads to a slightly higher number of
nets exposed from the slices and total number of used slices.
These differences are not large and suggest RSVPack does
a reasonable job of filling the clusters with shared logic.
However, there is a significant increase in total wire length
and minimum clock period. It is not clear how much of this
increase is due to RSVPack and how much is due to the placer.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented the RSVPack packing
algorithm for Virtex 6 FPGAs. This packer differs from other
approaches targeting Xilinx devices in the following ways:

• Accepts a Xilinx ISE generated netlist as input
• Supports unique Virtex 6 features such as the LUTRAM

and SRL capabilities of the LUTs
• Performs an exhaustive exploration of all packing units

for a given seed cell.
• Employs a BEL selection criteria that takes into account

the local FPGA interconnect unique to the Virtex family.

• Uses a fast comparison-based routing feasibility valida-
tion scheme in place of a router.

• Performs additional checks to support the unique require-
ments of the slices.

This work lays the foundation for exploring novel ap-
proaches for packing algorithms targeting commercial Xilinx
FPGAs. We plan to eventually include a router to create a
complete backend academic CAD flow for Xilinx architec-
tures. The entire flow will then be updated to support the latest
Ultrascale architectures and be integrated with the Vivado
CAD tools using a forthcoming RapidSmith 2 update.

REFERENCES

[1] C. Lavin, M. Padilla, J. Lamprecht, P. Lundrigan, B. Nelson, and
B. Hutchings, “RapidSmith: Do-It-Yourself CAD Tools for Xilinx
FPGAs,” in Field Programmable Logic and Applications (FPL), 2011
International Conference on, Sept 2011, pp. 349–355.

[2] T. Haroldsen, B. Nelson, and B. Hutchings, “RapidSmith 2: A Frame-
work for BEL-level CAD Exploration on Xilinx FPGAs,” in Pro-
ceedings of the 23rd ACM/SIGDA International Symposium on Field
Programmable Gate Arrays, ser. FPGA ’15. ACM, to be published.

[3] J. Luu, J. Goeders, M. Wainberg, A. Somerville, T. Yu, K. Nasartschuk,
M. Nasr, S. Wang, T. Liu, N. Ahmed, K. B. Kent, J. Anderson,
J. Rose, and V. Betz, “VTR 7.0: Next Generation Architecture
and CAD System for FPGAs,” ACM Trans. Reconfigurable Technol.
Syst., vol. 7, no. 2, pp. 6:1–6:30, Jul. 2014. [Online]. Available:
http://doi.acm.org/10.1145/2617593

[4] J. Luu, J. H. Anderson, and J. S. Rose, “Architecture Description
and Packing for Logic Blocks with Hierarchy, Modes and Complex
Interconnect,” in Proceedings of the 19th ACM/SIGDA International
Symposium on Field Programmable Gate Arrays, ser. FPGA ’11.
New York, NY, USA: ACM, 2011, pp. 227–236. [Online]. Available:
http://doi.acm.org/10.1145/1950413.1950457

[5] J. Luu, J. Rose, and J. Anderson, “Towards Interconnect-adaptive
Packing for FPGAs,” in Proceedings of the 2014 ACM/SIGDA
International Symposium on Field-programmable Gate Arrays, ser.
FPGA ’14. New York, NY, USA: ACM, 2014, pp. 21–30. [Online].
Available: http://doi.acm.org/10.1145/2554688.2554783

[6] E. Hung, F. Eslami, and S. Wilton, “Escaping the Academic Sandbox:
Realizing VPR Circuits on Xilinx Devices,” in Field-Programmable
Custom Computing Machines (FCCM), 2013 IEEE 21st Annual Inter-
national Symposium on, April 2013, pp. 45–52.

[7] E. Hung, “Mind the (synthesis) gap: Examining where academic FPGA
tools lag behind industry,” in 2015 25th International Conference on
Field Programmable Logic and Applications (FPL), Sept 2015, pp. 1–4.

[8] E. Bozorgzadeh, S. O. Memik, X. Yang, and M. Sarrafzadeh,
“Routability-driven Packing: Metrics and Algorithms for Cluster-based
FPGAs,” Journal of Circuits Systems and Computers, vol. 13, pp. 77–
100, 2004.

[9] A. Singh and M. Marek-Sadowska, “Efficient Circuit Clustering for
Area and Power Reduction in FPGAs,” in Proceedings of the 2002
ACM/SIGDA Tenth International Symposium on Field-programmable
Gate Arrays, ser. FPGA ’02. New York, NY, USA: ACM, 2002, pp.
59–66. [Online]. Available: http://doi.acm.org/10.1145/503048.503058

[10] L. McMurchie and C. Ebeling, “PathFinder: A Negotiation-Based
Performance-Driven Router for FPGAs,” in Field-Programmable Gate
Arrays, 1995. FPGA ’95. Proceedings of the Third International ACM
Symposium on, 1995, pp. 111–117.

Authorized licensed use limited to: Brigham Young University. Downloaded on May 11,2022 at 19:47:49 UTC from IEEE Xplore.  Restrictions apply. 


