
Optical Flow on the Ambric Massively Parallel Processor Array (MPPA)

Brad Hutchings, Brent Nelson, Stephen West, Reed Curtis
NSF Center for High-Performance Reconfigurable Computing (CHREC)

Department of Electrical and Computer Engineering
Brigham Young University

Provo, UT 84602 ∗

Abstract

The Ambric Massively Parallel Processor Array (MPPA)
is a device that contains 336 32-bit RISC processors
and is appropriate for embedded systems due to its rel-
atively small physical and power footprint. Optical flow
is a computationally-demanding and highly parallelizeable
image-processing algorithm with applications in embedded
systems such as robotics and autonomous vehicles. An opti-
cal flow algorithm is implemented on the Ambric device and
is shown to achieve near FPGA performance at similar lev-
els of power consumption while requiring many fewer lines
of code (Java) than its FPGA counterpart (VHDL).

1 Introduction

Optical flow refers to the apparent motion of brightness
patterns in a scene. In many cases, optical flow is com-
puted by comparing changing brightness patterns in a se-
ries of image frames obtained from a video camera. Optical
flow has applications in autonomous systems where it can
be used to extract important features from the environment
to serve as navigational cues and to serve as a guide for mo-
tion. For example, an autonomous aircraft could use optical
flow to aid in hovering by controlling the movement of the
aircraft so that optical flow is close to 0 in all directions.
In autonomous applications such as this, it is desirable that
the hardware dedicated to computing optical flow is small,
lightweight, and high-performance, as optical flow is com-
putationally demanding and real-time performance is nec-
essary for controlling movement of autonomous systems.

Optical flow, like so many other image-processing al-
gorithms exhibits a great-deal of parallelism and high-
performance solutions are achievable by technologies that
can exploit that parallelism. Some of the highest-

∗This work was supported in part by the I/UCRC Program of the Na-
tional Science Foundation under Grant No. 0801876.

performance implementations of optical flow have been
achieved with FPGAs and GPGPUs [3, 5].

This paper describes an implementation of optical flow
on the Ambric Massively Parallel Processor Array (MPAA).
The MPAA contains over 300 programmable processors on
a single die. These processors are general purpose and are
programmed using assembly code or Java, and communi-
cate over synchronized communication channels. The Am-
bric MPAA is appealing because it is relatively low power
(12 watts or less), is quite flexible because it contains 300
processors and is relatively easy to program. The MPAA
is interesting because it combines structural design with
general-purpose programming. Programming the Ambric
device ”feels” akin to hardware design, because of its flexi-
bility and structural organization, only much easier, because
you write sequential programs for each of the processors in-
stead of low-level VHDL code.

This paper will briefly discuss the Ambric device, the
general design strategy for capturing user designs and the
implementation of optical flow on the Ambric MPAA. It
will also compare the Ambric implementation of optical
flow against an implementation on an FPGA in terms of
power, performance, and code size.

2 Explanation of Optical Flow

The purpose of optical flow is to compute a velocity vec-
tor for each pixel in an image, that vector indicating the
pixel’s apparent motion in the x and y directions over the
past few image frames. Optical flow calculations depend on
what is called the “brightness constancy constraint”, which
makes the assumption that all changes in the brightness pat-
terns in an image sequence can be attributed to motion (ei-
ther of the camera or of objects within the field of view)
rather than ambient lighting changes.

Many optical flow algorithms have been developed over
the past two decades. Recent work by Wei et al has de-
scribed a series of optical flow formulations well suited for
real-time computation in hardware [5, 7, 6, 3], providing for

2009 17th IEEE Symposium on Field Programmable Custom Computing Machines

978-0-7695-3716-0/09 $25.00 © 2009 IEEE

DOI 10.1109/FCCM.2009.21

141

Authorized licensed use limited to: Brigham Young University. Downloaded on September 23,2020 at 17:04:24 UTC from IEEE Xplore. Restrictions apply.

the possibility of computing optical flow in real-time for au-
tonomous vehicle navigation and obstacle avoidance. The
full derivation of the specific optical flow algorithm used in
this work is provided in [6] — the description given below
is more intended to help the reader understand the flow of
the computation and its computational complexity, in order
to better understand the implementations described in suc-
ceeding sections of this paper.

The algorithm implemented here combines 3D tensors
and a ridge regression estimator to produce [Vx, Vy], the
final optical flow velocity vector for each pixel in an in-
put image sequence. The input to the calculation is a 3-
dimensional volume of data where x and y are the spatial
components and t is the temporal component. The compu-
tation is a multi-stage pipelined computation as shown in
Figure 1 (which was automatically generated from the Am-
bric design files described later). The first stage (Gradient)
performs 1D convolutions in the x, y, and t dimensions us-
ing five-element masks to produce gradient (derivative) im-
age sequences called gx, gy, and gt. The second stage (3D
Smoothing) then performs smoothing convolutions on each
of them to produce gxs, gys, and gts. The 3D convolution
is performed as a 3× 1 convolution (in time) followed by a
5× 1 (in x) followed by a 1× 5 (in y).

The third processing stage (Outer Product) produces six
new matrices (xx, yy, tt, xy, yt, xt) by performing point-
by-point multiplications between elements of the previously
computed and smoothed gxs, gyx, and gtx images. A 2D
smoothing step is then performed in each of the six suc-
ceeding smooth ∗ blocks (each does a 3 × 1 followed by
a 1 × 3 convolution). The result is the creation of the
xxs, yys, tts, xys, yts, and xts images.

The “Velocity” block in the figure next produces the ve-
locity field. This is done in multiple steps. First, the velocity
field is computed for each pixel as:

Vx =
(xxs× yts− xys× xts)

(xxs× yys− xys2)

Vy =
(yys× xts− xys× yts)

(xxs× yys− xys2)
(1)

The problem with this computation is that if the
smoothed gradients (gxs and gys produced earlier in the
pipeline) are nearly linearly dependent (one is nearly a
scaled version of the other), small amounts of noise in the
image sequence will result in large errors in the velocity
field just computed (see [6] for a detailed derivation of this
and its solution using a ridge estimator). This can happen
in areas of low texture in the image sequence. Further, be-
cause system resources are less abundant in the real-time
systems described here, the range of the calculation may be
constrained (for example, the calculation in both the Ambric
and FPGA implementations described later are fixed-point

calculations). The result of this reduced range is a higher
probability of collinearity causing a problem.

The solution described in [6] is that for each velocity es-
timate produced, the common denominator from (1) is com-
pared to a threshold. If it does not exceed the threshold then
the following is done: (a) a scalar weighting factor k is com-
puted, (b) k is added to xxs and yys, (c) and the velocity
calculation in (1) is repeated. The calculation of k is given
as:

k = α× (tts− 2xts× Vx + xxs× V 2
x − 2yts× Vy

+ 2xys× Vx × Vy + yys× V 2
y) (2)

where α is a constant.
The results of the velocity calculation, Vx and Vy , are

then spatially smoothed in the final pipeline stage with 7×1
and 1× 7 kernels to produce the final velocity fields.

Thus, as can be seen, the calculation is a feed-forward
processing chain consisting mainly of convolutions in x, y,
and t used for calculating gradients and performing smooth-
ing operations. These are combined with outer product cal-
culations and a velocity calculation to produce the result.
Finally, note that the test of k against the threshold and the
subsequent re-computation of the final velocity field as de-
scribed above is the only data-dependent computation in the
pipeline.

3 An Introduction to Ambric

The device used here is the Ambric AM2045 Massively
Parallel Processor Array (MPPA). The Ambric MPPA con-
tains 336 32-bit processors and 4.6 Mbits of SRAM. It op-
erates at 300 MHz. It is a standard-cell ASIC containing
117 million transistors and was fabricated at 130 nm.

The AM2045 is internally organized into a 2D array of
bric modules. Each bric contains 8 CPUs (each with its
own internal RAM), 2 memory objects (each organized as 4
independent RAM banks), and local interconnect between
them. Level 2 communication channels provide direct con-
nections to neighboring brics. Level 3 interconnect is for
long-distance communications and consists of a chip-wide
2D circuit-switched interconnect of channels.

The AM2045 core is connected to the following external
interfaces:

• Two 32-bit DDR2-400 SDRAM interfaces,

• 4-lane PCI Express that is used for chip configuration
and data transport,

• 128 1-bit general-purpose parallel I/O ports,

• serial flash, microprocessor, and JTAG interfaces.

142

Authorized licensed use limited to: Brigham Young University. Downloaded on September 23,2020 at 17:04:24 UTC from IEEE Xplore. Restrictions apply.

smooth_Vy

smooth_Vx

Velocity

smooth_tt

smooth_yt

smooth_yy

smooth_xt

smooth_xy

smooth_xx

Outer Product t

smooth_dt

smooth_dy

smooth_d

Gradient

in

gx

gy

gt

gxs

gys

gts

xx

xy

xt

yy

yt

tt

xxs

xys

xts

yys

yts

tts

Vx

Vy

Smoothed Vx

Smoothed Vy

Figure 1. Ambric Optical Flow Implementation

The AM2045 is mounted on the Ambric IDB board that
provides 256 MB of DDR RAM and the other above-
mentioned I/O interfaces. For this application, the on-board
DDR was used to create deep FIFOs that were used to buffer
images. Additional details of the AM2045 can be found in
[1, 2].

4 Overview of Ambric Programming Model

There are two basic primitive objects in the Ambric pro-
gramming model:processors and memories. Processors are
32-bit RISC machines and come in two varieties: SRD and
SR. SRD processors contain 3 ALUs and provide math-
intensive instructions to support DSP operations. Each SRD
processor contains a dedicated 256-word RAM for instruc-
tions and data. This memory can be augmented though
direct connections to memory objects. SR processors are
lighter weight and contain only 1 ALU and are used for ad-
dress generation and for accessing memory objects. They
contain a dedicated 128-word memory for programs and
data but do not have direct connections to memory objects.
Note that processors do not share memory but communicate
only via point-to-point channels.

Memory objects consist of four independent single-port
RAM banks, each containing 256 words. These memory
objects can be used in four different ways: (1) as data stor-
age for SRD processors (FIFO or random access), (2) as
instruction storage for SRD processors (FIFO or random ac-
cess), (3) to implement FIFOs between processors, and (4)
as random-access memory accessible over the MPPA’s net-
work. Multiple memory objects can be combined to create
deeper FIFOs.

Processors and memory objects communicate through
channels that are word-wide, point-to-point and strictly

ordered. Channels behave like synchronous FIFOs and
are blocking. Channels are self-synchronizing, using a
tagged approach similar to that found in data-flow ma-
chines (valid bit). Reads from an empty channel typi-
cally cause a processor stall as do writes to full channels.
Nearest-neighbor objects communicate directly over non-
shared channels for highest bandwidth. Objects that are fur-
ther away also communicate via channels but these longer
channels share physical resources and provide less band-
width. Self-synchronizing channels are key to the Ambric
programming approach. They allow individual processor
and memory objects to operate independently at their own
speeds, synchronizing as they receive and transmit data on
their respective channels. Channels provide at least two ma-
jor benefits to the Ambric programmer. First, they relieve
the programmer of the onerous task of explicitly synchro-
nizing hundreds of processors - synchronization is com-
pletely automatic - contrast this with typical thread-based
programming [4]. Second, they encapsulate processors and
memories. This makes it much easier to reason about the
system’s behavior (no side effects in memory) and each ob-
ject can be treated independently, making it easier to pro-
gram each individual processor.

Programmers develop applications on the Ambric MPPA
by writing small Java programs, one per processor. The pro-
grammer is also responsible for providing a “structural” de-
scription of their application that assigns programs to pro-
cessors and defines the source and destinations for chan-
nels. This structural description is somewhat akin to a cir-
cuit net-list where the wires are channels and the cells are
processors.

Initially, the process of writing programs for 300+ pro-
cessors sounds daunting but turns out to be manageable in
practice for the following reasons:

143

Authorized licensed use limited to: Brigham Young University. Downloaded on September 23,2020 at 17:04:24 UTC from IEEE Xplore. Restrictions apply.

• Programs are quite small. Each processor only pro-
vides 128-256 words of dedicated memory. Java pro-
grams for this application tended to be less than 50
lines of code.

• Programs are heavily reused. the number of distinct
programs tends to be few in number, relative to the
number of processors. In a typical application with lots
of exploitable parallelism, high performance is often
achieved, for example, by concurrently executing sev-
eral identical operations simultaneously, on different
sections of the data stream. Each identical operation
uses a distinct processor, but uses the same compiled
program code. In other examples, complex data oper-
ations can often be created by composing several iden-
tical or similar operations. For the optical-flow appli-
cation, there are only 27 distinct Java programs spread
across 126 processors.

• Synchronization is implicit. Unlike a typical thread-
based program that relies on explicit locking for syn-
chronization, the Ambric MPPA relies on a data-flow
model that simply blocks until data is available. This
makes programs simpler and smaller.

• Applications are hierarchically organized. Applica-
tions are developed hierarchically: processors imple-
ment primitive operations; these primitive operations
are grouped together to form more complex opera-
tions, and so forth. Hierarchy simplifies development
by hiding detail and making it easier to reuse code and
processor organizations.

Taken together, these four things (small programs, reuse,
implicit synchronization, hierarchy) make it feasible to im-
plement applications on the Ambric processor. They also
provide a design process reminiscent of that used to design
hardware. In hardware, for example, functional units are
coded in HDL, connected with wires, and grouped hier-
archically to create more complex and powerful computa-
tions. Analogously, in the Ambric MPPA, processor units
are coded using Java, connected using channels, and are
grouped hierarchically to create complex objects consisting
of multiple processors, channels and programs.

5 Optical Flow on the Ambric MPPA

The previously-described optical flow algorithm was im-
plemented on the Ambric 2045 on the Ambric IDB board.
The algorithm occupies about 60% of the capacity of the
Ambric device. General resource utilization is shown in Ta-
ble 1 while Table 2 details the resource usage of the program
blocks shown in Figure 1, from left to right, and documents
the number of files for both the Java and aStruct source files,

the number of lines of code in each file, and the number of
processor and memory units. Note that the shift-saturate
module is not a top-level module but is utility code that is
used extensively (30 times) throughout the application.

Resource Type Used Free Total % Used
SRD processor 128 40 168 63.10
SR Processor 62 104 166 31.33
Ram Object 162 174 336 47.92

Table 1. Overall AM2045 Resource Usage for
Optical Flow

5.1 Example Block: The Derivative Cal-
culation

A complete discussion of all of the blocks that comprise
the optical-flow application is beyond the scope of this pa-
per. A decomposition of part of the derivative block, start-
ing at the top level and proceeding through the bottom of the
hierarchy will be detailed below to give the reader a glimpse
of the details of the application, as implemented on Ambric.

Consider the first stage of processing in Figure 1 — the
Gradient block, known as the derivative block in the Am-
bric design, shown at the far left of the figure. It consists
of six java files and six astruct files, which are 301 lines of
code and 109 lines respectively, a total of 410 lines of code.

The purpose of the derivative block is to accept a se-
quence of images and then perform three convolutions. One
convolution is temporal (the dt calculation) and is computed
across five images. The other two convolutions are spatial
in one dimension (dx and dy), operate on only one image at
a time and use five-element masks.

Dropping down one level in the hierarchy, the design of
the derivative block is given in Figure 2, that shows that it
is composed of several hierarchical and primitive blocks. In
the picture, the small square blocks are leaf nodes or primi-
tive functions consisting of a single processor — their func-
tionality is provided by Java or assembly code. The larger
blocks are hierarchically composed of lower level blocks
and thus contain multiple processors.

In Figure 2, starting at the far left, raw image data en-
ters the split block that creates data streams for the dt, dx,
and dy blocks that compute the actual derivatives. The three
different derivative calculations compute results using dif-
fering numbers of images. The dx and dy perform spatial
convolutions and only require one image at a time. The dt
block performs a temporal convolution across five images.

Delay blocks dx delay and dy delay are hierarchical
blocks used to synchronize data for the dx and dy blocks.
The delay modules implement the control protocol required
by the DDR controller and provide FIFO behavior. These

144

Authorized licensed use limited to: Brigham Young University. Downloaded on September 23,2020 at 17:04:24 UTC from IEEE Xplore. Restrictions apply.

Block Name File Count (Java, aStruct) Line Count (Java, aStruct) Processor Units Ram Units
Derivative 4, 2 301, 109 14 6
Smooth 4, 3 200, 130 39 30
Outer Product 2, 1 41, 110 14 6
Smooth 2,1 84, 90 30 36
Velocity 9, 5 358, 508 53 33
Smooth 4, 1 230, 131 8 20
Shift-Saturate 2, 3 85, 65 - -
Top 0, 1 0, 69 - -
Total 27, 17 1324, 1212 158 131

Table 2. Detailed Resource Usage for Top-Level Blocks

c0:in, in

cx0:dx, in cxa:out, in cx1:out, in cx2:out, dx_out

cy0:dy, in cya:out, in cy1:out, in cy2:out, dy_out

ct0:dt, in ct1:out, in ct2:out, dt_out

sst

ssydydy_delay

ssxdx_delay

dt

split

dx

in

dx_out

dy_out

dt_out

Figure 2. Design of the Derivative (Gradient) Block

blocks initially fill their respective off-chip memory areas
with image data and then read data one element at a time,
overwriting the outbound data with incoming data.

The dx block is a primitive block that performs a simple
spatial convolution with a single processor. The dy block
is a hierarchical block; its additional complexity is due to
additional reordering and buffering required to compute the
spatial derivative in the y-direction (image data arrive in x
order). The dt block is also hierarchical and contains larger
DDR-based (off-chip) buffers for buffering and reordering
data from the incoming five images that it uses to compute
the temporal derivative. Finally, the ss ∗ blocks are scaling
blocks required since the computation is being done in fixed
point arithmetic.

Dropping down one more level in the hierarchy, Figure 3
shows the the contents of the dt block shown near the top-
left of Figure 2. It consists of a primitive control block that
feeds the DDR buffer (another hierarchical block) which, in
turn, feeds the dt block that actually performs the temporal
computation. The result is passed to the fifo dt out block
that provides the final output for the composite dt block.
This output feeds the sst block up a level in the hierarchy,

shown in Figure 2.
Finally, dropping to a leaf level, Program 5.1 shows the

yellow primitive dt block that implements the temporal con-
volution mask that consists solely of the Java code used to
compute the convolution.

5.2 Another Example: The Split Block

For a more complex coding example, consider the split
block, also in the derivative block, another primitive block
implemented on a single processor - its implementation
consists of the Java code shown in Program 5.2. After send-
ing the first two frames’ pixels to the dt block only, it then
sends portions of all remaining frames to dx, dy, and dt.

The code describing the elimination of the first two
frames has been removed for brevity in this example. The
control logic in the program determines where each pixel
read from the input stream is forwarded to: (1) the first and
last two rows of pixels in the image are only forwarded to
dy, and (2) for the middle rows, the first two pixels are sent
to dx, the middle pixels to dx, dy, and dt, and the last two
pixels in the row are sent to dx.

145

Authorized licensed use limited to: Brigham Young University. Downloaded on September 23,2020 at 17:04:24 UTC from IEEE Xplore. Restrictions apply.

ddr
control dt __fifo_dt_out

in outc0:in, in c1:out, in c2:out, in c3:out, in __channel0:out, out

Figure 3. Design of the Composite dt Block

Program 5.1 Code for the dt Convolution

package derivative;
import ajava.io.InputStream;
public class Dt Convolution
{
public void run(InputStream<Integer> in,

OutputStream<Integer> out)
{
// Data comes from ddr as serialized stream
int p0=in.readInt();
int p1=in.readInt();
int p3=in.readInt();
int p4=in.readInt();
// Mask is: [-1 8 0 -8 1]
out.writeInt(-p0+p1*8-p3*8+p4);

}
}

5.3 Structural Descriptions in Ambric De-
signs

The structural programming model used by Ambric con-
sists of two major pieces: Java or assembly code that is
bound to individual processors and a structural file (astruct)
that describes how the processors communicate over chan-
nels. The format also supports parameterized conditional
and iterative instantiation for additional flexibility. The as-
truct file for the composite dt block shown in Figure 3 is
illustrated in Program 5.3. An astruct file flows as follows:
declare modules, instance them, and connect them together
over channels. For example, in Program 5.3 the DDR2
object is imported, declared and given several parameters.
Also, channel c0 connects the input of the block to the con-
trol object input, while channel c1 connects the output of
the control block to the input of the ddr object, as described
in Program 5.3 and depicted in 3.

5.4 Ambric Performance

At press time, the optical-flow design achieved approx-
imately 37 frames per second (FPS) on an image stream

Program 5.2 Code for the split Block

public void run(InputStream<Integer> in,
OutputStream<Integer> dx,
OutputStream<Integer> dy,
OutputStream<Integer> dt)

{
int w=this.width;
int h=this.height;

while(true)
{
// First two rows go to dy only
for(int i=0;i<2;i++)
for(int j=0,w_4=w-4;j<w_4;j++)

dy.writeInt(in.readInt());

// Middle rows
for(int k=0, middle_rows=h-4;

k<middle_rows;k++)
{
// First two pixels in row go to dx only
dx.writeInt(in.readInt();
dx.writeInt(in.readInt());

// Middle pixels in row go to all 3
for(int l=0, mid_col=w-4;l<mid_col;l++)
{

int pixel=in.readInt();
dx.writeInt(pixel);
dy.writeInt(pixel);
dt.writeInt(pixel);

}

// Last two pixels in row go to dx only
dx.writeInt(in.readInt());
dx.writeInt(in.readInt());

}

// Last two rows go to dy only
for(int i=0;i<2;i++)
for(int j=0,w_4=w-4;j<w_4;j++)

dy.writeInt(in.readInt());
}

146

Authorized licensed use limited to: Brigham Young University. Downloaded on September 23,2020 at 17:04:24 UTC from IEEE Xplore. Restrictions apply.

Program 5.3 Astruct Code for the Composite dt Block

import astruct.io.DDR2;
interface Dt
{
inbound in;
outbound out;

}
binding jDt implements Dt
{
implementation "Dt.java";

}
interface Dt
{
inbound in;

s outbound out;

property int width;
property int height;

}
binding aDt w fifos implements Dt
{
DDR2 ddr = controller=0,

port = 0,
size=width*height*5;//w*h*4*5

DDR_Control control =width=width,
height=height;

Dt dt;

channel c0 = in, control.in;
channel c1 = control.out,ddr.in;
attribute MinimumBuffer(512) on control.out;
channel c2 = ddr.out, dt.in;
channel c3 = dt.out, out;

}

consisting of 320x240 images. Initially, the design achieved
about 25 FPS but achieved the higher figure after we opti-
mized the image buffering schemed that used in the Deriva-
tive block. Image data for this experiment were generated
on-chip because of limitations in the I/O interfaces1. While
a detailed comparison against an FPGA implementation is
beyond the scope of this paper, Table 3 gives a rough idea
of the relative performance of the FPGA and Ambric im-
plementations. The FPGA implementation cited here is the
one reported by Wei et al [6] and was done on a Virtex-
4 FX60 part. As shown, the Ambric implementation is
roughly on par with the FPGA implementation, currently
achieving over 1/2 the throughput with about 20% lower
power consumption. Note that the SDRAM consumes 1.23
watts of the total 8.4 watts consumed by the Ambric device
while running the optical-flow application.

5.5 Analyzing Ambric Performance

The Ambric MPPA device contains a facility to statis-
tically measure the performance of each processor as they
execute in hardware. Processors are polled for their cur-
rent state (running, stalled on input, stalled on output). This
state is then transferred over the debug network to the host
device. This is repeated for each active processor in a round
robin fashion. A meaningful measurement can be obtained
after several seconds of execution. This is essentially a
rough form of profiling and can be used to locate bottle-
necks and to optimize the design. We used this profiling
tool extensively to find bottlenecks and optimize the design.

The performance of the optical flow implementation
was measured using the statistical measurement facility and
found to be active about 18% of the time. Most of the
time, the application is stalled in input and this is true for
all of the modules listed in Table 4. As shown in the fig-
ure, all blocks are stalled, waiting for input, 70% or more
of the time. These stalls are most likely due to remaining
inefficiencies in the FIFO designs that we developed in the
Derivative block to buffer images for the temporal convo-
lutions. We estimate that nearly another factor of two in
performance may be available when this part of the design
is fully optimized.

6 Conclusion

In conclusion, the Ambric implementation achieves real-
time performance for the optical flow algorithm with a
physical and power footprint appropriate for embedding in
autonomous systems such as unmanned vehicles, robots,
etc. It competes well against a Virtex-4 FX60 FPGA im-
plementation in both power and throughput. The Ambric

1Sadly, Ambric ceased operations during this project. We were unable
to resolve this problem because they were unable to offer support.

147

Authorized licensed use limited to: Brigham Young University. Downloaded on September 23,2020 at 17:04:24 UTC from IEEE Xplore. Restrictions apply.

Implementation Image Throughput (320x240) Power Code Size in lines
Ambric IDB 37 8.4 watts 2,536
Helios FPGA 60 10 watts 17,000

Table 3. Overall AM2045 Resource Usage for Optical Flow

Module Running Stalled on Input Stalled on Output Busiest
Derivative 19.67% 74.88% 4.46% DDR Control, 40% (stalled on out 50%)
Smooth Derivative 20% 80% 0% Conv x, 45%
Outer Product 16% 80% 4% Op2 40.74%
Smooth Outer Product 23% 77% 0% Conv x 38%
Velocity 17.75% 68.54% 12.96% V2.Vel den 61.82%
Smooth Velocity 11% 88% 0% Conv x, 24.53%
Top 18.6% 73.3% 5.7% V2.Vel den, 61.82%

Table 4. Profile of Execution

implementation also compares very favorably against the
FPGA in terms of code size: 2,500 lines of Java and astruct
for Ambric and 17,000 lines of VHDL code for the FPGA
implementation. Although relative productivity for the Am-
bric device and programming model remains to be studied,
the dramatic difference in code size strongly hints that the
Ambric device may provide substantial productivity gains
and yet be able to provide high performance for embedded
environments.

References

[1] M. Butts. Synchronization through Communication in a Mas-
sively Parallel Processor Array. IEEE Micro, 27(5):32–40,
2007.

[2] M. Butts, A. Jones, and P. Wasson. A Structural Object Pro-
gramming Model, Architecture, Chip and Tools for Reconfig-
urable Computing. In Proceedings of the IEEE Symposium on
FPGAs for Custom Computing Machines (FCCM ’08), pages
55–64, April 2008.

[3] J. Chase, B. Nelson, J. Bodily, W. Z., and L. D.J. Real-Time
Optical Flow Calculations on FPGA and GPU Architectures:
A Comparison Study. In Proceedings of the IEEE Sympo-
sium on FPGAs for Custom Computing Machines (FCCM
’08), pages 173–182, April 2008.

[4] E. Lee. The Problem with Threads. IEEE Computer,
39(5):33–42, 2006.

[5] Z. Wei, D. Lee, and B. Nelson. FPGA-based Real-time Op-
tical Flow Algorithm Design and Implementation. Journal of
Multimedia, 2(5):38–45, 2007.

[6] Z. Wei, D. Lee, B. Nelson, and J. Archibald. Real-time Ac-
curate Optical Flow-based Motion Sensor. In IEEE Interna-
tional Conference on Pattern Recognition (ICPR), December
2008.

[7] Z. Wei, D. Lee, B. Nelson, J. Archibald, and B. Edwards.
FPGA-Based Embedded Motion Estimation Sensor. Inter-

national Journal of Reconfigurable Computing, 2008, July
2008.

148

Authorized licensed use limited to: Brigham Young University. Downloaded on September 23,2020 at 17:04:24 UTC from IEEE Xplore. Restrictions apply.

