
Performance Modeling for
Multilevel Communication in SHMEM+

V. Aggarwal, C. Yoon, A. George, H. Lam, G. Stitt
NSF Center for High-Performance Reconfigurable Computing (CHREC)

ECE Department, University of Florida, Gainesville, FL 32611-6200
{aggarwal, yoon, george, hlam, gstitt}@chrec.org

Abstract
The field of high-performance computing (HPC) is currently un-
dergoing a major transformation brought upon by a variety of new
processor device technologies. Accelerator devices (e.g. FPGA,
GPU) are becoming increasingly popular as coprocessors in HPC,
embedded, and other systems, improving application performance
while in some cases also reducing energy consumption. The pres-
ence of such devices introduces additional levels of communica-
tion and memory hierarchy in the system, which warrants an ex-
pansion of conventional parallel-programming practices to address
these differences. Programming models and libraries for heteroge-
neous, parallel, and reconfigurable computing such as SHMEM+
have been developed to support communication and coordination
involving a diverse mix of processor devices. However, to evalu-
ate the impact of communication on application performance and
obtain optimal performance, a concrete understanding of the under-
lying communication infrastructure is often imperative. In this pa-
per, we introduce a new multilevel communication model for repre-
senting various data transfers encountered in these systems and for
predicting performance. Three use cases are presented and eval-
uated. First, the model enables application developers to perform
early design-space exploration of communication patterns in their
applications before undertaking the laborious and expensive pro-
cess of implementation, yielding improved performance and pro-
ductivity. Second, the model enables system developers to quickly
optimize performance of data-transfer routines within tools such as
SHMEM+ when being ported to a new platform. Third, the model
augments tools such as SHMEM+ to automatically improve per-
formance of data transfers by self-tuning internal parameters to
match platform capabilities. Results from experiments with these
use cases suggest marked improvement in performance, productiv-
ity, and portability.

Categories and Subject Descriptors C.4 [Performance of Sys-
tems]: Modeling techniques

General Terms Design, Performance

Keywords Performance prediction, modeling, multilevel commu-
nication, PGAS, SHMEM, reconfigurable computing.

[Copyright notice will appear here once ’preprint’ option is removed.]

1. Introduction
Advancements in new technologies such as reconfigurable-logic
devices and heterogeneous multi-core and many-core devices are
revolutionizing high-performance computing (HPC) [3, 15]. These
devices are now commonly employed as accelerators in HPC sys-
tems to boost system performance and energy efficiency [18]. Un-
fortunately, the addition of these devices in the systems also in-
creases the system complexity, making application development
more challenging and demanding, with multiple levels of paral-
lelism and communication to be understood and exploited.

To ease design complexity, designers targeting reconfigurable
HPC systems which feature a mix of processing devices includ-
ing microprocessors and FPGAs, can leverage system-level con-
cepts from conventional HPC for developing scalable, parallel ap-
plications. However, there are characteristic differences between
reconfigurable computing (RC) systems and traditional HPC sys-
tems, such as additional levels of memory and communication in
the system, which necessitate the expansion of current parallel-
programming practices to address these differences. SHMEM+
[1], an extended SHMEM library based on the multilevel PGAS
model, was developed to enable communication and synchroniza-
tion between FPGAs and CPUs in reconfigurable HPC systems.
SHMEM+ provides application developers with a productive and
portable mechanism for creating scalable, parallel applications that
execute over a mix of microprocessors and FPGAs.

One important challenge when using libraries such as SHMEM+
is choosing an appropriate communication strategy. Variances in-
clude, for example, who initiates the transfer, what functions are
employed, what intermediate steps are involved, etc. Such factors
can have a significant impact on the overall performance of an
application. Therefore, it is critical for an application designer to
understand the underlying communication infrastructure.

Traditional HPC systems and applications assist designers in
understanding and optimizing communication infrastructure by
employing communication models that use a set of parameters to
provide a high-level representation of communication, while hiding
the unnecessary details. Although a few general-purpose commu-
nication models have been prevalent for traditional HPC systems,
these models were not developed to target multilevel systems such
as reconfigurable HPC systems. As a result, these models lack suf-
ficient details for representing multilevel systems completely and
accurately.

In this paper, we propose a multilevel communication model
that accounts for the existence of multiple levels of communica-
tion encountered by various data-transfer functions in a library
such as SHMEM+. The model provides a system-level represen-
tation which integrates the effect of intermediate steps of commu-
nication present in a multilevel transfer. In addition, the model al-

1 2010/9/27



lows for the capability of overlapping these intermediate steps. The
time for intermediate steps of a transfer itself can be estimated
using any of the existing parallel models [2, 5, 7, 17] or deter-
mined using microbenchmarking. The multilevel communication
model does not impose the use of a specific model for estimating
the time of intermediate steps of transfer. The various merits of
the proposed performance model for multilevel communication are
showcased in this paper through several examples. (a) The model
enables a developer to determine communication bottlenecks in ap-
plications through early design-space exploration (DSE) which, as
demonstrated through a case study described in Section 4, led to
a performance improvement of approximately 42%. Besides im-
provement in performance, the modeling allowed us to eliminate
multiple iterations of the expensive development cycle, improving
developer productivity. (b) The model also enables system devel-
opers to quickly optimize the internal data-transfer functions in
the SHMEM+ library for a target RC platform. (c) Furthermore,
we show that this model enables self-tuning of the SHMEM+ li-
brary that automatically improves the performance of certain data
transfers by varying its internal parameters to match the capabil-
ities of the system. This capability further improves the portabil-
ity of SHMEM+. The effectiveness of self-tuning is demonstrated
through experimental results on two different platforms, where an
improvement in bandwidth of up to 100% was obtained in certain
cases by self-tuned routines in SHMEM+.

The remainder of this paper is organized as follows. Section
2 provides background and related research. Section 3 provides
a detailed overview of the multilevel communication model. In
Section 4, we showcase the effectiveness of the model in enabling
early DSE for an application. Section 5 employs the model to
optimize the performance of a SHMEM+ library for a target RC
system. In Section 6, we apply the model to augment SHMEM+
with the self-tuning capability. Finally, Section 7 summarizes the
work with conclusions and directions for future work.

2. Related Research
Traditionally, developers of parallel programs have performed co-
ordination between tasks using either message-passing libraries
such as MPI [12] or shared-memory libraries such as OpenMP
[14]. Recently, languages and libraries that present a partitioned
global address space (PGAS) to the programmer, such as UPC [6]
and SHMEM [16], have become more visible and popular. Most of
these languages and libraries were developed for traditional HPC
systems based on a homogeneous cluster of microprocessors. A
SHMEM+ library [1] based on the multilevel PGAS model was
developed to enable communication and synchronization between
FPGAs and CPUs in a reconfigurable HPC system. The communi-
cation model proposed in this work extends the existing research
on the SHMEM+ library to assist application developers in obtain-
ing better performance while reducing their effort. We also leverage
the existing research in communication and performance modeling
for traditional HPC systems. There are a variety of communication
models prevalent in the field of HPC that aim to provide develop-
ers with a better understanding of the underlying communication
infrastructure. Such models, as described in this section, provide
valuable ideas and useful insight towards our proposed model.

2.1 SHMEM+ and Multilevel PGAS
Multilevel PGAS introduced in [1] extends the concept of parti-
tioned, global address space to a multilevel abstraction by inte-
grating a hierarchy of multiple memory components present in re-
configurable HPC systems into a single, virtual memory layer as
shown in Figure 1. As a result, application developers are oblivious
to the underlying details while transferring data between any two
devices in the system. The SHMEM+ library, which is based on

Figure 1. Virtual memory layer in multilevel PGAS integrates a
hierarchy of memory components present in system.

the multilevel PGAS model, allows the developers to use the same
communication interface irrespective of the source and destination
of the transfer. In addition to reducing the programming complex-
ity, SHMEM+ also provides numerous choices for implementing
the required communication in the application. Since the choice of
functions and the communication strategy used to establish com-
munication can have a significant effect on performance, the com-
munication model presented in this paper becomes an important
tool for understanding the behavior of these transfer functions and
obtaining high performance for applications.

2.2 Performance Modeling
Communication models have been prevalent in the field of HPC for
estimating the performance of communication in parallel applica-
tions. Models like Parallel Random Access Machine (PRAM) [7],
Bulk Synchronous Parallel (BSP) [17], LogP [5], LogGP [2], PlogP
[10], etc. aim to be fairly generic and architecture-independent,
and provide high-level estimates of communication performance
for parallel programs. However, these models were developed for
traditional HPC systems based on a homogeneous set of micropro-
cessors and cannot be directly employed to represent the multilevel
transfers in reconfigurable HPC systems.

Other researchers have attempted to build system-level mod-
els for heterogeneous systems. Heterogeneous LogGP (HLogGP)
[4] considers extensions of LogGP for multiple processor speeds
and communication networks within a cluster. In [11], system-level
modeling concepts form the basis for a proposed model for hetero-
geneous clusters. However, the primary emphasis of these models
was to target systems based on heterogeneous microprocessors and
they were not intended for multilevel systems based on accelera-
tors.

In [9], RC Amenability Test (RAT) defines an analytical model
for performance estimation of an RC algorithm on a specified
RC platform prior to any implementation. Although it provides
a fairly accurate representation of an algorithm targeting a single
device, it was not intended to model the effects of scalable, multi-
device applications. By contrast, our work focuses on modeling and
estimation of the communication performance in a large-scale RC
system while leveraging other models (such as RAT) for estimating
the performance of computational parts of the application.

3. Multilevel Communication Model
The SHMEM+ library provides a high-productivity environment
for establishing communication in RC systems by abstracting the
details of the underlying data transfers with a uniform, high-level
interface. Figure 2 illustrates the different options for data transfers
provided by the SHMEM+ library in a system with a CPU and an
FPGA on each node (although the library can support any number

2 2010/9/27



Figure 2. Transfer capabilities supported by various communica-
tion routines in SHMEM+.

and variety of devices). Some of the direct-transfer capabilities
shown in the figure such as the ones labeled ‘x’ and ‘y’ were
enabled by SHMEM+ and did not exist previously.

While having various options to transfer data from one device
to another simplifies the development of parallel applications, users
should understand the underlying mechanism and tradeoffs asso-
ciated with such transfers in order to obtain optimal performance.
Since only the CPU on each node can physically perform inter-node
communication, some of the data transfers are internally achieved
through multiple intermediate transfer steps. Consider a function
that provides direct transfer between two remote FPGAs (labeled
as ‘y’ in Figure 2). This function is internally performed by (a)
transferring data to internal buffers on local CPU, (b) followed by a
transfer to the CPU on the remote node, and (c) finally writing data
to the memory of the destination FPGA. However, such a function
may serialize the aforementioned transfer steps which could have
been explicitly parallelized by an application developer. For exam-
ple, in an application where data is collected from several FPGA
devices on a remote CPU, an application developer can explicitly
parallelize the transfer of data from FPGAs to their local CPUs on
all nodes and then transfer the data from the CPUs on each node to
the remote CPU where data is collected (more details about this ex-
ample are presented in Section 4). To enable better understanding
of the underlying details of communication present in SHMEM+,
we derive a multilevel communication model for the same.

The communication time for a point-to-point data transfer be-
tween any two devices of the system shown in Figure 2 can be
represented by a generic model described as:

Tcomm = f(Tcpu↔cpu) + f(Tcpu↔fpga) (1)

Where,

Tcomm : Total time for communication,
Tcpu↔cpu : Transfer time for two CPUs on remote nodes,
Tcpu↔fpga : Total time for various transfers between a CPU

and its local FPGA,
f(T ) = serial time T for communication− part of time

T hidden by overlap with other communication
= non-overlapped part of time T

The goal of the model in Equation 1 is to estimate the performance
of a data-transfer routine by incorporating each intermediate step
of the transfer separately. Depending upon the source and destina-
tion devices, a communication routine may require two transfers
between a CPU and an FPGA (such as the case for transfer labeled
as ’y’ in Figure 2). Tcpu↔fpga in Equation 1 represents the cumula-
tive time of both transfers in such cases. The multilevel model does
not estimate the performance of individual transfer steps or impose

the use of a specific model for the same. Instead, it allows the use of
different communication models for representing each component
of the complete transfer. Such modeling is important because it is
often difficult to describe the various intermediate steps of trans-
fer using a single communication model. In our experiments we
perform microbenchmarking to determine the time for intermedi-
ate steps of communication accurately. Many RC systems exhibit
asymmetric performance for read (FPGA to CPU) and write (CPU
to FPGA) operations. To account for this asymmetry in speed of
read and write operations for an FPGA, the model can be rewritten
as:

Tcomm = f(Tcpu↔cpu) + f(Tcpu←fpga) + f(Tcpu→fpga) (2)

Where,

Tcpu←fpga : Transfer time for read operation from FPGA,
Tcpu→fpga : Transfer time for write operation to FPGA

By overlapping various steps of communication, it is possible to
reduce the overall time taken by the transfer. It should be noted that
the model in Equation 2 (and Equation 1) only considers the effec-
tive (non-overlapped) time of each level of communication that in-
fluences the overall performance of communication. The provision
for “effective” time is an important feature of the model because
communication with the FPGA is invariably an expensive operation
and is often overlapped with other steps of communication to im-
prove overall performance. In Section 5, we use this feature of the
model to optimize transfers between two FPGAs on remote nodes.
In addition to estimating communication time, the multilevel com-
munication model can also be combined with existing approaches
such as RAT [9] to estimate the execution time of the complete
application.

In the following three sections, we discuss several benefits of
the multilevel communication model through three use cases. First,
the model enables application developers to perform early design-
space exploration of communication patterns in their applications
before undertaking the laborious and expensive process of imple-
mentation, yielding improved performance and productivity. Sec-
ond, the model enables system developers to quickly optimize per-
formance of data-transfer routines within tools such as SHMEM+
when being ported to a new platform. Third, the model augments
tools such as SHMEM+ to automatically improve performance of
data transfers by self-tuning its internal parameters to match plat-
form capabilities which improves the portability of SHMEM+.

The results showcased in this work were gathered from experi-
ments on two different systems. Our first system (Mu cluster) con-
sists of four Linux servers connected via QsNetII from Quadrics
(offering a raw link bandwidth of 10Gb/s). Each server is com-
prised of an AMD 2GHz Opteron 246 processor and a tightly cou-
pled set of four FPGA accelerators on a PROCStar-III PCIe board
from GiDEL. The FPGA board features four Altera Stratix-III
EP3SE260 FPGAs, each with two external DDR2 memory banks
of 2GB and one bank of 256MB. The second system is the Novo-G
RC supercomputer, which is comprised of 24 computer servers (of
which only 16 were fully functional at the time of this research),
each equipped with a Nehalem quad-core Xeon processor and a
PROCStar-III board. The servers are connected via DDR Infini-
Band interconnect technology (offering a raw link bandwidth of
20Gb/s).

4. Early DSE in Applications
One advantage of the multilevel communication model is the en-
abling of early design-space exploration (DSE) that can improve
performance and reduce development time for an application. By
providing performance estimates, the model allows developers to

3 2010/9/27



Figure 3. (a) Scaling behavior of CBIR application observed from experiments conducted on Novo-G for a search database consisting of
22,000 images, each of size 128 × 128 pixels of 8 bits, (b) Time to gather results (4 bytes per image, i.e. 88KB of data) on root node as a
percentage of application execution time.

make design decisions about the communication infrastructure be-
fore undertaking expensive implementation. We illustrate this capa-
bility using an example of a content-based image retrieval (CBIR)
application.

CBIR is a common application encountered in computer vision
and consists of searching a large database of digital images for
the ones that are visually similar to a given query image, where
the search is based on contents of the image. The content in this
context can be one of the several features present in the image,
such as colors, shapes, textures, or any other information that can
be derived from the image. CBIR has been widely adopted in many
domains such as biomedicine, military, commerce, education, and
Web image classification and searching. Each image in a CBIR [13]
system is represented by a feature vector, which is based on the
contents of the image. Similarity between a query image and the
set of images in the database is determined by measuring similarity
between their feature vectors. The processes of determining the
feature vector and analyzing images for similarities are often the
most computationally intensive stages in any CBIR system [8].

The parallel algorithm employed in our experiments distributes
the set of images to be searched over a set of nodes and allows mul-
tiple processing devices to evaluate these images simultaneously
(more details about implementation of the algorithm can be found
in [1]). The steps involved in our parallel implementation based on
SHMEM+ are as follows:

1. All nodes perform initialization using shmem init, which also
configures local FPGAs on each node with the desired bitfile.

2. CPUs on all nodes read their subset of input images from a
storage device (such as a local hard disk or a network storage
device) along with the feature vector of the query image.

3. CPUs transfer the subset of images to their local FPGAs for
hardware acceleration using the shmem putmem function.

4. CPUs initiate the execution on their local FPGAs through a
“GO” signal. FPGAs on all nodes compute feature vectors and
similarity measures for their subset of images in parallel.

5. FPGAs signal the completion of execution to local CPUs
through a “DONE” signal. Once computation on CPUs and
FPGAs on each node is complete, all nodes synchronize using
shmem barrier all.

6. Finally, similarity values from all of the FPGAs are gathered on
the root node using one of the several approaches (determined
by our analysis presented in Section 4.1). Results are then
sorted in decreasing order of similarity.

By employing multiple FPGAs to accelerate the application, the
computation time of the algorithm can be reduced significantly
as shown by the performance of a typical implementation in Fig-
ure 3(a). The single-FPGA designs refer to the designs which em-
ploy multiple nodes with each node using a single FPGA. Simi-
larly, quad-FPGA designs execute over multiple nodes with each
node using four local FPGAs. As the application is scaled across
more nodes, communication starts becoming a significant propor-
tion of the total time. Figure 3(b) shows that the amount of time
required to collect the results on the root node increases substan-
tially with increasing number of processing nodes. The effect is
more pronounced for the quad-FPGA design as the results need to
be collected from more FPGAs (64 FPGAs for a system size of 16
nodes). As a result, the relative performance gain from employing
more nodes (and FPGAs) starts decreasing.

To resolve this bottleneck, we need to understand the mecha-
nism by which the application collects results on the root node. The
gather operation in the application can be implemented in multiple
ways such as:

Approach 1: By using a shmem getmem function on the root node
to receive the output data from all of the FPGAs involved in the
application individually.

Approach 2: By using a shmem putmem function on every node
to send the results computed by each FPGA to the root node
individually.

Approach 3: By first collecting the results from the local FPGAs
on every node’s CPU and then sending them to the root node
collectively using shmem putmem on each node.

Although none of the aforementioned approaches may present
an optimal solution, they were chosen for our case study to ex-
emplify the capability of our multilevel communication model in
estimating the performance of the gather operation (implemented
using different approaches). More efficient but complicated ap-
proaches such as tree reductions and broadcasts to be incorporated
in SHMEM+ are the subject of future research.

4.1 Performance Estimation
While performing the same gather operation, the aforementioned
approaches can offer different performance and require different
levels of developer effort. To evaluate the impact of these three
approaches on the overall performance of the CBIR application, we
estimate the performance of gather operation using each approach.

The difference in the performance becomes apparent by apply-
ing our multilevel communication model to the three approaches.
The estimated time for performing the gather operation can be ex-

4 2010/9/27



Table 1. Observed time and estimated time to perform gather operation by single-FPGA designs using three different approaches on Novo-G.
All times are reported in milliseconds. Total amount of data collected on the root node is 8MB in all cases.

n Tcpu←fpga Tcpu↔cpu Approach 1 Approach 2 Approach 3
Est. Obs. Est. Obs. Est. Obs.

1 8.14 5.72 8.14 8.33 8.14 8.27 8.14 8.22
2 4.93 2.88 12.74 12.41 7.81 7.98 7.81 7.98
4 2.93 1.45 16.07 16.79 7.28 6.90 7.28 6.84
8 1.91 0.73 20.39 22.28 7.02 6.45 7.02 6.39

16 1.51 0.37 29.71 35.12 7.06 6.17 7.06 6.16

Table 2. Observed time and estimated time to perform gather operation for quad-FPGA designs on Novo-G using (a) Approaches 1 and 2,
(b) Approach 3. All times are reported in milliseconds. Total amount of data collected on the root node is 8MB in all cases.

n Tcpu←fpga Tcpu↔cpu Approach 1 Approach 2 n Tcpu←fpga Tcpu↔cpu Approach 3
Est. Obs. Est. Obs. Est. Obs.

1 2.93 1.45 11.72 12.00 11.72 12.00 1 2.93 5.72 11.72 13.93
2 1.91 0.73 18.20 20.85 10.56 11.99 2 1.91 2.88 10.52 10.99
4 1.51 0.37 28.60 31.72 10.48 8.54 4 1.51 1.45 10.39 10.64
8 1.24 0.20 45.28 52.50 10.56 8.29 8 1.24 0.73 10.07 8.57
16 1.24 0.10 85.36 81.37 10.96 8.21 16 1.24 0.37 10.51 8.95

(a) (b)

Figure 4. Estimated performance of gather operation on Novo-G using three different approaches for (a) Single-FPGA designs, (b) Quad-
FPGA designs. Total amount of data collected on the root node is 8MB in all cases.

pressed using the model as:

Tgatℎer =

n∑
i=1

Tcommi (3)

Tcommi = f(Tcpu←fpga) + f(Tcpu↔cpu) + f(Tcpu→fpga)

= non-overlapped part of Tcpu←fpga

+ non-overlapped part of Tcpu↔cpu + 0 (4)

Where,

n : Number of nodes involved in the gather operation,
Tgatℎer : Total time for gather operation,

Tcommi : Communication time corresponding to itℎ node

Since there are no write operations to an FPGA, the correspond-
ing term becomes zero in Equation 4. While Approach 1 seems the
most intuitive way to perform a gather, the process of invoking a
get operation to receive data from all devices individually serializes
all of the transfers. As a result, none of the communication time can
be overlapped. Therefore, the time to perform the gather operation
for Approach 1 can be described as follows:

Approach 1, Single-FPGA Design:

Tgatℎer = (n−1)×(Tcpu←fpga+Tcpu↔cpu)+Tcpu←fpga (5)

Approach 1, Quad-FPGA Design:

Tgatℎer = 4× [(n−1)×(Tcpu←fpga+Tcpu↔cpu)+Tcpu←fpga]
(6)

Note that the root node only requires a read operation from its local
FPGA, which does not involve a network transaction (last term in
Equations 5 and 6).

By contrast, Approach 3 requires more effort from a developer
as it first collects the data from the FPGAs on the local CPU before
sending the data across to the root node. However, this approach al-
lows each node to overlap the read operation from its local FPGAs
(which is usually an expensive operation) with the same operation
on the other nodes. Therefore, the time to perform the gather oper-
ation for Approach 3 can be represented as follows:

Approach 3, Single-FPGA Design:

Tgatℎer = Tcpu←fpga + (n− 1)× Tcpu↔cpu (7)

Approach 3, Quad-FPGA Design:

Tgatℎer = 4× Tcpu←fpga + (n− 1)× Tcpu↔cpu (8)

5 2010/9/27



Approach 2, which appears very similar to Approach 1 on the
surface, behaves much like Approach 3. Allowing each node to
put the data directly from the local FPGAs to the root node essen-
tially overlaps the part of the transfer which reads the data from
the local FPGAs (into a temporary buffer in SHMEM+) with the
same operation on the other nodes. As a result, Approach 2 yields
performance that is comparable to the third approach while re-
quiring comparatively lower developer effort. The performance of
Approach 2 is identical to Approach 3 for single-FPGA designs.
For quad-FPGA designs, Approach 2 requires four CPU-to-CPU
transfers from each node to the root node (of a smaller data size) as
opposed to a single transfer required by Approach 3. The estimated
time can be represented using the equations as follows:

Approach 2, Single-FPGA Design:

Tgatℎer = Tcpu←fpga + (n− 1)× Tcpu↔cpu (9)

Approach 2, Quad-FPGA Design:

Tgatℎer = 4× [Tcpu←fpga + (n− 1)× Tcpu↔cpu] (10)

In order to compute the estimates for the time required by the
gather operation, we performed microbenchmarking to determine
Tcpu←fpga and Tcpu↔cpu for different data sizes. Table 1 lists
the input parameters (n, Tcpu←fpga, and Tcpu↔cpu), the estimated
gather times, and the corresponding times observed experimentally
for performing the gather operation using single-FPGA designs on
Novo-G. The results reported in the table correspond to a gather
operation collecting 8MB data on the root node (to allow for longer
gather times in our analysis, a data size much larger than required
by our CBIR implementation was chosen). The estimates listed in
the table for Approaches 1, 2 and 3 are computed using Equations 5,
9, and 7 respectively. For example when n = 16 (last row of Table
1), the estimate for Approach 3 can be computed from Equation 7
as:

Tgatℎer = Tcpu←fpga + (n− 1)× Tcpu↔cpu

= 1.51 + (16− 1)× 0.37 = 7.06 ms

The estimated and observed time for the quad-FPGA designs
on Novo-G are listed in Tables 2(a) and (b) along with the corre-
sponding input parameters required for computing the estimates.
In Approach 3, CPUs collect data from their local FPGAs before
sending the collected data to the root node. As a result, Tcpu↔cpu

for Approach 3 is different than for Approaches 1 and 2. The results
are tabulated in separate tables (Tables 2(a) and (b)). The estimates
listed in Tables 2(a) and (b) for Approach 1, 2 and 3 are computed
using Equations 6, 10 and 8 respectively. For example when n = 8
(in Table 2 (a)), the estimate for Approach 2 can be computed from
Equation 10 as:

Tgatℎer = 4× [Tcpu←fpga + (n− 1)× Tcpu↔cpu]

= 4× [1.24 + (8− 1)× 0.20] = 10.56 ms

Figure 4 shows the estimated performance of the gather operation
using the different approaches for (a) single-FPGA designs and
(b) quad-FPGA designs. While the time required for gathering the
data increases significantly for the first approach, it stays relatively
constant for the second and third approaches. The effect is more
pronounced for the quad-FPGA designs because there are more
processing devices involved in the gather operation.

4.2 Experimental Results
The estimates computed by use of the proposed model were veri-
fied by comparing them with experimental performance observed
for the three approaches (reported in Tables 1 and 2). The aver-
age error between the estimates and experimental results was 9.4%

Figure 5. Speedup observed for quad-FPGA designs of CBIR
over a sequential baseline executing on a single CPU on Novo-
G. Experiments were conducted for a search database consisting of
22,000 images, each of size 128× 128 pixels of 8 bits.

(which is considered reasonably accurate given the focus on early
DSE prior to any implementation). A few cases experienced higher
errors (between 20-25%), such as the quad-FPGA design over 16
nodes using Approach 2. With more processing devices, the time
for intermediate steps of transfer became considerably small such
that large variations were observed in experimental data and in the
results of microbenchmarking (which form the inputs for the es-
timation model). As a result, even a minor deviation in measure-
ments manifested as a larger relative error. Although not ideal, the
absolute error had little impact on our design decisions as the trend
observed between the experimental data and the estimates based on
our model were consistent.

From the behavior of the three approaches, it appears that a
CBIR application employing Approach 1 would lead to significant
performance degradation as the system size increases, whereas with
Approaches 2 and 3, the application would continue to offer satis-
factory performance. The choice between using either of the two
approaches (2 or 3) would be based on the level of programming
complexity and the effort required from the developer. Approach
2 appears promising as it offers performance comparable to Ap-
proach 3 while requiring lower developer effort. To observe the ef-
fect of the three approaches on overall application performance, we
developed a full CBIR implementation using the three approaches.
Figure 5 shows the performance obtained for quad-FPGA designs
of CBIR application on Novo-G using the three approaches. The re-
sults agree with the behavior predicted based on the estimates from
our model. Approaches 2 and 3 offer similar performance, better
than Approach 1. By using the proposed model to quickly perform
early DSE of communication patterns, we were able to improve
performance of the application by approximately 42%. This exer-
cise showcased the use of our multilevel communication model as
a tool for enabling DSE in the early phase of application devel-
opment. Such a tool can eliminate several iterations of expensive
design cycle and help in improving developer productivity.

5. Optimizing SHMEM+ Functions
The multilevel communication model allows system developers to
quickly optimize the performance of a communication library such
as SHMEM+ when porting it to a new system. Consider the case of
data transfers between two remote FPGAs. As shown in Figure 6,
such a transfer can be performed by (1) reading the data from the
source FPGA to its local CPU; (2) transferring the data from the
local CPU to the CPU on the remote node; (3) and finally, writing
the data from the CPU on the remote node to the destination FPGA.

Instead of performing Steps 1, 2 and 3 sequentially, an efficient
implementation for the transfer shown in Figure 6 may overlap

6 2010/9/27



Figure 6. Intermediate steps involved in data transfers between
two remote FPGAs using SHMEM+.

the intermediate steps of such a transfer. For example, Step 3 can
be overlapped with Steps 1 and 2 collectively. In order to overlap
various steps of a transfer, the data needs to be divided into smaller
packets. The size of the data packet can have a significant impact on
overall performance of the transfer. A small packet size would lead
to low performance for intermediate steps of the transfer, while a
large packet size would limit the amount of communication that can
be efficiently overlapped. Determining an appropriate packet size
can be a laborious task and may occasionally require development
of a testbench and numerous executions of the testbench with
various packet sizes until satisfactory performance is obtained.

5.1 Performance Estimation
The proposed model can assist system developers in determining an
appropriate packet size without requiring any test code. To estimate
the performance of the transfer for a particular packet size, our
model can be employed as follows:
Let,

N : Number of packets
D : Size of data being transferred in bytes
P : Size of data packets in bytes
T (L) : Time T for transferring L bytes

then,

N = ⌈D
P
⌉ (11)

Tstep1 =

{
Tcpu←fpga(P ), when D > P

Tcpu←fpga(D), when D < P
(12)

Tstep2 =

{
Tcpu↔cpu(P ), when D > P

Tcpu↔cpu(D), when D < P
(13)

Tstep3 =

{
Tcpu→fpga(P ), when D > P

Tcpu→fpga(D), when D < P
(14)

Here, Tstep1, Tstep2 and Tstep3 represent the time to transfer a
single packet for the corresponding steps in Figure 6. When D <
P , the entire data is sent in a single packet. Whereas for D > P ,
the transfer is broken into packets of size P . By overlapping Step 3
with Steps 1 and 2 collectively, the overall time of transfer can be

described as:

Tcomm = f(Tcpu←fpga + Tcpu↔cpu) + f(Tcpu→fpga)

= non-overlapped part of (Tcpu←fpga + Tcpu↔cpu)

+ non-overlapped part of Tcpu→fpga

= (Tstep1 + Tstep2) + (N − 1)×
max((Tstep1 + Tstep2), Tstep3) + Tstep3 (15)

Since Steps 1 and 2 are collectively overlapped with Step 3, only
the time for the greater of the two components affects the overall
time of transfer. In addition, Steps 1 and 2 for the first packet and
Step 3 for the last packet cannot be overlapped and are included
separately. By applying Equation 15 for different packet-sizes,
overall time of the transfer can be estimated for various packet
sizes. Table 3 presents the estimates computed for transfer time
and bandwidth when P = 2MB and P= 512KB. The input param-
eters (D, N , Tstep1, Tstep2 and Tstep3) required to compute the
estimates are also listed in the table. The values reported in the
table for Tstep1, Tstep2 and Tstep3 were determined empirically
using microbenchmarks on Novo-G. For example, estimates for
P = 2MB and D = 16MB can be computed using Equation 15 as:

Tcomm = (Tstep1 + Tstep2) + (N − 1)×
max((Tstep1 + Tstep2), Tstep3) + Tstep3

= (3 + 1.45) + (8− 1)×max((3 + 1.45), 8) + 8

= 68.45 ms

B/W =
D

Tcomm

=
16× 1024× 1024

68.45× 10−3
× 10−6 = 245.1 MB/s

Table 3. Estimating performance of packetized transfers between
two remote FPGAs on Novo-G for P = 2MB and 512KB.

For P = 2MB
D N Tstep1 Tstep2 Tstep3 Tcomm B/W

(Bytes) (ms) (ms) (ms) (ms) (MB/s)
512K 1 1.17 0.37 3.01 4.55 115.2
1M 1 2.00 0.73 4.99 7.72 135.8
2M 1 3.00 1.45 8.00 12.45 168.4
4M 2 3.00 1.45 8.00 20.45 205.1
8M 4 3.00 1.45 8.00 36.45 230.1

16M 8 3.00 1.45 8.00 68.45 245.1
32M 16 3.00 1.45 8.00 132.45 253.3

For P = 512KB
D N Tstep1 Tstep2 Tstep3 Tcomm B/W

(Bytes) (ms) (ms) (ms) (ms) (MB/s)
512K 1 1.17 0.37 3.01 4.55 115.2
1M 2 1.17 0.37 3.01 7.56 138.7
2M 4 1.17 0.37 3.01 13.58 154.4
4M 8 1.17 0.37 3.01 25.62 163.7
8M 16 1.17 0.37 3.01 49.70 168.8

16M 32 1.17 0.37 3.01 97.86 171.4
32M 64 1.17 0.37 3.01 194.18 172.8

Following a similar approach, performance of the packetized
transfers can be estimated for other packet sizes. Figure 7(a) shows
the estimated bandwidth for a variety of packet sizes on Novo-G.
Based on the estimates, the packet size which offers the best perfor-
mance can be determined. The results indicate that for P = 512KB
the overall bandwidth is lower than the non-packetized baseline.
The packet size of 2MB was found to offer satisfactory perfor-

7 2010/9/27



Figure 7. Bandwidth of transfers between remote FPGAs (a) Estimated by using multilevel communication model, (b) Observed experi-
mentally on Novo-G using a testbench.

mance over a large range of data sizes under consideration. De-
pending on the size of the data transfer involved, the improvement
obtained ranged from 11% to 24% (for the range of data sizes under
consideration).

5.2 Experimental Results
Figure 7(b) shows the bandwidth of packetized transfers between
two remote FPGAs for various packet sizes, recorded experimen-
tally using a testbench on Novo-G. The trend observed from the
experimental data concurs with the estimates generated using our
model. While it took our team two to three hours to run mi-
crobenchmarks and compute the estimates (from the input param-
eters, as shown in Table 3) to determine the best packet size, the
process of developing a testbench and conducting several trials to
determine the best packet size experimentally took in the order of
two days. The system developers can benefit greatly from reduction
in their time and effort using modeling and estimation to perform
such optimizations on a target system.

The errors observed between the estimated and observed band-
width are reported in Table 4. The average of errors reported in
the table is under 6%. A few cases (especially transfers involving
small data sizes) experienced higher errors. For smaller data sizes,
the time for intermediate steps of transfers (which forms the input
to our model) became considerably small. As a result, even a minor
variation in microbenchmarking results manifested as a larger rela-
tive error in the estimates computed using the model. Nevertheless,
the behavior of estimated performance concurs with the observed
performance, which helped us in determining the best packet size.
A similar methodology can also be employed to optimize other data
transfers in the SHMEM+ library.

Table 4. Relative error between estimated bandwidth and observed
bandwidth of transfers between remote FPGAs.

Data Size Non-packetized 512KB 2MB 8MB
(Bytes) Baseline Packet Packet Packet
512K 15.5% 18.3% 14.7% 18.8%
1M 3.3% 5.6% 3.5% 4.1%
2M 9.3% 8.4% 8.9% 7.9%
4M 5.3% 2.5% 7.1% 1.5%
8M 2.2% 1.1% 3.6% 2.5%
16M 1.4% 0.4% 2.2% 2.5%
32M 0.5% -1.0% 1.4% 1.0%

6. Self-tuning SHMEM+ Library
Depending on the capabilities of the interconnect technology and
the I/O bus, a communication library such as SHMEM+ may have
different ranges for optimal operation on different systems. For ex-
ample, a certain packet size for transfers discussed in Section 5
may lead to satisfactory performance on some systems while yield-
ing sub-optimal performance on others. In addition, the variation in
the system load can also change the operational characteristics of
a system. Allowing a communication library such as SHMEM+ to
automatically tune itself to the capabilities of a target system can
increase its usefulness in achieving portable performance.

The methodology described in Section 5 can be extended to
automate the optimization process. The multilevel communication
model can be embedded in the SHMEM+ library to allow it to au-
tomatically tune its performance on a target system, hence preserv-
ing performance while improving portability. Such a capability also
enables applications to dynamically tune the SHMEM+ library ac-
cording to the system load at several points during an application’s
execution.

To incorporate this feature in SHMEM+, we modified the ini-
tialization function (shmem init) in the SHMEM+ library to invoke
a “self-optimization” function. This function executes a series of
microbenchmarks to determine the input parameters for estimation.
The parameters can be the transmission times for different data
sizes over the network and the I/O bus, or a set of model param-
eters (e.g. LogGP, PlogP) which can then be used to estimate the
transmission times over these interconnects. The self-optimization
function then uses the multilevel communication model to deter-
mine the packet sizes required to obtain optimal performance for
various SHMEM+ routines (as demonstrated manually in Section
5.1. The information generated by the self-optimization function is
also stored to a file, from which it can be later retrieved to elimi-
nate the need for performing these tests for every execution of an
application. However, if the system performance varies over a pe-
riod of time, an application may choose to invoke the optimization
function to re-tune the performance of the library.

6.1 Experimental Results
We augmented the SHMEM+ library with self-tuning capability
and evaluated its effectiveness on several different system config-
urations. Figure 8 compares the bandwidth observed for transfers
between remote FPGAs using the baseline SHMEM+ (without self-
tuning) with the bandwidth observed for those transfers by a self-
tuned SHMEM+. The Novo-G and Mu cluster differ in the inter-
connect technology used by the two systems. We also added diver-
sity in the capabilities of the I/O bus by employing two different

8 2010/9/27



Table 5. Packet size determined by self-tuned SHMEM+ library for transfers between two FPGAs over a range of data sizes on different
systems. ‘-’ indicates no packetization was beneficial. All numbers represent bytes of data (e.g. 1M = 1MB).

Data Size 1K 4K 16K 64K 128K 256K 512K 1M 2M 4M 8M 16M 32M

Pa
ck

et
Si

ze

Novo-G - - - - - - - 512K - 2M 2M 2M 8M(slower DMA)
Novo-G - - - - - - - - 1M 2M 2M 2M 2M(faster DMA)

Mu - - - - - - - 512K 512K 512K 512K 512K 512KCluster

Figure 8. Bandwidth of transfers between remote FPGAs obtained by baseline SHMEM+ library and self-tuned version of SHMEM+ on
(a) Novo-G employing slower DMA engine, (b) Novo-G employing faster DMA engine, (c) Mu Cluster.

Table 6. Performance improvement for transfers between remote
FPGAs obtained by self-tuned SHMEM+ library vs. baseline.

Data Size Novo-G (slower Novo-G (faster Mu
(Bytes) DMA engine) DMA engine) Cluster

4M 6.9% 5.5% 104.3%
8M 14.5% 22.0% 74.6%

16M 18.9% 23.7% 59.3%
32M 25.1% 27.7% 52.6%

versions of the DMA engine (with varying transfer speeds) pro-
vided by the FPGA-board vendor on the Novo-G system. Figure 8
shows that the self-tuned SHMEM+ library was able to automati-
cally determine the appropriate packet size for transfers on differ-
ent systems and offer significantly improved performance. Table 5
lists the packet size that were determined to offer best performance
by the self-optimization function for transfers between remote FP-
GAs. Table 6 highlights the improvement in bandwidth obtained
by the routines in the self-tuned SHMEM+ library over the base-
line version. More importantly, the self-tuning capability improves
the portability of SHMEM+.

7. Conclusions and Future Work
Scalable systems employing a mix of FPGAs and other accelera-
tors with CPUs are becoming increasingly important in the field of
HPC. Programming models and libraries for heterogeneous, par-
allel, and reconfigurable computing such as SHMEM+ provide a
mechanism for establishing communication in such systems. A
communication model is an important tool for optimizing the per-
formance of an application and developing a concrete understand-
ing of the underlying communication infrastructure. The new mul-

tilevel communication model proposed in this paper provides a
system-level representation to integrate the effect of multiple lev-
els of communication that are routinely encountered in scalable RC
systems. The model has provisions for accurately representing the
opportunities for overlapping intermediate steps of communication,
which is critical for obtaining high performance.

In this paper, we demonstrated the benefits of our model as
a tool for performing early DSE to optimize the communica-
tion infrastructure yielding improved performance and productiv-
ity. An improvement of 42% was observed in the overall perfor-
mance of our CBIR application. The communication model en-
abled us to simplify the process of optimizing the transfer func-
tions in SHMEM+ for a target system. Furthermore, the model al-
lowed us to augment the SHMEM+ library to automatically tune
its performance based on the capabilities of a system, hence mak-
ing SHMEM+ more portable. Improvement in performance of up
to 100% was obtained in certain cases by self-tuned routines in
SHMEM+.

In future research, we would like to use the communication
model for optimizing more functions in the SHMEM+ library. Al-
though this work focused mainly on reconfigurable HPC systems,
the application of our model to multilevel systems based on other
types of accelerators will also be explored in future research.

Acknowledgments
This work was supported in part by the I/UCRC Program of the
National Science Foundation under Grant No. EEC-0642422. This
work was also supported by the United States Department of De-
fense and used resources of the Extreme-Scale Systems Center at
Oak Ridge National Laboratory. The authors gratefully acknowl-
edge equipment and tools from Altera and GiDEL.

9 2010/9/27



References
[1] V. Aggarwal, A. George, K. Yalamanchili, C. Yoon, H. Lam, and

G. Stitt. Bridging parallel and reconfigurable computing with mul-
tilevel PGAS and SHMEM+. In HPRCTA ’09: Proceedings of the
Third International Workshop on High-Performance Reconfigurable
Computing Technology and Applications, pages 47–54, Portland, Ore-
gon, 2009.

[2] A. Alexandrov, M. Ionescu, K. Schauser, and C. Scheiman. LogGP:
Incorporating long messages into the LogP model for parallel compu-
tation. Journal of Parallel and Distributed Computing, 44(1):71–79,
1997.

[3] K. Barker, K. Davis, A. Hoisie, D. Kerbyson, M. Lang, S. Pakin, and
J. Sancho. Entering the petaflop era: the architecture and performance
of roadrunner. In SC ’08: Proceedings of the 2008 ACM/IEEE confer-
ence on Supercomputing, pages 1–11, Austin, Texas, 2008.

[4] J. Bosque and L. Perez. HLogGP: a new parallel computational
model for heterogeneous clusters. In Proceedings of the 2004 IEEE
International Symposium on Cluster Computing and the Grid, pages
403–410, Chicago, Illinois, 2004.

[5] D. Culler, R. Karp, D. Patterson, A. Sahay, K. Schauser, E. Santos,
R. Subramonian, and T. von Eicken. LogP: towards a realistic model
of parallel computation. SIGPLAN Notices, 28(7):1–12, 1993.

[6] T. El-Ghazawi, W. Carlson, and J. Draper. UPC language specifi-
cations v1.0. http://upc.gwu.edu/docs/upc spec 1.1.1.pdf,
February 2001.

[7] S. Fortune and J. Wyllie. Parallelism in random access machines. In
Proceedings of the 10th ACM Symposium on Theory of Computing,
pages 114–118, San Diego, California, 1978.

[8] I. Guyon, S. Gunn, M. Nikravesh, and L. Zadeh. Feature Extraction,
Foundations and Applications. Springer, 2006.

[9] B. Holland, K. Nagarajan, and A. George. RAT: RC Amenability Test
for rapid performance prediction. ACM Transactions on Reconfig-
urable Technology and Systems (TRETS), 1(4):1–31, 2009.

[10] T. Kielmann, H. Bal, and S. Gorlatch. Bandwidth-efficient collective
communication for clustered wide area systems. In Proc. International
Parallel and Distributed Processing Symposium (IPDPS), pages 492–
499, San Juan, Puerto Rico, 1999.

[11] A. Lastovetsky, I.-H. Mkwawa, and M. O’Flynn. An accurate commu-
nication model of a heterogeneous cluster based on a switch-enabled
ethernet network. In Proceedings of the 12th International Confer-
ence on Parallel and Distributed Systems, pages 15–20, Minneapolis,
Minnesota, 2006.

[12] MPI. MPI standard. http://www.mcs.anl.gov/research/
projects/mpi/.

[13] T. Ojala, M. Rautiainen, E. Matinmikko, and M. Aittola. Semantic
image retrieval with HSV correlograms. In Proc. of Twelfth Scandina-
vian Conference on Image Analysis, pages 621–627, Bergen, Norway,
2001.

[14] OpenMP. The OpenMP API specification for parallel programming.
http://openmp.org/wp/.

[15] C. Pascoe, A. Lawande, H. Lam, A. George, Y. Sun, and W. Farmerie.
Reconfigurable supercomputing with scalable systolic arrays and in-
stream control for wavefront genomics processing. In Proceedings of
Symposium on Application Accelerators in High-Performance Com-
puting (SAAHPC), Knoxville, Tennessee, 2010.

[16] SGI. Introduction to the SHMEM programming model.
http://docs.sgi.com/library/tpl/cgi-bin/getdoc.cgi?
coll=linux&db=man&fname=/usr/share/catman/man3/
intro shmem.3.html&srch=intro shmem.

[17] L. Valiant. A bridging model for parallel computation. Communica-
tions of the ACM, 33(8):103–111, 1990.

[18] J. Williams, A. George, J. Richardson, K. Gosrani, C. Massie, and
H. Lam. Characterization of fixed and reconfigurable multi-core de-
vices for application acceleration. ACM Transactions on Reconfig-
urable Technology and Systems (TRETS), 3(4), January 2011.

10 2010/9/27


