
A Study in SHMEM:
Parallel Graph Algorithm Acceleration
with Distributed Symmetric Memory?

Michael Ing and Alan D. George

Department of Electrical and Computer Engineering, University of Pittsburgh
NSF Center for Space, High-Performance, and Resilient Computing (SHREC)

{mci10,alan.george}@pitt.edu

Abstract. Over the last few decades, the Message Passing Interface
(MPI) has become the parallel-communication standard for distributed
algorithms on high-performance CPUs. MPI’s minimal setup overhead
and simple API calls give it a low barrier of entry, while still provid-
ing support for more complex communication patterns. Communica-
tion schemes that use physically or logically shared memory provide a
number of improvements to HPC-algorithm parallelization by reducing
synchronization calls between processors and overlapping communica-
tion and computation via strategic programming techniques. The Open-
SHMEM specification developed in the last decade applies these ben-
efits to distributed-memory computing systems by leveraging a Parti-
tioned Global Address Space (PGAS) model and remote memory access
(RMA) operations. Paired with non-blocking communication patterns,
these technologies enable increased parallelization of existing apps. This
research studies the impact of these techniques on the Multi-Node Par-
allel Boruvka’s Minimum Spanning Tree Algorithm (MND-MST), which
uses distributed programming for inter-processor communication. This
research also provides a foundation for applying complex communication
libraries like OpenSHMEM to large-scale apps. To provide further con-
text for the comparison of MPI to the OpenSHMEM specification, this
work presents a baseline comparison of relevant API calls as well as a
productivity analysis for both implementations of the MST algorithm.
Through experiments performed on the National Energy Research Sci-
entific Computing Center (NERSC), it is found that the OpenSHMEM-
based app has an average of 33.9% improvement in overall app execution
time scaled up to 16 nodes and 64 processes. The program complexity,
measured as a combination of lines of code and API calls, increases from
MPI to OpenSHMEM implementations by ∼25%. These findings en-
courage further study into the use of distributed symmetric-memory ar-
chitectures and RMA-communication models applied to both additional
hardware systems and scalable HPC apps.
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1 Introduction

To maximize parallel processing and acceleration, programmers must minimize
overhead and synchronization bottlenecks. For distributed-memory systems the
current standard is the Message Passing Interface (MPI) due to its ubiquity
and support of many communication methods. Using handshake-based point-to-
point send and receive calls and primitive collectives like broadcast and gather,
MPI supports parallelization of numerous kernels and algorithms [14].

The remote memory access (RMA) model introduces new possibilities for
further acceleration of distributed parallel apps. Its support for non-blocking
and one-sided communication patterns can reduce synchronization bottlenecks
in MPI that stem from multiple sequential handshake communications. The
increased flexibility afforded by RMA comes with added complexity, requiring
the programmer to manually synchronize parallel processes independently to
avoid race conditions and invalid memory accesses. Nevertheless, RMA models
can lead to increased acceleration by minimizing communication bottlenecks and
maximizing the amount of uninterrupted parallel computation for the target of
the communication call [6].

In the last few decades, an older concept of distributed symmetric mem-
ory, or “SHMEM”, has been revisited as an alternative to MPI, resulting in
a new specification called OpenSHMEM. Utilizing a partitioned global address
space (PGAS) and adhering to the RMA communication model, this specifica-
tion attempts to support one-sided, non-blocking communication without adding
extensive setup overhead or complex API calls. Many OpenSHMEM API calls
are modeled after MPI methods, allowing for a low barrier of entry for parallel
programmers while still affording increased parallelization [9]. This research con-
trasts the two-sided MPI specification to the one-sided OpenSHMEM variant,
evaluating RMA acceleration benefits and quantifying any increased complexity
or loss in productivity.

This comparison starts at the API level and then extends to the app level us-
ing a parallelized graph-processing algorithm based on Boruvka’s algorithm [13].
The OpenSHMEM specification is applied to an existing MPI implementation of
the algorithm and directly compared. A focus on overall execution time and pro-
ductivity provides a basic framework for the continued study and development
of the OpenSHMEM specification at multiple levels of complexity.

In summary, this research contributes:

– An evaluation of OpenSHMEM API calls based on existing distributed-
communication standards

– A discussion of OpenSHMEM programming techniques that lead to parallel
acceleration and corresponding levels of increased complexity

– Analysis of OpenSHMEM optimizations on a Parallel MST app
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2 Background

The core of this research focuses on evaluating productivity and performance of
parallel communication libraries with distributed apps. The concepts presented
in this section illustrate the scope of the app with respect to that goal.

2.1 PGAS

To take advantage of the benefits of both shared-memory and distributed-memory
architectures, the PGAS model implements a global address space, local and re-
mote data storage, one-sided communication, and distributed data structures
[15]. Global addressing allows individual processors to simultaneously access the
same spot in symmetric memory. This one-sided communication leads to in-
creased programming flexibility and communication-computation overlap. But
not everything can be stored in symmetric memory. Data stored locally (in “pri-
vate” memory) can be more rapidly accessed, forcing programmers to decide
what data needs to be remotely accessible and what can be kept local. This
decision point creates an efficient compromise between performance and ease of
access at the expense of more vigilant design [15]. Support for distributed data
structures allows more data to be stored, opening the door for complex program
compatibility.

2.2 SHMEM

In 2010, SHMEM was standardized into the OpenSHMEM specification by the
PGAS community, unifying development efforts and expanding its viability for
widespread use [3]. Analogous to the popular MPI specification, OpenSHMEM
universalized functions and standardized important aspects of the model includ-
ing types, collectives, API-call structure and communication protocols. Open-
SHMEM has been supported across numerous platforms by multiple libraries,
including Cray SHMEM, OSHMEM, and SHMEM-UCX.

2.3 Minimum Spanning Tree

The baseline algorithm used for this research is Boruvka’s algorithm, one of
the simplest and oldest MST solutions. It starts with multiple small components
composed of individual vertices and their lightest edges. These small components
are then merged along their lightest available edges to form larger components.
This process continues until only a single component remains, which is the MST
[2]. The bottom-up nature of this algorithm makes it amenable to parallelization,
since vertices can be separately tracked by different processors, and computation
can be distributed. The time complexity of Boruvka’s algorithm can be improved
through utilization of clever data structures and parallelization [11].
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3 Related Research

The OpenSHMEM specification has been explored on the API and app levels,
including graph processing. This research extends this investigation by analyzing
the specification on both levels for an MST graph-processing app, and evaluating
the impact on productivity.

3.1 OpenSHMEM API Calls

Jose and Zhang tested OpenSHMEM API call performance across four dif-
ferent OpenSHMEM libraries, including UH-SHMEM (University of Houston),
MV2X-SHMEM (MVAPICH2X), OMPI-SHMEM, and Scalable-SHMEM (Mel-
lanox Scalable) [8]. They compared point-to-point, collective, and atomic perfor-
mance on an Infiniband Xeon cluster, scaling up to 1MB in message size and up
to 4K processes for collective operations. This work found that MV2X-SHMEM
demonstrates consistently lower latencies compared to other OpenSHMEM li-
braries, as well as a smaller memory footprint per process. Jose and Zhang also
compare the performance of two kernels, Heat Image and DAXBY. They find
that MV2X-SHMEM again outperforms other libraries, demonstrating consis-
tent execution time improvement that scales with number of processes.

3.2 OpenSHMEM Graph Processing

OpenSHMEM has been used for graph processing in other contexts, as seen in
the work of Fu et. al [5] on “SHMEMGraph”, a graph processing framework
that focuses on the efficiency of one-sided communication and a global memory
space. In order to address communication imbalance, computation imbalance,
and inefficiency, the SHMEMGraph framework introduces a one-sided commu-
nication channel to support more flexible put and get operations as well as a
fine-grained data serving mechanism that improves computation overlap. The
resulting framework was used to test four large web-based graphs on five repre-
sentative graph algorithms, finding 35.5% improvement in execution time over
the state-of-the-art MPI-based Gemini framework [5].

3.3 Productivity Studies

To evaluate and compare the productivity of the algorithm using different com-
munication paradigms, multiple metrics are needed. Measuring both overall lines
of code (LOC) and number of communication-specific API calls strikes a balance
between increased complexity and overall workload. Development time has also
been used to measure productivity with HPC toolsets as seen in [16], but this
metric is more subjective and difficult to measure and compare. The OpenSH-
MEM specification’s growing similarities to MPI further legitimize these metrics,
making a direct comparison of productivity more viable and informative.



A Study in SHMEM 5

3.4 Parallel MST

Work done by Yan and Cheng have developed a system to find minimum span-
ning tree data structures on distributed processors called Pregel [10]. This system
is “vertex-centric”, focusing on messages sent between vertices to keep commu-
nication simple and efficient [17]. Based on the bulk synchronous parallel model
(BSP), Pregel was theoretically able to achieve performance improvements for
graph processing apps by increasing the number of parallel communications that
could simultaneously execute.

This approach has inconsistency issues due to varying vertex degree in large-
scale graphs, leading to unequal communication backlog and bottlenecks. Two
improvements were made in the form of vertex mirroring for message combin-
ing as well as the introduction of a request-response API, resulting in the aptly
named Pregel+ [17]. Running Pregel+ against modern competitive graph pro-
cessing systems like Giraph and GraphLab demonstrated the effectiveness of
these two techniques, resulting in reduced communication cost and reduced over-
all computation time for the new Pregel+ implementation [17].

The algorithm used in this research is based on and uses source code from
Panja and Vadhiyar [13], who describe the operation of the parallelized, dis-
tributed minimum spanning tree graph algorithm. The algorithm is explained
in detail in Section 4.4. This research validates the algorithm’s performance
compared to Pregel+, and shows positive performance improvements for overall
execution time on a scaling number of parallel processes from 4 to 16. This work
was thus deemed acceptable for use as a state-of-the-art scalable distributed
parallel algorithm.

4 Experiments

This section details the nature of experiments performed, data collected, and op-
timizations implemented. API-level experiments, app datasets, supercomputing
testbeds, and MND-MST algorithm optimizations are examined in detail.

4.1 API Level

To frame and analyze results for a larger app, it is important to analyze differ-
ences of the baseline, API-level performance. This evaluation is done by directly
comparing relevant API calls between MPI and OpenSHMEM. Point-to-point
and collective communications are averaged over 500 iterations and these tests
are scaled up in message size, with some of the collective operations scaling up
in number of parallel processes. Microbenchmark tests for both MPI and Open-
SHMEM are created by the MVAPICH project from Ohio State University, with
some improvements made to scale to appropriate sizes [12]. Point-to-point bench-
marks were executed using two processors and scaling from 1 byte up to 4 MB
in message size. Collective benchmarks were similarly scaled up to 4 MB, and
the number of nodes was scaled from 2 to 64. All API-level benchmarks used
one PE per node.
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4.2 Datasets

The datasets used for the app consist of large web-based graphs formed by web-
crawling [1]. Created by the Laboratory for Web Algorithmics, these graphs are
undirected, weighted and have significantly more edges than vertices, making
them ideal for large-scale parallel processing and MST calculations. Although
not all fully connected, consistent MSTs can still be calculated effectively for
execution time comparison. These graphs range in size from 1.8 million vertices
to over 100 million vertices, with edge counts reaching nearly 2 billion. These
large graphs have execution times on the order of tens of seconds, allowing for
better detection of difference in execution time at scale. Execution times for
MPI and SHMEM implementations can be directly compared because the use
of different communication libraries have no effect on the way the algorithm is
executed. Edges are still processed, removed, and exchanged in the same way, and
various implementations differ only in the order and method of communication
of edges and components.

Table 1. Graph Details

Webgraph Dataset (E/V = Edge-to-vertex ratio)

Name Size (GB) Vertices Edges Max Deg E/V

uk-2014 0.15 1.77e6 3.65e7 6.59e4 20.66
gsh-2015 4.70 3.08e7 1.20e9 2.18e6 39.09
ara-2005 4.90 2.27e7 1.28e9 5.76e5 56.28
uk-2005 7.25 3.95e7 1.87e9 1.78e6 47.46
it-2004 8.80 4.13e7 2.30e9 1.33e6 55.74
sk-2005 15.00 5.06e7 3.90e9 8.56e6 77.00

4.3 Testbed

All data was produced by utilizing 2.3GHz Haswell nodes on the Cori partition
of the National Energy Research Scientific Computing Center (NERSC), a U.S.
Department of Energy Office of Science User Facility at Lawrence Berkeley Na-
tional Laboratory. This supercomputer has over 2,300 nodes each with 128GB of
DDR4 memory [4]. Each configuration of runtime parameters averaged execution
times over 15 runs. OpenMP sections allocated 4 threads per node.

4.4 Algorithm

This research’s algorithm is a parallelized version of the classic Boruvka’s algo-
rithm for finding minimum spanning trees, based on [13].

The parallelized version of the algorithm is split into four major parts: graph
partitioning, independent computation, merging, and post-processing. During
graph partitioning the input graph is read in parallel by each PE and divided
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into equal parts. The independent computation step allows each PE to run Boru-
vka’s algorithm locally, while the merging step is used for clean-up of individual
components and internal edges. The post-processing step combines all remain-
ing components and edges into a smaller number of PEs, where a final round of
computation can be done to construct the full MST. Please see [13] for a more
detailed description on the algorithm steps and basic functionality.

4.5 Algorithm Variables

Runtime parameters including post-processing mode, MST Threshold, number of
nodes, and PE count were tuned during data collection for optimal performance.
Post-processing occurs after computation and merging, and was set to either
“single” or “leader” mode. The “single” mode consists of having each node send
all leftover components to PE 0 before final computation, while the “leader”
mode splits PEs into groups of 4 for more parallel computation. It was found that
the ”single” mode led to better execution due to lower overhead, so all final data
was collected using the ”single” post-processing method. The MST threshold
determined the point at which component consolidation and post-processing
was performed, based on the number of new MST edges. This threshold was
optimized to be 24% of the total number of MST edges.

Strong scaling was performed by altering the number of nodes and process-
ing elements per job, scaling nodes from 1 to 16 and PEs from 4 to 64. NERSC
nodes were limited to 118GB per node, and 64 PEs per node [4]. Data for mul-
tiple node-PE configurations was collected to further evaluate the scalability of
both implementations. Node-PE configurations were also influenced by memory
limits and allocations, including that of the private heap, the symmetric heap
(SH), and a separate “collective symmetric buffer” (CB) used for SHMEM col-
lective communications. The two symmetric buffers were set before running jobs
and were allocated per PE. NERSC memory limitations for individual nodes
coupled with large graph sizes required fine-tuning of these parameters for op-
timal execution. Some failures resulted from symmetric memory (heap and the
collective buffer) that was too small to handle communication volume, while
others were caused by over-allocation that infringed on private memory. Some
node-PE configurations were even rendered impossible, as there wasn’t enough
memory available to support both symmetric memory for communication and
private memory for graph data storage. Webgraphs that were larger in size like
the uk-2005 graph tended to require larger symmetric heap sizes to execute
properly.

4.6 SHMEM Optimizations

A number of techniques are used to optimize the OpenSHMEM-based app be-
yond simple one-to-one API call replacement. By leveraging partitioning, non-
blocking communication and RMA, SHMEM enables programmers to reduce
communication overhead and accelerate parallel execution without introducing
overwhelming complexity. The first major OpenSHMEM optimization occurs
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during the exchanging of ghost information after independent computation, in-
cluding external vertices and their corresponding edges. In the baseline MPI
approach, this step consists of a series of handshake MPI send and MPI recv
calls, first exchanging the message size before sending the full data structure
of vertices and ghost edges to be updated. Each PE then locally updates the
corresponding data structure to reflect changes in component sizes.

This relatively straightforward communication can be improved with the use
of OpenSHMEM. First, the message size can be sent using one-sided put and
get operations followed by a shmem wait until synchronization API call. These
communications allow each PE to operate independently while sending the mes-
sage size, which leads to more efficient execution. Second, the ghost information
can be communicated via RMA without the need for any synchronization which
eliminates handshaking overhead and slowdown from synchronization.

Finally, the OpenSHMEM implementation takes advantage of partitioning,
which is essentially overlapping communication and computation. Although the
message size communication is relatively small (only a single int or long data
value), the ghost information itself can consist of thousands or even tens of
thousands of edges. Such a large message can be divided and sent between PEs
in chunks, each overlapped with the updating of the local PE data structure.
Rather than using a single get operation to send the entire message, a non-
blocking get operation of a smaller chunk size is executed. While the smaller
non-blocking RMA operation executes, the PE updates the local data structure
for the previous data chunk. In this way communication and computation are
overlapped by using a shmem quiet for synchronization.

The other prime target for OpenSHMEM optimization is the exchanging
of component data during the merging step. In the MPI implementation, sizes
of exchanged vertices and edges are communicated for each pair of processors.
These sizes are then used to exchange portions of several different data structures
between the pair of processors using a series of synchronous send-receive com-
munications. The OpenSHMEM implementation avoids the handshake overhead
entirely by using non-blocking communication calls as well as RMA, which allows
each PE to operate independently and retrieve the required information simul-
taneously. Partitioning is also used to overlap this communication with some
of the ending data structure updating and copying. Used together, these tech-
niques take advantage of the large amount of data that must be communicated
between PEs and overlaps it with data structure update overhead to maximize
uninterrupted computation. The original MPI algorithm uses blocking communi-
cation with no overlap, so both PEs must communicate all data before running
computation. The optimized OpenSHMEM implementation uses non-blocking
communication-computation overlap, with a pre-defined number of partitions.
The data to be communicated is divided into equal chunks and communicated
chunk-by-chunk asynchronously, with each communication overlapped with com-
putation and later confirmed by a synchronization call (shmem quiet). Although
MPI and OpenSHMEM both have the capability for non-blocking communica-
tion and computation overlap, the OpenSHMEM implementation benefits from
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RMA communication calls and fewer lines of code. Non-blocking two-sided MPI
also requires the use of additional MPI Request and MPI Status objects for syn-
chronization, which adds overhead.

These same techniques are applied to the post-processing step of the algo-
rithm. Data structures are gathered and combined in a similar manner to the
merge step, except that they are gathered into a smaller number of PEs for final
computation. For the baseline MPI implementation, all communications require
handshakes between a pair of processors. For the “single” mode PE 0 must ex-
ecute a series of send-receives with every other PE, resulting in a handshake
bottleneck. The RMA nature of the OpenSHMEM specification allows each PE
to simultaneously get data from PE 0 via a series of one-sided communication
operations. To support these communications, the OpenSHMEM implementa-
tion adds an additional all-reduce collective call to first calculate address offsets.
At the cost of an extra API call and an extra data structure, this technique
removes the handshake bottleneck with PE 0 and allows this entire series of
communications to execute asynchronously.

5 Results

All data collected are presented in this section, including microbenchmark per-
formance and an app-level comparison of OpenSHMEM and MPI. Additional
algorithm tuning data and productivity comparisons are also examined.

5.1 API Level

The results of the API-level OSU microbenchmarks executed on NERSC are
shown in Tables 2 and 3. To provide proper context for the distributed MST
algorithm, communication calls that are most often used in the algorithm are
presented in these tables, including get, put, all-reduce, and barrier-all opera-
tions. To compare one-sided and two-sided point-to-point operations, the MPI
benchmarks run 2 two-sided handshake communications and then divide the
round trip time by two. The barrier operation measures the latency for the
indicated number of processes to call barrier.

Table 2. MPI and OpenSHMEM microbenchmark data. Latencies in μs.

Point-to-point Microbenchmarks

Size MPI 2-sided SHMEM put SHMEM get

64 bytes 1.18 1.13 1.71
1 KB 1.46 1.28 2.09
32 KB 8.27 5.46 5.13
256 KB 31.47 30.73 28.24
2 MB 217.49 230.23 212.70
4 MB 430.84 461.23 424.56

Barrier Microbenchmark

N MPI 2-sided OpenSHMEM

2 1.24 1.48
4 5.16 2.15
8 7.12 2.62
16 12.72 6.41
32 13.10 4.62
64 14.48 6.64
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Table 3. MPI and OpenSHMEM all-reduce. Latencies in μs

OpenSHMEM

Size N=2 N=4 N=8 N=16 N=32 N=64

64 bytes 5.20 10.70 13.99 29.41 26.27 29.30
1 KB 6.11 13.62 21.67 28.92 32.22 37.79
32 KB 18.59 47.79 72.73 95.59 93.05 101.88
256 KB 127.90 214.39 270.90 358.52 274.18 288.69
2 MB 974.60 1167.45 1456.71 1547.68 1454.02 1488.44
4 MB 1966.46 2342.73 2712.33 2876.35 3127.96 3070.97

MPI

Size N=2 N=4 N=8 N=16 N=32 N=64

64 bytes 1.36 5.52 5.60 9.06 13.59 24.06
1 KB 1.98 13.02 10.16 18.11 23.27 19.12
32 KB 20.69 171.23 82.76 185.84 280.24 432.05
256 KB 89.35 410.93 403.74 888.88 1113.13 745.60
2 MB 618.35 2994.57 3344.70 3774.10 2609.00 3459.31
4 MB 1217.65 5026.94 4760.20 4891.37 5215.68 4848.71

For point-to-point calls, the OpenSHMEM put and get operations show com-
parable latencies at all sizes, with get operations slower at low message sizes and
faster at high message sizes. This crossover occurs around a message size of 4KB.
The MPI basic communication calls show execution latencies that are similarly
comparable to both put and get communication latencies. At smaller message
sizes (≤4KB), put latencies are lower by an average of 0.091μs, and get latencies
are higher by an average of 0.531μs. This latency gap widens at larger message
sizes to 3.56μs higher for put and 3.75μs lower for get per operation, but is still
a relatively insignificant difference for app execution time.

Collective operations shown in Tables 2 and 3 are scaled in message size
and number of processes. The OpenSHMEM barrier-all latencies increase at a
slower rate than the MPI counterparts, scaling by a factor of 4.47 from 2 to 64
nodes, while MPI scales by a factor of 11.66. The all-reduce latencies display
more variation. At lower message sizes (≤4KB) the OpenSHMEM latencies are
on average 74.18% slower than MPI, but at larger message sizes are 28.7% faster
on average than MPI. As the number of processes increases, the difference in
latency between the MPI and OpenSHMEM calls decreases. There is an aver-
age of 111.8% absolute difference in latency from MPI to OpenSHMEM for 2
processes, but only 63.9%, 75.8%, and 71.5% average absolute difference for 4,
8, and 16 processes, respectively. In addition, OpenSHMEM latencies are higher
than MPI counterparts for large message sizes (≥8KB) with 2 processes, but
are on average lower when running with more processes. There is also a range of
message sizes (32 bytes to ∼2KB) where OpenSHMEM latencies are significantly
larger than MPI, with an average percent increase of 118.3%.

5.2 MST Algorithm

The scaled execution time data for both implementations of the MND-MST
algorithm are presented with raw execution times in Figs. 1, 2, 3, 4, 5, and
6. Data for these experiments was collected for all 6 webgraphs using NERSC
Haswell nodes on the Cori partition, and was scaled up to 16 nodes and up to 64
PEs. MPI results are denoted by the blue bars, and SHMEM results are denoted
by the orange bars. The yellow bar displays the best overall MPI performance,
and the green bar displays the best overall SHMEM performance. As mentioned
previously, not all node-PE configurations were executable on NERSC due to
memory limitations. These are represented by blank bars.
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Fig. 1. MPI vs. OpenSHMEM performance for the uk-2014 webgraph. Bar labels de-
note PEs. Blue=MPI, Yellow=Best MPI, Orange=SHMEM, Green=Best SHMEM.

Fig. 2. MPI vs. OpenSHMEM performance for the gsh-2015 webgraph. Bar labels
denote PEs. Blue=MPI, Yellow=Best MPI, Orange=SHMEM, Green=Best SHMEM.
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Fig. 3. MPI vs. OpenSHMEM performance for the ara-2005 webgraph. Bar labels
denote PEs. Blue=MPI, Yellow=Best MPI, Orange=SHMEM, Green=Best SHMEM.

Fig. 4. MPI vs. OpenSHMEM performance for the uk-2005 webgraph. Bar labels de-
note PEs. Blue=MPI, Yellow=Best MPI, Orange=SHMEM, Green=Best SHMEM.
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Fig. 5. MPI vs. OpenSHMEM performance for the it-2004 webgraph. Bar labels denote
PEs. Blue=MPI, Yellow=Best MPI, Orange=SHMEM, Green=Best SHMEM.

Fig. 6. MPI vs. OpenSHMEM performance for the sk-2005 webgraph. Bar labels denote
PEs. Blue=MPI, Yellow=Best MPI, Orange=SHMEM, Green=Best SHMEM.
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5.3 Productivity Studies

Table 4. Implementation productivity, measured in LOC and API-calls.

Function API Calls Lines of Code

MPI SHMEM MPI SHMEM

Graph Part 3 6 247 273
Ghost Info 7 12 54 91

Merge 14 25 117 185
Post Proc 24 29 128 160

Total 82 110 1188 1402

In addition to demonstrating scaling and performance results for the MPI and
OpenSHMEM-based apps, the development productivity of each implementation
of the algorithm is measured and compared. When measuring API calls, Open-
SHMEM and MPI share a common setup structure each with corresponding init
and finalize calls. For the sake of simplicity, these along with shmem malloc and
shmem free calls are ignored in API counts to avoid dilution. The OpenSHMEM-
based app shows an increase in LOC by 18.01%, and an increase in API calls by
34.15% as shown in Table 4.

6 Discussion

This section evaluates differences in performance at the API and app levels, in
the context of message size and webgraph composition. It also examines the
change in productivity with respect to overall performance.

6.1 API Level

When compared directly on the API-level, the point-to-point OpenSHMEM op-
erations are on-par with their MPI counterparts, with some variation depending
on message size and number of processes. The put and get SHMEM calls have
similar latencies to the MPI Send-Recv pair. On the collective side, the OpenSH-
MEM barrier-all operation outperforms that of MPI for all process counts. The
all-reduce operation is more nuanced. The OpenSHMEM implementation out-
performs MPI allreduce for message sizes larger than 4KB and processor counts
greater than 2. While the discrepancies for collective operations are more sig-
nificant (an average of 45.1% decrease in latency for barrier-all and all-reduce
compared to only ∼2.5% decrease for put and get), these decreases are still rela-
tively minor in the scope of the entire app runtime. With a difference of at most
a few milliseconds per call at the largest message sizes and a few hundred API
calls in the entire app at runtime, the performance improvement from SHMEM
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API calls is on average less than 2% of the total execution time. This minor im-
provement alone isn’t enough to justify an increase in programming complexity
that comes with the OpenSHMEM specification. Instead, it is the combination of
one-sided and non-blocking communication patterns with strategic programming
techniques that lead to concrete, noticeable speedup over MPI.

6.2 Productivity Studies

The use of communication-computation overlapping techniques and flexible one-
sided communication patterns comes with additional program complexity, demon-
strated by the ∼34% increase in API-calls and ∼18% increase in LOC for the
OpenSHMEM implementation. To combine these metrics into a single result, we
averaged both increases to find a combined increased complexity of ∼25%. To
produce significant performance improvement and justify this increase in com-
plexity, these programming paradigms must also be thoroughly understood and
implemented by the programmer, with the added risk of manual synchronization.

It is important to note that a portion of this increase can be attributed to the
use of custom MPI types which are currently not supported by OpenSHMEM.
Due to the “shmem TYPE OP()” format of SHMEM calls, certain lines were
doubled to ensure that the right datatype was being used. Another portion of
the increased overhead is caused by the use of “pWrk” and “pSync”, two array
data structures used to perform certain OpenSHMEM communications including
many collective operations [3].

The majority of the differences in productivity can be attributed to the merge
and post-processing portions of the algorithm, due to the high number of commu-
nication operations present. In addition, the optimized OpenSHMEM-based app
uses partitioning and non-blocking communication, which adds additional com-
plexity in the form of synchronization calls (shmem barrier and shmem quiet).

Finally, certain symmetric variables and data structures had to be introduced
to keep symmetric memory locations consistent between processors. With MPI,
variables of the same name are stored in separate locations across processors
and can thus be of different sizes. However, any pointer or variable declared in
the symmetric memory must be the same size across every PE to avoid invalid
accesses. For this reason, new “maximum value” variables were introduced to
ensure symmetric variables had consistent sizes across PEs, which had to be
calculated via collective communication. This addition introduced more overhead
in the form of additional API calls as well as lines of code.

One drawback of using OpenSHMEM is that the OpenSHMEM specification
version 1.4 only supports “to-all” communication for many collective API-calls,
meaning all processes receive data from every communication [9]. This fact is
due to the use of the symmetric heap present across all PEs, and leads to more
overhead for corresponding OpenSHMEM calls. In addition, performing any “to-
one” collective operation equivalent to an MPI Reduce or MPI Gather must be
programmed manually, using sequential point-to-point operations. As a result,
all “to-one” communications in the algorithm were replaced with “to-all” com-
munications, unless noted otherwise.
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6.3 MST Algorithm

The changes in API calls alone do not provide a significant amount of perfor-
mance improvement, and increase the programming complexity of the app. To
fully exploit the benefits of the OpenSHMEM specification, the programmer
must utilize strategic programming techniques, non-blocking communication,
and RMA to maximize uninterrupted computation time.

The result of the added overhead and nuanced programming strategies is
promising, with performance improvements from MPI to OpenSHMEM averag-
ing over 30% for all node-PE configurations. Some graphs seemed to perform
better with OpenSHMEM; the it-2004 and sk-2005 webgraphs averaged nearly
40% improvement in execution while gsh-2015 and uk-2014 showed an average
improvement of 20%. This variation in performance correlates roughly with file
size and number of edges, with the largest two webgraphs (sk-2005 and it-2004)
showing the best improvement and the smallest two webgraphs (gsh-2015 and
uk-2014) showing the least improvement. The correlation coefficient between av-
erage percent decrease in execution time and both file size and number of edges
is 0.71. Performance improvement is even better correlated with edge-to-vertex
ratio, with a correlation coefficient of 0.86. This improvement is likely due to the
larger number of edges per vertex to analyze, which results in a larger volume
of communication and more potential for performance gain from optimizations.

At all node counts, both MPI and OpenSHMEM implementations display
the best performance improvement at either 16 or 20 PEs with the exception
of the uk-2005 webgraph. When measuring percent decrease in execution time
compared to the 1 node, 4 PE configuration, both implementations show opti-
mum performance with a PE count of 16, with an average percent improvement
of 28.46% for MPI and 32.94% for OpenSHMEM. The worst performance for
both implementations is at 64 PEs, followed closely by 4 PEs. PE counts of 8 to
20 see more consistent performance improvement.

For node scaling, MPI shows optimum performance with 4 nodes at an av-
erage of 22.16% improvement, while OpenSHMEM peaks at 8 nodes, with an
average of 37.48% decrease compared to 1 node and 4 PEs. MPI displays worst
performance with 16 nodes, while OpenSHMEM displays worst performance
when using 1 node. With too few or too many nodes, graph data can either
be too distributed or not distributed enough, resulting in extra communication
overhead or inadequate parallelization. The variability of scaling results is due to
the partitioning of the graphs by the processes, and is highly dependent on the
format of the graph itself. While some graphs are amenable to more PEs and in-
creased vertex subdivision, other graphs might not be able to mask the increased
communication overhead with independent computation or data partitioning.

7 Conclusions

At the app level, PGAS communication models such as OpenSHMEM show
promising results in terms of consistent scaled performance improvement, in
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spite of limited latency difference between API calls. Through the utilization of
strategic programming techniques and flexible RMA communications, the Open-
SHMEM specification demonstrated significant improvement over MPI on a par-
allel graph app, with an equal or lower percent increase in programming com-
plexity based on LOC and number of API calls. The performance improvement
from MPI to OpenSHMEM also demonstrates positive correlation with increas-
ing webgraph size and edge-to-vertex ratio, indicating that OpenSHMEM has
promising scaling potential on HPC apps. As the specification continues to be
developed, more complex communication schemes will be supported, increasing
the range of apps and problems that can adopt this growing model.

This research provides a foundation for studying the OpenSHMEM specifi-
cation at a higher level. The baseline API-call comparison provides context for
evaluating the presented RMA programming optimizations, and the examination
of productivity quantifies the increased workload for prospective developers. As
apps and databases increase in scale, distributed-computing systems will become
even more prominent. In turn, the OpenSHMEM specification will continue to
grow in viability as a means for parallel performance improvement.

8 Future Work

The speedup displayed from using OpenSHMEM optimizations is promising,
and scales well. It has presently only been applied to the baseline version of the
algorithm which focuses on CPUs. Panja and Vadhiyar also describe a hybrid
version of the algorithm, leveraging GPUs to achieve higher levels of accelera-
tion, with the added cost of host-device communication overhead and complexity.
There is significant potential for further development on this implementation.
NVIDIA has recently released its own version of the OpenSHMEM library for
GPUs, called NVSHMEM, which uses GPUDirect RDMA (GDR). This technol-
ogy allows GPUs to directly communicate with one another, avoiding the CPU
communication bottleneck [7]. In addition to the acceleration displayed in this
work with non-blocking RMA communication, the application of the NVSHMEM
library to the MST algorithm could lead to further latency reduction.

While NVSHMEM has not yet been applied to larger apps, it is our hope to
continue to expand this work to the hybrid GPU algorithm, potentially combin-
ing OpenSHMEM and NVSHMEM libraries. This extension would more robustly
explore the performance improvement potential of the MND-MST algorithm,
and would combine two SHMEM libraries at a larger scale.
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