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Abstract—As space-based sensors for Earth observation con-
tinue to increase in resolution, extreme computational capability
is required to process, compress, and interpret the exorbitant
volumes of data collected. Historically, computation has been
performed on ground systems. However, this research proposes
and benchmarks a flexible onboard tile-classification system for
high-resolution Earth observation on satellites and spacecraft.
Modern computer-vision techniques for classification and seg-
mentation have progressed to orbital platforms. However, for
many applications, the granularity of data analysis has tradeoffs:
classification of the entire image is too coarse to yield useful
scientific products, and segmentation at the pixel-level is too
computationally expensive. Tile classification serves as a middle
ground between these two paradigms that can be applied to
high-resolution imagery. Transfer learning is conducted on large
and small variants of MobileNetV2 deep-learning models using
Earth-observation imagery at different ground-resolved distances
(GRDs). A case study then compares the inference accuracy
for fine-tuned models tested on different GRDs. This process
demonstrates the effectiveness of applying one model to a variety
of image scales. The inference performance for these models
is evaluated in terms of execution time, parallel performance,
memory use, and energy consumption. This research showcases
increased capacity for onboard remote sensing with tile classifi-
cation that can foster more versatile space situational awareness.

Index Terms—Space Computing, Onboard Processing, Image
Tile Classification, Remote Sensing, Autonomy, Deep Learning,
Image Processing, Computer Vision

I. INTRODUCTION

Navigation, communication, science, and surveillance have
all been facilitated from low-Earth orbit for decades. More
recently, vast increases in compute capability have made
space a new proving ground for intelligence, awareness, and
autonomy. Constellations of distributed small satellites (Small-
Sats) image the Earth’s entire surface each day, thus there is
tremendous overhead in generating actionable data. Advances
in optics, sensors, and processors now enable ground-resolved
distances (GRDs), physical distances between digital pixels
in an image, at the decimeter scale. Single images captured
by satellites can contain thousands of individual people, ve-
hicles, buildings, and other features of interest. Additionally,
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separate sections of an image may need to be processed in
different ways to extract relevant data. Modern computer-
vision techniques can perform classification, object detection,
segmentation, and other tasks to facilitate this need. This
research seeks to perform processing onboard, which can allow
for decentralized, intelligent aggregation of data and enable
satellites and spacecraft to actively formulate decisions and
prioritize actions.

With sensor resolution increasing, optical and algorithmic
advances reducing GRD, demand for data expanding, and
the number of Earth-observation satellites continuing to grow,
manual human-in-the-loop operation is becoming impracti-
cal. Considering the rapidly changing conditions captured
by space-based remote sensing, any delay in translating raw
information to actionable data may thwart an effective re-
sponse. The transition from expensive, monolithic satellites
to agile constellations of SmallSats also includes challenges
and tradeoffs. While capacity for imaging grows and satellites
of a constellation may observe many locations simultane-
ously, the overhead required to manage and maintain the
constellation and the data it outputs can be daunting. There
is opportunity, though, in the independent function of dozens
of Earth-observation systems. Each satellite could possess
sufficient processing capability to evaluate the data it ingests
onboard, analyze and interpret actionable information, and au-
tonomously formulate a mission operation in response. How-
ever, common Earth-observation satellites may vary widely in
GRD, from 0.3 m for WorldView, to 3.0 m for Planet’s Dove,
to 30 m for Landsat 8 and 9. Many datasets provide ample
training material for low-GRD land-cover classification but are
not as useful at higher GRDs for which smaller features are
not visible. This study arrives at a selection of classes with
features that scale effectively to multiple GRDs.

The research proposes an onboard, high-resolution tile-
classification system for Earth observation that is benchmarked
for runtime, parallel performance, memory use, and energy
consumption. The accuracy of training and applying models at
different GRDs is explored. The effect of transfer learning on
small datasets, especially considering simple means of manual
augmentation for rotationally invariant satellite imagery, is
considered. This tile-classification system is intended to serve
as a demonstration of advanced space-based capabilities in
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computer vision for onboard sensor-data processing.
This paper is structured as follows. Section II details im-

portant background on space computing, remote sensing, the
models employed, and the imaging and computing platforms
considered. Section III discusses the methods employed in this
research, including dataset creation, model transfer learning,
inter-GRD comparison of models, and the benchmarking pro-
cess. Section IV presents results from each section of the study.
Section V offers discussion and analysis of trends. Section VI
defines future directions for this research. Section VII closes
with a summary and key highlights.

II. BACKGROUND AND RELATED RESEARCH

This section provides background information on relevant
concepts and covers numerous related studies. An overview
of recent efforts in space computing, especially deep learning
in space, is provided. The models and platforms employed in
this study are also discussed.

A. Space Computing and Autonomy

Space-computing capabilities vary based on the platform
employed. Radiation-hardened (rad-hard) space processors
are virtually immune to many hazards of space radiation
with minimal risk of damage or data corruption [1]–[3].
Radiation-tolerant (rad-tol) space processors typically combine
commercial-off-the-shelf (COTS) and rad-hard components to
enable high-performance, energy-efficient processing capabil-
ity with dependable monitoring and management subsystems
to ensure reliable operation [4], [5]. COTS processors offer
substantially greater performance compared to rad-hard alter-
natives but are susceptible to radiation effects that can impact
system reliability. As compute capability has increased, on-
board machine-learning and artificial-intelligence algorithms
have become amenable to both COTS and next-generation
rad-hard platforms alike. [6] features an NVIDIA Jetson TX1
performing space image-processing and computer-vision tasks
and describes a process for model training and deployment.
A simpler approach with a more specific goal, [7] uses a
multi-layer perceptron for wildfire detection and attains 99%
accuracy. Deep-learning models are demonstrated at up to
11 frames-per-second (FPS) on a rad-tol ARM Cortex-A9
CPU platform in [8]. [9] details an approach for onboard
ship detection in low-GRD imagery using the NVIDIA Jetson
TX2. Many of these studies include benchmarks demonstrating
onboard processing viability.

Rovers, with numerous science objectives and delayed com-
munication due to distance from Earth, are a prime target
for onboard autonomy and deep learning. The Mars Explo-
ration Rovers used the Autonomous Exploration for Gathering
Increased Science (AEGIS) system for imaging key targets
based on provided science objectives. Despite its effectiveness,
it was a more classical computer-vision pipeline consisting
of several common algorithms [10]. [11] demonstrates an
intelligent, ground-based system to identify terrain hazards
and recommend safe navigation paths. Success with self-
supervised learning on rovers is demonstrated in [12], which

focused on terrain-type classification. Additional novelty is
found in its co-training of two classifiers on each other’s
output. This research attained 82% accuracy with only three
labelled images on a test rover in a Mars-like environment.
[13] identifies this project as the Soil Property and Object
Classification (SPOC) system, a deep convolutional neural
network (DCNN) capable of classifying 17 different terrain
types. [14] proposes the automated Science Captioning of
Terrain Images (SCOTI) system to address rover bandwidth
limitations and intelligent image prioritization. Intelligent pro-
cessing systems for rovers and probes are typically based on
rad-hard processors, limiting their computational capability.
The classification system devised in this research is designed
to address remote-sensing and spacecraft-autonomy needs for
both satellite and rover applications.

B. Remote Sensing

Deep-learning-based computer-vision paradigms have been
extensively applied to remote-sensing applications for Earth-
observation imagery from satellites. [15] details a parallel-
branched DCNN for vehicle identification from orbit. [16]
shows that DCNNs trained on general image datasets transfer
well to aerial photography but, at the time of the study, may
be outperformed by color descriptors for space-based remote-
sensing tasks. However, it is important to note that low-GRD
Earth-observation imagery may be more similar in scale and
content to the aerial photography used in that research. [17]
presents a land-use classification system employing CaffeNet
and GoogLeNet to attain 91.8% accuracy, though the system is
deployed on a mobile GPU, which may see lower reliability in
a space environment. A tile-based approach focusing on seg-
mentation is shown in [18], and it provides much insight into
the complex problem of classifying artifacts on tile edges. [19]
demonstrates a variation on a common visual bag-of-words
approach by handling local and global features differently. For
high-resolution, low-GRD images, [20] provides a thorough
survey of semi-supervised classification accuracy on a variety
of deep-learning models. Similarly, [21] provides a survey of
remote-sensing datasets and classification methods. This study
also proposes its own large and effective NWPU-RESISC45
dataset, which attains up to 90.36% on a fine-tuned VGG-
16 DCNN. [22] develops and demonstrates BiMobileNet,
incorporating architectural changes for improved classification
accuracy on remote-sensing imagery. Onboard deployment
or performance is not often a focus of these studies, and
inference is typically conducted on ground systems using
downlinked data. The research described herein aims to make
such efforts amenable to onboard processing and provide a
path to actionable data and autonomy.

C. Earth-Observation Platforms

Numerous high-resolution, space-based Earth-observation
platforms have been providing imagery for decades. Landsat
8, launched in 2013, provides GRDs of 30 meters per pixel for
visible spectra, 15 meters per pixel for panchromatic, and 100
meters per pixel for thermal. This satellite alone contributes
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Fig. 1. Earth Observation Satellites [23]

over 500 scenes per day to the United States Geological
Survey archives [24]. Landsat 9 will feature the same GRDs
for compatibility with the existing dataset and is targeting a
2021 launch [25]. The QuickBird-2 satellite, launched in 2001,
provided 2.4-meter multispectral and 0.6-meter panchromatic
imagery [26]. WorldView-1, launched in 2007, demonstrated
a 0.5-meter panchromatic GRD with a 1.7-day revisit time
[27]. WorldView-2 added 1.8-meter multispectral imaging.
WorldView-3 expanded infrared capability and further reduced
panchromatic GRD to 0.31 meter [28]. WorldView-4, also
known as GeoEye-2, provides a similar 0.31-meter panchro-
matic GRD as well as 1.24-meter red-green-blue (RGB) and
near-infrared (NIR) imaging with revisit times as low as five
hours. Featuring star trackers, a global positioning system,
control moment gyroscopes, and 3.2 Tb of solid-state storage,
it is capable of imaging without directives from the ground
to within four-meter geolocation accuracy [29]. A collective
depiction of many of these platforms is shown in Fig. 1. It is
relevant to note that many of these systems do not possess the
same standards of accuracy and reliability as Landsat. There
are often tradeoffs to such low GRDs, but this is representative
of the shifting paradigms of Earth-observation satellites and
techniques. A simplified visualization depicting pixel sizes at
different GRDs is included in Fig. 2. Houses and vehicles are
included to demonstrate detail loss at higher GRDs.

The University of Pittsburgh NSF Center for Space, High-
performance, and Resilient Computing (SHREC) operates sev-

Fig. 2. Visualization of Pixel Sizes at Different GRDs

eral ISS-based Earth-observation and space-computing plat-
forms. One of these platforms, the Space Test Program -
Houston 6 - Space Supercomputing for Image and Video Pro-
cessing (STP-H6-SSIVP) experiment, has captured a dataset
of several thousand five-megapixel Earth-observation images
[30]. SSIVP’s GRD is limited to approximately 60 meters
per pixel, an even higher GRD than Landsat imagery used
in this study and suitable to fewer applications. The STP-
H7-CASPR (Configurable and Autonomous Sensor Processing
Research) experiment will provide imagery at a roughly 2.0-
meter GRD with novel super-resolution algorithms [31]. This
platform serves as a target for deployment of this research.
These platforms are intended to demonstrate compute capa-
bility within SmallSat constraints, but many of the techniques
applied can be transferred to larger systems.

Planet, a commercial entity specializing in frequent-revisit
satellite imagery and data analytics, offers unique capabilities
through their constellations [32]. Over 130 Dove SmallSats
produce 200 million square kilometers per day of four-band,
RGB and NIR, imagery at 3.7 meters per pixel ground sample
distance (GSD). The images are orthorectified to correct
for distortions from terrain [33]. 21 SkySat satellites image
400,000 square kilometers per day and produce five-band
RGB/NIR and panchromatic imagery. These platforms can
attain 0.5-meter GSD and offer sub-daily off-nadir and sub-
weekly nadir revisit times [34]. Planet maintains a ”living
database” of its imagery for data analytics, such as the deep-
learning model training conducted in this study. Extensive
research has been conducted based on this imagery. [35]
uses a hybrid CNN and random forest approach for determi-
nation of airborne particulate concentration using low-GRD
satellite imagery alone. [36] uses Planet imagery for detec-
tion and enforcement of illegal fishing. Planet has partnered
with SpaceNet for the SpaceNet 7 Multi-Temporal Urban
Development Challenge [37] to track changes over time for
urban and infrastructure development as well as aid in disaster
response [38]. Planet is one example of a modern disruptor
in the Earth-observation and remote-sensing paradigms. Com-
mercial, distributed platforms now offer high-resolution and
low-GRD imaging along with the underlying infrastructure to
make effective use of actionable data. Ultimately, this research
is designed to be versatile and applicable to a variety of
observation platforms with varying GRDs.

D. Deep-Learning Models

Since the emergence of DCNNs as a solution to image-
classification problems with AlexNet in 2012 [39], numerous
networks and techniques have claimed state-of-the-art status.
This section will consider just a few, mainly those small
enough to deploy at reasonable inference speeds on space
systems. ResNet increased network depth to improve accu-
racy, but maintains several smaller network variants, such
as ResNet-50 and ResNet-18, which would be amenable to
space [40]. The SqueezeNet model demonstrates comparable
accuracies to AlexNet with 50 times fewer parameters and
can be compressed to less than a megabyte in size [41].

112

Authorized licensed use limited to: University of Pittsburgh. Downloaded on April 07,2022 at 20:44:11 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I
PLATFORM SPECIFICATIONS

Platform System-on-Chip Architecture Tested Execution Peak Memory Memory Memory
Frequency (MHz) Units Power (W) (GB) Type Frequency (MHz)

PYNQ-Z2 (SSP) Zynq 7020 ARM Cortex-A9 650 2 5 0.5 DDR3 525
HiKey LeMaker (HPSC Full) Kirin 620 ARM Cortex-A53 729 8 15 2.0 LPDDR3 800
ODROID-C2 (HPSC Half) AmLogic S905 ARM Cortex-A53 1000 4 7 2.0 DDR3 912
Raspberry Pi 4 (8QuadMax) Broadcom BCM2711 ARM Cortex-A72 1500 4 5 4.0 LPDDR4 1600

DenseNet employs interconnection between layers, reducing
the effect of the vanishing gradient problem and achieving high
accuracy with efficient computation and memory use [42].
MobileNetV2, aptly named, is optimized for mobile devices
using advanced architectural techniques, inverted residuals and
linear bottlenecks, to reduce latency and parameter count
[43]. MobileNetV3 improves efficiency with adjustment of
underlying operations and further optimizes the model for
hardware accelerators, such as Google’s Edge TPU [44].
GhostNet further improves on MobileNetV3 performance and
accuracy by extracting additional features using computation-
ally inexpensive operations [45]. [46] adjusts the GhostNet
architecture to reduce overhead but maintains high accuracy in
tests with remote-sensing data. While the model employed is a
key determinant of performance, this research can be extended
to a variety of novel deep-learning classification architectures.

E. Datasets

Several key datasets have been adopted as standard for
use with remote-sensing applications and Earth-observation
imagery. The Brazilian coffee dataset, presented in [16], is a
simple binary classification dataset to determine the presence
or absence of a coffee crop in remote-sensing imagery. The UC
Merced dataset, presented in [47], provides 2100 images from
the United States Geological Survey National Map sorted into
21 classes. Some UC Merced classes, such as airplanes, sports
fields, marinas, and overpasses, may represent features that are
too small to be relevant at the high GRDs that are considered
in this study. Other classes, like agriculture, forest, residential
and commercial areas, rivers, and coastlines, should still be
amenable to a variety of GRDs though scaled to differing
sizes. The NWPU-RESISC45 dataset presented in [21] offers
many more images and classes, 31,500 photos sorted into
45 categories. While the NWPU-RESISC45 images range in
GRD from 0.2 meters to 30 meters, the vast majority of the
images represent single-digit GRDs. Many of the new classes
represent a familiar dilemma: they are features too small or
infrequent to be transferable to a variety of GRDs. This study
will seek to construct a set of relevant classes that can be more
effective at all GRDs. However, it will also focus on datasets
optimized to a single GRD, keeping classes and feature sizes
fixed as well as reducing confusion induced by scale variance.

F. Computing Platforms

This study focuses on four specific space-computing plat-
forms based on ARM Cortex-A architectures. The CHREC
Space Processor (CSP) [4], [5] and SHREC Space Processor

(SSP) are both rad-tol platforms that employ a hybrid com-
bination of COTS components for performance and energy-
efficiency as well as rad-hard components for reliability. Both
CSP and SSP are based on the dual-core ARM Cortex-A9
architecture in the form of Xilinx Zynq-7000 system-on-chips
(SoCs). This architecture will be represented as a TUL PYNQ-
Z2 development board with the processing system clocked
to 650 MHz [48]. Numerous missions have demonstrated the
flightworthiness of the Zynq platform [5], [30], [49], [50]. The
High-Performance Spaceflight Computing (HPSC) processor
is the culmination of effort by NASA and the United States Air
Force Research Lab (AFRL) to meet the increasing need for
space-based computation. While currently still in development,
the current design of the HPSC will feature a rad-hard high-
performance cluster with dual interconnected quad-core ARM
Cortex-A53 processors at 800 MHz [51]. The HiKey LeMaker
development board employs a similar SoC architecture with
two interconnected quad-core ARM Cortex-A53 processors
and is thus featured as an emulation platform for the HPSC
[52]. The HiKey development board will be clocked to 729
MHz in this research, the nearest supported frequency to
the HPSC’s projected maximum. The Hardkernel ODROID-
C2 development board also employs an ARM Cortex-A53
architecture processor, but consists of only four cores, half
that of a full HPSC chiplet [53]. Despite this, it will be used
to support additional data collection for comparison and will
be clocked to 1000 MHz, its nearest supported frequency to
the HPSC’s 800 MHz. The ARM Cortex-A72 architecture
is being considered in recent mission developments, with
the NXP i.MX 8QuadMax silicon-on-insulator rad-tol variant
bringing enhanced reliability at speeds up to 1.6 GHz [54].
This platform is represented by the Raspberry Pi 4 clocked at
the default 1.5 GHz, the nearest supported frequency to the
8QuadMax platform [55]. A table of platform specifications
is visible in Table I.

III. APPROACH

This section details the methods used in conducting this
research. The procedures for dataset assembly, model transfer
learning, and the inter-GRD comparison study are detailed.
Steps for model inference benchmarking on each platform are
noted.

A. Dataset Assembly

The UC Merced and NWPU-RESISC45 imagery datasets
were acquired from their respective sources [21], [47]. A
manual training and testing split was created for each of these
two datasets. 80% of the images were relegated to training and

113

Authorized licensed use limited to: University of Pittsburgh. Downloaded on April 07,2022 at 20:44:11 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II
CLASS REFINEMENT

NWPU-RESISC45 Feature Max Feature Pixel Width (px) for GRD Percent of Tile (%) Status
Class Target Size (m) 0.3 m 3.0 m 30.0 m 0.3 m 3.0 m 30.0 m

Airplane Widest Point 71.74 239.13 23.91 2.39 106.76% 10.68% 1.07% Excluded
Airport Diagonal Length 5400.07 18000.23 1800.02 180.00 8035.82% 803.58% 80.36% Included

Baseball Diamond Diagonal Length 52.18 173.93 17.39 1.74 77.65% 7.76% 0.78% Excluded
Basketball Court Diagonal Length 50.66 168.87 16.89 1.69 75.39% 7.54% 0.75% Excluded

Beach Widest Point 192.22 640.73 64.07 6.41 286.04% 28.60% 2.86% Included*
Bridge Widest Point 157.71 525.70 52.57 5.26 234.69% 23.47% 2.35% Excluded

Chaparral No Dataset Presence - - - - - - - Excluded
Church Diagonal Length 202.63 675.43 67.54 6.75 301.53% 30.15% 3.02% Excluded

Circular Farmland Diameter 1034.82 3449.40 344.94 34.49 1539.91% 153.99% 15.40% Merged
Cloud Diagonal Length (Scale) - - - - - - - Included

Commercial Area Diagonal Length 3119.91 10399.70 1039.97 104.00 4642.72% 464.27% 46.43% Included
Dense Residential Diagonal Length 4966.48 16554.93 1655.49 165.55 7390.60% 739.06% 73.91% Included

Desert Diagonal Length (Scale) - - - - - - - Included
Forest Diagonal Length (Scale) - - - - - - - Included

Freeway Widest Point 87.91 293.03 29.30 2.93 130.82% 13.08% 1.31% Excluded
Golf Course Max Hole Length 496.67 1655.57 165.56 16.56 739.09% 73.91% 7.39% Excluded

Ground Track Field Diagonal Length 203.97 679.90 67.99 6.80 303.53% 30.35% 3.04% Excluded
Harbor Diagonal Length 738.34 2461.13 246.11 24.61 1098.72% 109.87% 10.99% Excluded

Industrial Area Diagonal Length 1016.00 3386.67 338.67 33.87 1511.90% 151.19% 15.12% Merged
Intersection Diagonal Length 56.07 186.90 18.69 1.87 83.44% 8.34% 0.83% Excluded

Island Diagonal Length (Scale) 4308.01 14360.03 1436.00 143.60 6410.73% 641.07% 64.11% Included
Lake Diagonal Length (Scale) 35291.02 117636.73 11763.67 1176.37 52516.40% 5251.64% 525.16% Included

Meadow Diagonal Length (Scale) - - - - - - - Included
Medium Residential Diagonal Length 2724.51 9081.70 908.17 90.82 4054.33% 405.43% 40.54% Included
Mobile Home Park Diagonal Length 710.98 2369.93 236.99 23.70 1058.01% 105.80% 10.58% Excluded

Mountain Diameter 4180.82 13936.07 1393.61 139.36 6221.46% 622.15% 62.21% Included
Overpass Widest Point 90.27 300.90 30.09 3.01 134.33% 13.43% 1.34% Excluded

Palace Diagonal Length 206.81 689.37 68.94 6.89 307.75% 30.78% 3.08% Excluded
Parking Lot Diagonal Length 980.06 3266.87 326.69 32.67 1458.42% 145.84% 14.58% Excluded

Railway Widest Point 112.18 373.93 37.39 3.74 166.93% 16.69% 1.67% Excluded
Railway Station Diagonal Length 146.00 486.67 48.67 4.87 217.26% 21.73% 2.17% Excluded

Rectangular Farmland Diagonal Length 9565.20 31884.00 3188.40 318.84 14233.93% 1423.39% 142.34% Included
River Widest Point 5799.98 19333.27 1933.33 193.33 8630.92% 863.09% 86.31% Included

Roundabout Diameter 107.19 357.30 35.73 3.57 159.51% 15.95% 1.60% Excluded
Runway Widest Point 80.01 266.70 26.67 2.67 119.06% 11.91% 1.19% Excluded
Sea Ice No Dataset Presence - - - - - - - Excluded

Ship Diagonal Length 338.85 1129.50 112.95 11.30 504.24% 50.42% 5.04% Excluded
Snowberg No Dataset Presence - - - - - - - Included

Sparse Residential Diagonal Length 2450.38 8167.93 816.79 81.68 3646.40% 364.64% 36.46% Merged
Stadium Diagonal Length 298.61 995.37 99.54 9.95 444.36% 44.44% 4.44% Excluded

Storage Tank Diagonal Length 89.88 299.60 29.96 3.00 133.75% 13.38% 1.34% Excluded
Tennis Court Diagonal Length 197.09 656.97 65.70 6.57 293.29% 29.33% 2.93% Excluded

Terrace Diagonal Length 4445.10 14817.00 1481.70 148.17 6614.73% 661.47% 66.15% Merged
Thermal/Power Station Diagonal Length 1050.45 3501.50 350.15 35.02 1563.17% 156.32% 15.63% Excluded

Wetland Diagonal Length 8667.55 28891.83 2889.18 288.92 12898.14% 1289.81% 128.98% Merged
*Included as transition between land and water despite beach not necessarily being visible.

20% to testing. The split was performed randomly to prevent
bias towards more representative class images. Ten RGB
Landsat images, all captured in the summer of 2020, were
acquired from the Planet Landsat image repository for dataset
construction. These images were selected to include relevant
land features, towns, and metropolitan areas. PlanetScope
imagery was extracted but not incorporated at this phase of
the study.

In order to determine which features should be included
in an effective inter-GRD dataset, the authors quantitatively
evaluated feature sizes visible from space at different GRDs.
In considering the above datasets, the authors concluded that
some smaller features, such as individual airplanes, sports
fields, and intersections, would make up a very small part
of a larger tile for even 3.0-meter GRDs, let alone 30.0-meter
GRDs. Features which made up less than 35% of a 224-pixel
square tile had their classes excluded from the inter-GRD
dataset. Features were measured using tools within Google
Earth Pro. At least three reasonably large examples of each

feature were considered. The maximum feature size observed
was used to promote fairness in inclusion. Measurements were
made with respect to the widest point, diagonal length, or
diameter depending upon the characteristics of the feature.

A depiction of the class-narrowing metrics can be referenced
in Table II. Most features of obvious small size, such as in-
dividual buildings, sports fields, intersections, and overpasses,
are excluded from the ideal inter-GRD dataset. While they
may be relevant at 0.3-meter GRDs, they are barely visible
at 3.0-meter GRDs, and not at all visible in 30.0-meter GRD
imagery. More general geographic features, such as deserts,
forests, islands, and lakes, are highly scalable between GRDs.
For example, while a small lake may be visible at a low GRD
and absent at a higher one, the class remains applicable at
both. A large lake at a low GRD may instead be broken into
tiles classified as coastline and sea, but all involved classes are
still present and visible. Classes were further narrowed with
the absence of sufficient representations for several classes in
the Landsat imagery used, including chaparral, sea ice, and
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Fig. 3. NWPU-RESISC15 [21] (Left) and SHREC2020-30M15C (Right) Sample Images

snowberg.
Based on the results of the class refinement, a new variant

of the NWPU-RESISC45 dataset was created to reduce the
number of classes, promoting increased accuracy and reduced
confusion. The urban class was handcrafted from urban images
in dense residential, commercial, and industrial classes. Half
of the commercial and industrial images were relegated to
a combined commercial and industrial class. Half of the
circular and rectangular farmland images were combined into
an agriculture class. Non-urban dense residential and medium
residential images were similarly merged with an even balance
of 350 images maintained for each. The terrace class, while
unmerged in the created NWPU-RESISC15 dataset permuta-
tion, was considered in the limited Landsat imagery in which
it was present as either agriculture or meadow. Similarly, the
wetland class was unmerged in the NWPU-RESISC15 dataset
permutation, but considered coast or, in some rare cases, island
in Landsat imagery occurrences. The sparse residential class
fit the scale requirements, but seemed to provoke confusion
with agricultural, forest, and other large geographic feature
areas at large scales, thus sparse residential images are left out
of the NWPU-RESISC15 dataset permutation. Several classes
were renamed: desert to arid and beach to coast. The sea class
was constructed from 700 256-pixel square sea tiles split from
acquired Landsat imagery. A 700-image-per-class balance was
maintained for this NWPU-RESISC15 dataset permutation.

Although the UC Merced and NWPU-RESISC45 datasets
provide an adequate representation of imagery at GRDs as
low as 0.3 meter per pixel, this study sought to construct
a 30.0-meter GRD dataset for training and comparison. In
pursuit of this goal, ten Landsat images were divided into
224-pixel square tiles meant to fit the input image size of
the largest MobileNetV2 model. Each 36-megapixel, roughly
6300 × 6500-pixel, Landsat image generated 812 224-pixel
square tiles. 3815 tiles across multiple images were sorted
to represent the 15 classes consistently visible at a 30.0-
meter GRD. This will be referred to as the SHREC2020-
30M15C dataset. A sample image from each dataset of the

15 classes they share is included in Fig. 3 for reference. One
may note an obvious difference of scales in some examples
but a general feature similarity between each pair, especially
for more natural geographic features.

B. Transfer Learning

Model transfer learning was performed using TensorFlow
2.0 on ImageNet-pretrained MobileNetV2 models by Google
AI. Google Colab was leveraged to create an accessible
and tunable system for training a variety of models with
different permutations. This system loaded the desired dataset
and MobileNetV2 model, retrained a new classification head
fit to the number of classes desired for 15 epochs, and
then fine-tuned the lower layers of the base model for 15
additional epochs to improve feature extraction for remote-
sensing imagery. Limited data augmentation was applied to the
UC Merced and NWPU-RESISC15/45 datasets as horizontal
and vertical flips in training. Further data augmentation was
performed on the smaller of Landsat images, applying manual
flips and 90-degree rotations similar to [22] to generate all
eight possible geometric permutations of each input image
in the training set. Trained models were tested on unseen
data split from the original dataset before importation. Test
data is never augmented or pulled from augmented training
data to ensure fairness. Models were exported as .pb saved
models and .tflite converted models. Within the scope of this
submission, the largest (224-pixel, 1.00 depth multiplier) and
smallest (96-pixel, 0.35 depth multiplier) MobileNetV2 model
variants were trained.

C. Inter-GRD Model Testing

To demonstrate the effectiveness of a model trained at a
higher GRD on imagery of lower GRD, and vice versa, a
form of cross-validation was conducted where each model
was used to perform inference with the test data of another
GRD examined. The results demonstrate the robustness of
each model to varying GRDs. This study was limited to models
focused on the same number and set of classes, so only the
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NWPU-RESISC15 and SHREC2020-30M15C datasets could
be tested at this time. The models were trained using the same
procedure described above, but test data was swapped between
them.

D. Inference Benchmarking

Inference benchmarks for the tile-classification models were
conducted on the platforms described in the background
section and noted in Table I. Each platform served as an
equivalent architecture to a targeted space computer system. A
custom TensorFlow Lite 2.4 inference application was cross-
compiled for the target CPU architectures. Inference perfor-
mance was averaged over 100 runs for each model variant
at each platform-supported thread count. Profiling mode was
enabled, and three warmup runs were conducted for each
inference set. The idle and inference power consumptions
were measured for each platform. In addition, dynamic energy
consumption per inference was calculated as the dynamic
power multiplied by the execution time. Memory use for
inference was determined for each platform by using the
“free -s 1 –kilo” UNIX command, recording the idle and
peak runtime memory use, and calculating the overall memory
consumption for the app. All platforms were benchmarked
starting from an idle state with only the app and any essential
monitoring processes running.

IV. RESULTS

This section presents the results of this study. Inter-class
confusion and fine-tuned model accuracy are evaluated. Per-
formance benchmarks, including execution time, speedup,
memory use, and dynamic energy consumption, are presented.

A. Fine-Tuned Model Accuracy

Top-one accuracy results for the models trained on the
UC Merced, NWPU-RESISC45, NWPU-RESISC15, and
SHREC2020-30M15C datasets are included in Table III. UC
Merced and NWPU-RESISC45 models are included as a base-
line. UC Merced attains 96.19% model accuracy for 224-pixel
tiles and 89.52% for 96-pixel tiles, likely due to clearer inter-
class definition and fewer classes to contribute to confusion.
NWPU-RESISC45 maintains 91.40% accuracy for 224-pixel
tiles and 81.47% accuracy for 96-pixel tiles as well as a stable
confusion matrix despite more than doubling the class count.
The results reached in this study with existing datasets are
competitive with the state of the art in [21] and [22].

The NWPU-RESISC15 permutation generated for this re-
search demonstrates a 93.00% accuracy at 224-pixel tiles

TABLE III
TOP-ONE MODEL ACCURACY

Model Variant Accuracy
Dataset Depth 1.00 Depth 0.35 Drop

Size 224 Size 96
UC Merced 96.19% 89.52% 6.67%
NWPU-RESISC45 91.40% 81.47% 9.93%
NWPU-RESISC15 93.00% 87.57% 5.43%
SHREC2020-30M15C 86.60% 82.65% 3.95%

Fig. 4. Confusion Matrix for NWPU-RESISC15 Dataset Permutation

Fig. 5. Confusion Matrix for SHREC2020-30M15C Dataset

and an 87.57% accuracy on 96-pixel tiles. Compared to
NWPU-RESISC45, this represents a 1.60% increase in overall
accuracy for 224-pixel tiles and a 6.10% increase for 96-pixel
tiles. The reduction of classes from 45 to 15 results in most
classes meeting or exceeding 89% precision. The exceptions
to this rule are the commercial/industrial and urban classes,
the distinction of which is made difficult by the combination
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TABLE IV
PRECISION, RECALL, F1 SCORE, AND SUPPORT

Dataset
Class NWPU-RESISC15 SHREC2020-30M15C

Precision Recall F1 Score Support Precision Recall F1 Score Support
Agriculture 0.99 0.96 0.97 140 0.84 0.94 0.89 34
Airport 0.93 0.99 0.96 140 0.50 0.22 0.31 9
Arid 0.92 0.99 0.95 140 0.95 0.96 0.95 54
Cloud 1.00 0.99 0.99 140 1.00 0.96 0.98 79
Coast 0.96 0.98 0.97 140 0.73 0.78 0.75 41
Commercial 0.77 0.84 0.80 140 0.69 0.60 0.64 40
Forest 0.96 0.96 0.96 140 0.86 0.91 0.89 81
Island 0.96 0.96 0.96 140 0.82 0.60 0.69 15
Lake 0.93 0.98 0.95 140 0.67 0.59 0.62 17
Meadow 0.95 0.96 0.96 140 0.62 0.62 0.62 13
Mountain 0.94 0.92 0.93 140 0.71 0.87 0.78 23
Residential 0.88 0.93 0.90 140 0.75 0.76 0.75 66
River 0.94 0.84 0.89 140 0.61 0.61 0.61 28
Sea 1.00 0.99 1.00 140 0.98 1.00 0.99 246
Urban 0.80 0.66 0.73 140 0.64 0.47 0.54 15
Accuracy 0.93 2100 0.87 761
Macro Average 0.93 0.93 0.93 2100 0.76 0.73 0.73 761
Weighted Average 0.93 0.93 0.93 2100 0.86 0.87 0.86 761

method described earlier. The confusion matrix for this model
is shown in Fig. 4 and discussed in Section V.

The SHREC2020-30M15C dataset attains a top-one accu-
racy of 86.60% for 224-pixel tiles and 82.65% for 96-pixel
tiles. These results are higher than expected for its only 3815-
image small-data approach and uneven dataset balance. The
confusion matrix is visible in Fig. 5 and discussed in Section
V. Table IV provides insight into the precision, recall, F1
score, and number of support samples in the evaluation of
the trained models. This especially helps to better illustrate
the class imbalance problems encountered in the SHREC2020-
30M15C dataset.

B. Inter-GRD Study

With a wide variety of Earth-observation platforms ca-
pable of a variety of different GRDs, this study sought
to investigate the amenability of models trained at larger
GRDs to smaller ones, and vice versa. In this case, the low-
GRD NWPU-RESISC15 dataset and high-GRD SHREC2020-
30M15C dataset are compared. A comparison grid of test
accuracy results is included in Table V.

Accuracies for the diagonals of each matrix are carried
directly from previously noted results. Training on NWPU-

TABLE V
INTER-GRD TRAINED MODEL ACCURACIES

Large Models - Depth 1.00 Size 224
Tested Model

Trained Model NWPU-RESISC15 SHREC2020-30M15C
NWPU-RESISC15 93.00% 57.95%
SHREC2020-30M15C 39.33% 86.60%

Small Models - Depth 0.35 Size 96
Tested Model

Trained Model NWPU-RESISC15 SHREC2020-30M15C
NWPU-RESISC15 87.57% 56.11%
SHREC2020-30M15C 34.43% 82.65%

RESISC15 is the most effective between GRDs, likely due
to its varied scales, attaining 57.95% and 56.11% accu-
racy on SHREC2020-30M15C for large and small model
variants, respectively. Even despite the much higher GRD
of SHREC2020-30M15C, testing of its model on NWPU-
RESISC15 still yields 39.33% and 34.43% accuracy for large
and small model variants, respectively. Most interestingly, F1
scores for more scale-invariant features remain high, as noted
in Section V. Inter-GRD accuracy is quite consistent between
large and small models, dropping by 4.90% for SHREC2020-
30M15C and only 1.84% for NWPU-RESISC15.

C. Inference Benchmarks

This section presents benchmarks of execution time,
speedup, memory use, and dynamic energy consumption.
Execution-time benchmarks are included in Fig. 6. The authors
note the log scale in the y-axis of the chart. These results
focus on the largest and smallest MobileNetV2 variants. The
best performing multithreaded runtimes for the largest model
variants on each platform are 1600.13 ms for the A9, 198.27
ms for the dual A53, 214.10 ms for the single A53, and 97.60

Fig. 6. MobileNetV2 Model Performance
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Fig. 7. MobileNetV2 Model Threading Speedup

ms for the A72 per inference, respectively. In comparison,
the smallest model variants yield ideal timings of 100.72 ms,
22.67 ms, 18.32 ms and 6.09 ms per inference, respectively.
This amounts to performance gains of 15.89×, 8.75×, 11.68×,
and 16.02×, respectively. Between architectures, there is an up
to 8.07× gain from A9 to A53, an up to 3.00× gain from A53
to A72, and an up to 16.54× gain from A9 to A72. The tiling
operation itself is considered negligible within the context of
this study. Regardless of platform and even for very high-
resolution images, the process of classifying the number of
tiles generated requires a significantly larger period of time.
Further, no preprocessing is required before inputting these
tiles into the classifier.

The speedup at different thread counts for each platform
is shown in Fig. 7. The large models see the only significant
results, with the small-model runtimes too short to overcome
thread-management overhead. The best-performing platform
was the dual A53, peaking at 2.22× speedup, though it
required seven threads to do so. The single A53 performed
second best with 1.60× speedup on four threads. The A72,
presumably due to architectural improvements, higher fre-
quency, and increased memory bandwidth, improves speed
enough that the large models have similar issues overcoming
threading overhead.

Memory-use benchmarks for each platform are included in
Fig. 8. For the CPUs tested, the peak memory use for the
large models is 29.93 MB for A9, 25.10 MB for A53, and

Fig. 8. MobileNetV2 Model Memory Use

Fig. 9. MobileNetV2 Model Dynamic Energy Consumption

20.94 MB for A72. The smaller models peak at 5.13 MB, 6.48
MB, and 5.78 MB, respectively. This represents a potential
memory savings of up to 5.84×, up to 3.87×, and up to 3.82×,
respectively. Memory use is not observed to correlate heavily
with architectural improvement.

Dynamic energy consumption results for the platforms
tested are included as Fig. 9. The authors note the log
scale in the y-axis of the chart. The lowest dynamic energy
consumptions for large model inference are 542.4 J for the A9,
202.8 J for the A53, and 155.2 J for the A72. Smaller model
sizes yield considerably lower minima of 22.2 J, 9.6 J, and 6.7
J, respectively. The transition from largest to smallest model
variant thus represents energy savings of 95.91%, 95.25%, and
95.68%, respectively, averaging 94.07% reduction in dynamic
energy consumption across all platforms and thread counts
tested. Architectural improvements provide a drastic reduction
in dynamic energy consumption, yielding improvements of up
to 1.44× from A53 to A72, up to 2.67× from A9 to A53, and
up to 3.49× from A9 to A72.

V. DISCUSSION

This section expands the discussion of trends from the re-
sults. More detailed inter-class accuracy insights are provided,
especially for inter-GRD models. Implications of improved
performance and dynamic energy consumption are explored.

A. Model Accuracy

Closer inspection of inter-class accuracy from the NWPU-
RESISC45 trained model confirms the authors’ intuitions
that classes based on smaller features are more difficult to
accurately classify. The single-building church class attains
only 80% accuracy. The unique palace class attains only
68% accuracy. There is also a high degree of confusion
between the different densities of residential areas, with sparse,
medium, and dense reaching 81%, 82%, and 85% accuracies,
respectively. As discussed previously, many of the classes of
the NWPU-RESISC45 dataset would not be visible at higher
GRDs. The exclusion of smaller and easily confused classes in
the NWPU-RESISC15 dataset shows improvement in accuracy
as well as a refined list of classes that can be applied to
a variety of GRDs. The confusion matrix of the NWPU-
RESISC15 model represents a near-solid diagonal. The only
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notable departure is some confusion between commercial and
urban imagery, understandable given their similarity.

While the SHREC2020-30M15C dataset is unbalanced, the
relative distribution of classes is consistent with a typical
real-world distribution. Classes with reduced representation do
demonstrate significantly lower F1 scores, as low as 0.31 for
the airport class and 0.61 for the river class. The confusion
matrix shows notable inter-class confusion for this model
between the commercial, residential, and urban classes, similar
to NWPU-RESISC15. This lower accuracy is understandable
given the parallel occurrence of commercial and residential,
commercial and urban, residential and urban, or all three class
features in a single tile. This classification problem transitions
from simply distinguishing the presence of a class to selecting
the best class representation given the amount and relationship
of features present in the image tile. Many of the issues with
this dataset are associated with the richness of features of
different classes in the same tile. Many airports, for example,
are located in densely commercial areas or near coastlines,
two often mispredicted results for the airport class.

For all models observed, reducing the feature depth to 0.35
and the image size to 96 pixels impacts accuracy between 4-
10%. This accuracy drop is considered acceptable given the
goals of this study. The transition to smaller model variants
is exceptionally beneficial when the performance and energy
benchmarks are considered.

The inter-GRD study revealed that features that are more
scale-invariant transfer best between models and achieve
greater F1 scores. For large-model training on NWPU-
RESISC15 and testing on SHREC2020-30M15C, more geo-
graphic land-cover features see improved F1 scores, includ-
ing 0.75 for the arid class, 0.68 for the mountain class,
and 0.37 for the agriculture class. For large-model training
on SHREC2020-30M15C and testing on NWPU-RESISC15,
while accuracy is considerably worse, similar positive trends
in per-class accuracy exist, such as 0.55 for the river class,
0.44 for the lake class, and 0.33 for the island and mountain
classes. The worst translating class for both combinations is
urban at 0.00 and 0.06, respectively. The urban class’s poor
performance is attributed to discrepancies in scale between the
two datasets, with even individual buildings present in the low-
GRD NWPU-RESISC15 imagery, illustrated in Fig. 3. As the
visible patterns for residential areas are more similar between
the NWPU-RESISC15 and SHREC2020-30M15C datasets, it
was hoped that some of the features for residential areas at dif-
ferent scales would transfer well. Unfortunately, the residential
class performed poorly on both combinations, with 0.21 and
0.07 F1 scores, respectively. It seems that the up to two order-
of-magnitude transition from 0.3-meter NWPU-RESISC15 to
30-meter SHREC2020-30M15C imagery is too significant of
a scale transition for these features to be transferable.

B. Inference Benchmarks

It is important to recognize that many of the performance
gains realized between platforms come from large differences
in clock frequency. For example, compare the 650 MHz ARM

Cortex-A9 and 1.5 GHz ARM Cortex-A72 platforms. The 32-
bit A9 is another factor in reduced performance compared to
the 64-bit A53 and A72. At the same time, each of these
platforms aims to represent the architecture and frequency of
a viable space computing system, justifying their selection.
Tile classification provides opportunity for tuning tradeoffs in
performance and situational awareness. For example, a high-
resolution image may be tiled into 224-pixel square tiles.
These tiles can then be input to the large model variants
for maximum accuracy. Alternatively, the large tiles can be
downsampled to as small as 96-pixel square tiles to increase
throughput if faster decision-making is required with the
tradeoff of reduced accuracy. As another option, the high-
resolution image may be tiled to 96-pixel square for finer-
grain classification with a modest speed increase. Assuming
the ideal 16.02× speedup for small model variants, but with
approximately 5.44× the number of smaller tiles extracted
from the image, this will still amount to a 2.94× overall
improvement while adding many more classification results.

Overall, the parallel performance, which measures the run-
time of partitioning a single frame inference and processing all
partitions in parallel, was quite poor in this study. This is likely
due in no small part to the lightweight, low-latency nature
of the MobileNetV2 model. The small data size and light
model structure make it difficult to realize significant gains
by dividing between threads. The models are memory bound,
not compute bound. If one were to inspect a visual represen-
tation, the model itself is quite linear, with minimal task-level
division. The lackluster gains from threading within a single
inference operation led the authors to consider launching
several single-threaded operations to batch process multiple
images. This could improve parallel efficiency and increase
throughput, allowing tiles to be classified more rapidly.

Memory use for the larger and more complex model variant
seems to peak at two threads. The smaller model variant sees
continued growth, albeit at a much slower rate, until roughly
four threads. This is attributed to the larger relative size of
per-thread memory when model size is small. Memory use is
low for all platforms, making this approach highly amenable
to memory-constrained systems.

The poor parallel performance observed in this study makes
single-threaded operation the most energy efficient. However,
this reinforces the possibility of using additional threads for
batch processing of multiple images rather than model par-
allelism on a single image. Most interestingly, transitioning
from the maximum image size and feature depth to the
minimum results in an average 94.07% reduction in dynamic
energy consumption across all platforms and thread counts.
Mission-critical applications could see immense benefit from
these gains. Especially for space platforms, dynamic energy
consumption plays an important role. Consider classification
on an interplanetary probe or rover platform where energy
must be carefully managed. The opportunity to make 16.86×
as many decisions may be more beneficial than attaining the
highest possible accuracy.
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VI. FUTURE RESEARCH

There are several directions for further research stemming
from this study. Toward GRD-agnostic models, there remains
a dilemma of accurately classifying relevant features in high-
GRD imagery due to the large area represented and thus
the high number of varied features present. Many high-GRD
sample images might contain, for example, urban, forest, and
river components in a single image tile. It is thus difficult
for a single-decision classifier to extract and interpret the
most relevant features. Several options, including multi-label
classification, hierarchical classifiers, and multi-head classifi-
cation, with each classification head focusing on one aspect
of the image contents, are being considered as a solution in
an extension of this research. Research is underway into a
multi-head classification approach in which land cover, more
geographic features like rivers and coastlines, and land use,
primarily human-constructed features, would be handled by
separate classification heads, each more effectively tuned to
isolate target features. This approach aims to improve the
effectiveness of classifying feature-dense high-GRD imagery.

It would be helpful to have a larger set of datasets for which
to investigate inter-GRD relationships, perhaps including GRD
increments of 3.0 meters, 6.0 meters, 9.0 meters, and so on,
per pixel. This is a primary target for further extension of this
study. This research also creates an opportunity for improved
applications of planning, rule-based systems, and autonomy
based on tile classes. Providing a system with knowledge of
the classes of many components of an image and exploring
the relationship between them presents an effective means for
space situational awareness. Exploring self-supervised learn-
ing will be beneficial to reduce labelling burden for Earth-
observation imagery but will need to be approached carefully
given the feature richness of high-GRD imagery. The full
design space of model image sizes and feature depths could
be examined with further study, especially with regard to opti-
mizing accuracy for dynamic energy consumption. Additional
platforms and models could be considered and benchmarked
in additional research. Given the poor parallel performance,
future efforts aim to use threads to batch process image tiles,
which should significantly improve gains. Development con-
straints on several chosen platforms prevented deep-learning
model quantization performance improvements from being
competitively considered. This will be further explored in a
future extension of this research.

VII. CONCLUSIONS

This research occurs at the convergence of high-resolution
and low-GRD sensing, capable onboard computing, and
minimal-parameter, optimized DCNNs for computer-vision
tasks. This study demonstrated MobileNetV2 models fine-
tuned on new and existing Earth-observation datasets, in-
cluding training the new SHREC2020-30M15C dataset to
86.60% accuracy despite its high GRD and the associated
inter-class feature richness. The authors quantitatively refined
classes by visible feature size in pursuit of improved GRD-
agnostic models. An inter-GRD error study quantifies model

effectiveness when applied at different GRDs and depicts
exceptional results for scale-invariant geographic features but
poorer handling of human-constructed land development. Ex-
ecution time, parallel performance, memory use, and dynamic
energy consumption benchmarks on several CPU architectures
with flight heritage or mission applicability confirm onboard
processing amenability for these models. Tile classification
demonstrates high versatility in that running smaller image-
size and shallower feature-depth model variants can yield
an 8-16× performance improvement and 94.07% average
reduction in dynamic energy consumption with an only 4-
10% reduction in accuracy. This tile-classification system can
provide a versatile and high-performance solution for growing
Earth-observation demand.
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