
Neutron Radiation Beam Results for the Xilinx
UltraScale+ MPSoC

Jordan D. Anderson, Jennings C. Leavitt, Michael J. Wirthlin

Abstract—The paper summarizes the single-event upset (SEU)
results obtained from neutron testing on the UltraScale+ MPSoC
ZU9EG device. This complex device contains a large amount
of programmable logic and multiple processor cores. Tests were
performed on the programmable logic and the processing system
simultaneously. Estimates of the single-event upset neutron cross
section were obtained for the programmable logic CRAM,
BRAM, OCM memory, and cache memories. During the test,
no processor crashes or silent data corruptions were observed.
In addition, a processor failure cross section was estimated for
several software benchmark operating on the various processor
cores. Several FPGA CRAM scrubbers were tested including an
external JTAG, the Xilinx “SEM” IP, and the use of the PCAP
operating in baremetal. In parallel with these tests, single-event
induced high current events were monitored using an external
power supply and monitoring scripts.

I. INTRODUCTION

The Xilinx UltraScale+ Multi-Processor System-on Chip
(MPSoC) is a device that combines programmable logic and
multiple processors on a single die. Using 16nm FinFET tech-
nology, this device combines a large amount of programmable
logic resources with multiple processors and a large number of
fixed I/O interfaces [1]. The processing power and architectural
flexibility make this device very attractive for a wide variety
of embedded and high-performance computing applications
including space processing. The objective of this paper is to
measure and understand the sensitivity of various components
of the MPSoC device to neutron radiation.

The ZU9EG was subjected to neutron radiation testing at
the Los Alamos Neutron Science Center (LANSCE) in several
different visits. A novel testing methodology was used to
collect single-event effect (SEE) results simultaneously from
the processing system (PS) and the programmable logic (PL).
In parallel, high current events on the device power rails were
monitored using an external power supply and real-time power
monitoring. The neutron cross section of the following MPSoC
architectural components was measured: FPGA CRAM, FPGA
BRAM, on-chip memory (OCM), L1 and L2 caches, and

Manuscript received August 10, 2018. This work was supported by the
I/UCRC Program of the National Science Foundation under Grant No.
1738550.

This work was also supported by Los Alamos Neutron Science Center
(LANSCE) under proposals NS-2016-7268-F, NS-2017-7598-A, & NS-2017-
7574-A.

The authors are with Department of Electrical and Computer Engineering,
Brigham Young University, Provo, UT 84602, USA. The authors are also
with the NSF Center for Space, High-Performance, and Resilient Computing
(SHREC), (e-mails: jordan anderson59@byu.edu, leavit92@byu.edu, wirth-
lin@byu.edu).

Processing System

Programmable Logic

ARM

Cortex – R5

Geometry

Processor 32 KB

I-Cache

w/Parity

32 KB

D-Cache

w/ECC

ARM

Cortex – A53

Shared 1MB L2 Cache w/ECC

Application Processing Unit (APU)

32 KB

I-Cache

w/ECC

32 KB

D-Cache

w/ECC

128 KB

TCM

w/ECC

Real-Time Processing Unit (RPU)

Pixel

Processor

64 KB L2 Cache

Graphics Processing Unit

ARM Mali – 400 MP2

Memory Configuration

and Security

Unit (CSU)

Connectivity

DDR4

LPDDR4

32/64 bit

w/ECC

256 KB

OCM

w/ECC

Decryption,

Authentication,

Secure Boot

CSU

DMA

PL

Access

USB 2.0/3.0

UART

Quad SPI NOR

SD/eMMC

SATA 3.1

Block RAM (BRAM)

Digital Processing Slices (DSP)

High-Density (HD) I/O

GTH

High-Performance (HP) I/O

100G EMAC

PCIe Gen4

GTY

Fig. 1: Block diagram of ZU9EG MPSoC.

the processor executing an operating system and bare metal
benchmarks. While high current events were seen during
testing, there were no single-event upsets that caused the
processor to fail.

The remainder of the paper will be organized as follows:
Section II provides an overview of the MPSoC device. Section
III provides an overview of the experiment and Section IV
explains the experimental setup with information about the
LANSCE facility. Section V describes a study of SEU effects
on the PL and Section VI summarizes a study performed on the
SEU effects on the PS. Section VII discusses current events
observed on the MPSoC during neutron testing. The paper
concludes in Section VIII.

II. MPSOC SYSTEM OVERVIEW

The objective of this section is to describe the architecture
of the MPSoC and highlight the important components of the
device. Fig. 1 shows a block diagram of the MPSoC. The
architecture has two distinct regions: the processing system
(PS) and the programmable logic (PL). The PS contains a
number of processors that execute software from main memory
and an external DDR memory. In addition, the device contains
a large number of useful I/O interfaces and a 256KB on-
chip memory (OCM). Together, these components provide
a significant amount of computational performance and user
customization.

The PS contains an application processing unit (APU), a
real-time processing unit (RPU), and a graphics processing
unit (GPU). The APU is comprised of a quad-core ARM

978-1-5386-8263-0/18/$31.00©2018 IEEE
Authorized licensed use limited to: Brigham Young University. Downloaded on April 12,2021 at 15:23:27 UTC from IEEE Xplore. Restrictions apply.

Configuration and Security Unit (CSU)

CSU PMU Switch

CSU Triple

Redundant

MicroBlaze
CSU

Registers

CSU DMA

Secure Stream Switch (SSS)

SHA-3

384

AES-GCM

256
PCAP To PL

ECC

32KB

RAM 128KB

ROM

ROM

validation

Fig. 2: Block diagram of CSU with features for PCAP access
highlighted.

Cortex-A53 with each core containing a 32KB L1 instruction
and data caches. All cores share a 1MB L2 cache. The
L1 instruction cache is protected by parity to support error
detection and the L1 data and L2 caches are protected by
single error correction double error detection (SECDED) error
correction codes (ECC) [1]. The RPU is comprised of a a
dual-core ARM Cortex-R5 that can run in individual (parallel)
or lock-step modes. Lock-step mode causes one core of the
RPU to become a duplicate of the other core and they run
synchronized. If at any point the two cores differ, the lock-step
will trigger an error on the processing system. Each core of
the RPU has its own 32KB instruction and data caches along
with 128KB of tightly-coupled memory (TCM) [1]. The L1
caches, OCM, and the TCM are all protected by SECDED
ECC. Lock-step mode and ECC suggest the RPU would be
very reliable in the presence of SEUs. The GPU is comprised
of a ARM Mali-400 MP2 but was not used in the experiments
described in this paper.

In addition to these processors, the device contains a Con-
figuration and Security Unit (CSU) shown in Fig. 2. The
CSU is used to configure the PL and manage system security.
The CSU is used in this work to program the PL through
the processor configuration access port (PCAP). Access to
the system’s PCAP is only available through the CSU and
a dedicated CSU direct memory access (DMA) controller.
The CSU also contains a dedicated triple-redundant processor,
a read-only memory (ROM), and a small private RAM for
security sensitive data [1].

The ZU9EG contains a large amount of programmable
logic resources. This includes 548,160 flip-flops, 274,080
look-up tables (LUTs), 2,520 digital signal processing slices
(DSPs), and 912 user accessible block RAM (BRAM) modules
that are each 36Kb. The complete device contains a total
of 212,086,240 configuration RAM (CRAM) bits [1]. The
PL also provides 24 GTH transceivers and 328 input/output
(I/O) pins. The PL was built using 16nm FinFET design
procedures. This technology node provides higher CRAM den-
sity, faster switching speeds, and less leakage current. These
improvements result in higher performance and lower power
consumption when compared to the planar technologies [2],

Fig. 3: Block Diagram of PS/PL separation.

[3]. The smaller 16nm FinFET technology node is expected
to have a much smaller neutron radiation cross section than
the previous planar FPGA CRAM.

III. EXPERIMENT OVERVIEW

Understanding the radiation effects within all of the com-
ponents of a complex device like the MPSoC is very difficult.
Unlike programmable processors and FPGAs tested in the
past, the MPSoC contains many processors, peripherals, sub-
systems, and a large amount of programmable logic all on a
single device. It is very difficult to organize a radiation test that
captures the effects of radiation on all individual components
of this device. Further, individual tests must be designed
for a single component and should isolate this component
from other components in the system as much as possible
[4]. In addition, there are no generally accepted methods
for performing radiation tests on such complex systems. The
primary challenge of this work is to prepare radiation test
methods for collecting radiation effects data on as many
components on the MPSoC as possible.

The primary goal of these tests was to collect single-event
effect radiation data on several of the key components of this
complex device. In particular, these tests collected data for
portions of the programmable logic (PL) and the processing
system (PS) at the same time. One of the challenges of these
tests was instrumenting the device so that data from both of
these device regions could be collected at the same time as
well as isolating these components from each other during the
test.

A simple block diagram of the test organization is shown in
Fig. 3. Data was collected from the PL using several different
scrubber methods which will be described in detail in Section
V. Particularly, the Zynq-based JTAG configuration manager
(JCM) board, developed at the Configurable Computing Lab-
oratory of Brigham Young University (BYU) [5], was used
for collecting much of the SEU data through JTAG. The JCM
reads configuration memory and detects SEUs independent of
the PS.

To collect data simultaneously from the PS, the processor
executed binaries containing a variety of benchmark programs
that were stored on a SD card. The software binary was
loaded on power-up by a first-stage bootloader (FSBL). A
watchdog timer was enabled to detect processor hang events
and cause the processor to reboot and reload the software. All
software benchmarks generated output that was logged through

Authorized licensed use limited to: Brigham Young University. Downloaded on April 12,2021 at 15:23:27 UTC from IEEE Xplore. Restrictions apply.

MPSOC

Fig. 4: MPSoC setup in neutron beam at LANSCE.

Host

Computer

Power

Supply

Ethernet

Switch

BYU JCM

ZCU102

(DUT)

Power Cables

JTAG Cable

SD

UART

Fig. 5: Block diagram of MPSoC neutron test setup.

UART by a remote desktop computer. Crashes and silent data
corruptions were identified by specific output messages or the
lack thereof.

A series of three neutron tests were performed on several
ZCU102 evaluation boards. During the first test in December
of 2016, an engineering sample 1 (ES1) version of the device
was tested with no modifications to the board. Due to an
unanticipated failure in a power regulator on this evaluation
board, no useable data was collected. Subsequent tests were
performed on the ZCU102 board with a ES2 version of the
device in August 2017 and November 2017.

IV. EXPERIMENTAL SETUP

The ZU9EG MPSoC device was tested at the Los Alamos
Neutron Science Center (LANSCE) neutron beam facility.
The ZCU102 evaluation board from Xilinx was placed in the
neutron flight path using stands and clamps as shown in Fig.
4. A block diagram of the test setup is shown in Fig. 5. A host
computer was used to interact with the Zynq-based BYU JCM,
the external power supply, and the MPSoC through UART. The
host computer also logged the output from each component of
the experiment. An Ethernet switch was used to connect the
host computer to an external power supply and the BYU JCM
through Ethernet. The BYU JCM was connected to the MPSoC
by a JTAG cable that was used for external JTAG scrubbing.

Fig. 6: Power supply and MPSoC setup.

A. Power Monitoring
To address the regulator failure in the first test, some modi-

fications to the ZCU102 board were made to protect the board
and device from unanticipated power failures. Specifically, the
on-board power regulators were bypassed and the board was
powered by an external Keysight N6705B power supply that
carefully monitored system voltage and current as seen in Fig.
6. This setup was used during the August and November of
2017 LANSCE tests.

The power supply and Python scripts, running on the host
computer, were used to monitor system current. These scripts
would poll the power supply for the real-time current and
voltages of each of the power rails. If the voltage or current
was above a predetermined level, the script would send a
command to the power supply to re-power the power rail. The
high-current monitoring was performed in parallel with the
SEU experiments but will be described separately in section
VII.

B. LANSCE Neutron Beam
The LANSCE neutron beam was used for testing the

MPSoC with high-energy neutrons. LANSCE provides several
neutron beam flight paths ranging from 0.1 MeV to more than
600 MeV. The beam is generated by an 800 MeV proton
linearly accelerated beam striking an unmoderated tungsten
spallation source [6].

All experiments were performed on the 30◦ flight paths
which have a neutron spectrum similar to the neutron spec-
trum in the atmosphere caused by cosmic rays. The neutron
spectrum is shown in Fig. 7 and matches the JEDEC standard
for spallation neutron beams [8]. Although the results from
neutron testing do not assist in qualifying this device for use in
space, such testing is very useful in identifying failure modes
and unexpected device behavior that would be seen in other
radiation environments such as with heavy ion.

V. PROGRAMMABLE LOGIC (PL) SEU TESTS

The objective of these tests was to understand the impact
of neutron radiation on the programmable logic (PL). The
primary goal of the PL test was to estimate the neutron
cross section of the configuration RAM (CRAM) as well
as the internal user accessible block memory (BRAM). The
cross section was estimated by counting the number of SEUs
through scrubbing methods.

Authorized licensed use limited to: Brigham Young University. Downloaded on April 12,2021 at 15:23:27 UTC from IEEE Xplore. Restrictions apply.

Fig. 7: Calculated neutron spectra for flight paths at LANSCE
from [7]. The ”30 Deg” flight path was used in these tests.

A. PL Scrubbing Methods

The procedure for measuring the CRAM cross section is to
perform continuous configuration “readback” and “scrubbing”
on the user accessible CRAM memory. Scrubbing is a method
of correcting single bit upsets in an FPGA by performing
a readback of the configuration memory and comparing the
readback data against a golden readback file. Differences
between the readback and the golden file are counted and
then corrected by writing the correct bits into the configuration
memory frame thereby “repairing” the contents of CRAM [9],
[10].

Three different CRAM scrubbing mechanisms were used
during this experiment to count CRAM upsets and each of
these methods were used to obtain an estimate CRAM memory
neutron cross section. The three different scrubbing mech-
anisms used in this study include external JTAG scrubbing
[5], internal scrubbing with the Xilinx “SEM” IP [11], [12],
and scrubbing utilizing the processor configuration access port
(PCAP) [13]. All three scrubber tests were ran independently
in separate experiments as it would cause conflict on the FPGA
memory otherwise.

The first scrubbing method utilizes the JTAG configuration
port to read configuration memory, store a golden file of the
FPGA configuration memory, identify upsets, and scrub the
configuration memory. A custom external device called the
BYU JTAG configuration manager (JCM) was used to provide
high-speed JTAG configuration access, store the golden file,
and perform upset identification and scrubbing. The JCM was
placed outside of the beam flight path to prevent neutron
interaction with the external scrubber.

The second scrubber utilizes the Xilinx Soft-Error Mitiga-
tion IP core or SEM IP. The SEM IP is placed into the FPGA
fabric and performs SEU detection and correction through the
system’s internal configuration access port (ICAP). The SEM
IP also supports fault injection (“simulate” an SEU), which
was used in testing the SEM IP configuration, and UART

Number
of Errors

Fluence
(n/cm2)

Cross Section
(cm2/bit)

95%

Confidence

JCM 16070 3.00× 1011 2.52× 10−16 3.98× 10−18

SEM IP 1648 3.16× 1010 2.46× 10−16 1.21× 10−17

PCAP 2313 5.12× 1010 2.13× 10−16 8.85× 10−18

BRAM 17554 1.74× 1011 3.02× 10−15 3.02× 10−17

Table I: Per-bit cross section of MPSoC FPGA configuration
memory and BRAM.

communication, which was logged by the external remote host
computer. Since the SEM IP is placed into the PL fabric,
the SEM IP is susceptible to SEUs which could change the
memory used by the SEM IP or change the internal scrubber
itself.

The final scrubbing method used the PCAP, which is
accessible by the various processors within the MPSOC.
Through custom software, these processors can access the
PCAP through the Configuration and Security Unit (CSU).
The CSU DMA and related components are configured to
transfer configuration data to and from the PCAP which allows
for programming and reading of the FPGA CRAM data. The
scrubber ran from a baremetal program on the RPU and the
configuration memory readback was stored in the DRAM. The
reliability of the PCAP scrubbing is based on the reliability
of the MPSOC processors and I/O sub-system.

Similar to scrubbing of the FPGA CRAM, the BRAMs
were tested using similar principles. The BRAMs were tested
by creating an FPGA design that filled all available BRAMs
and reading the contents of the BRAM with the BYU JCM.
This data is compared against a golden file to identify and
count BRAM upsets. The golden file is updated with the SEU
induced changes to the BRAMs so as not to count BRAM
upsets more than once. This change to the golden file is
necessary because BRAMs cannot be “repaired” by scrubbing.

B. PL SEU Results

The SEU neutron cross section estimates of the FPGA
configuration memory collected by the BYU JCM, the Xilinx
SEM IP, and the PCAP scrubber are shown in Table I along
with the results obtained for the the BRAMs. The cross
section estimates from each scrubber differ slightly because
of variations with the scrubbers and possibly missing some
SEU counts due to the nature of the tests and scrubbers. A 2σ
error 95% confidence interval is also shown in the table based
on [4].

The neutron cross section estimate using the JCM scrubber
is compared to other Xilinx device families in Fig. 8. The
FPGA cross section of the MPSoC is 27.7x smaller than the
28nm devices and 10.1x smaller than the UltraScale devices
[14].

The SEM IP did experience several failures due to SEUs.
The SEM IP would get stuck in its “idle mode” and would
fail to return to its “observation mode” (scrubbing mode). This
is most likely due to parts of the SEM IP being corrupted
by SEUs or corruption in the SEM IP’s BRAMs. This could
be remedied by a full reconfigure of the PL; however, the
experiment showed that a simple reconfiguration could result

Authorized licensed use limited to: Brigham Young University. Downloaded on April 12,2021 at 15:23:27 UTC from IEEE Xplore. Restrictions apply.

Fig. 8: Per-bit cross section comparison of Xilinx FPGA
configuration memory based on [14].

Number
of Errors

Fluence
(n/cm2)

Cross Section
(cm2)

95%

Confidence

SEM IP 3 3.16× 1010 9.50× 10−11 1.84× 10−10

Table II: Cross section of SEM IP.

in another SEM IP failure soon after (only counted as a
single failure). A complete reboot and reconfiguration was the
most reliable mechanism for repairing the failure. An estimate
neutron radiation cross section for the SEM IP is shown in
Table II.

VI. PROCESSING SYSTEM (PS) SEU TESTS

The goal of these tests was to study the effects of neutrons
on the execution behavior of a processor and its associated
memories. These tests were performed on the MPSoC’s ARM
Cortex-A53 (APU) and ARM Cortex-R5 (RPU). There were
two goals of the PS tests: first, to measure the cross section of
the entire processing system executing a variety of software
benchmarks, and second, to estimate the cross section of the
memory cells used within the MPSoC including the OCM
and the processor caches. These two goals will be described
separately below.

A. Software Benchmark SEU Measurements

A variety of benchmarks were used to measure SEU
sensitivity in the form of silent data corruption (SDC) and
software crashes. Several baremetal benchmarks were used to
test processor functionality. In addition, the Linux operating
system was installed and tested while running an arithmetic
benchmark. In all benchmark cases, the goal of the test was to
measure the neutron fluence between each processor failure.
These measurements were averaged and then used to create a
neutron cross section estimate.

A number of baremetal benchmarks used in these tests were
based on the benchmarks outlined in [15]. These benchmarks
include the advanced encryption standard (AES), cache tests,

Number
of Errors

Fluence
(n/cm2)

Cross Sectiona

(cm2)
95%

Confidence

AES 0 1.31× 1010 < 7.66× 10−11 2.82× 10−10

MxM 0 3.70× 1010 < 2.70× 10−11 1.00× 10−10

Lnx/Dhr 0 6.33× 1010 < 3.95× 10−12 5.85× 10−11

Table III: Software executable cross section operating on the
Cortex-A53 APU.

aThough no software errors were observed, a value of one was used in the
calculation of these results. This is used to show a worst-case cross section.

and matrix multiply (MxM). The objective of using these
benchmarks was to see if a neutron SEU could affect the
processor in a way that would cause an output error in the pro-
gram (SDC) or cause the software to crash. Each benchmark
contains a self-checking system where a correct “golden” is
created and then each iteration of the benchmark is compared
against the golden. If the golden and the current iteration’s
results differ, specific output messages are sent and logged
through UART. SDCs are determined by parsing the output of
the benchmarks for these specific error messages. A watchdog
timer was running to identify any processor hang/crash events.
The number of SDCs and crashes will be used to calculate the
neutron SEU cross section of an application running on the
MPSoC.

The different benchmarks were intended to fill different
parts of the caches by using different sets of operations, which
could make one of the benchmarks more susceptible to SEUs
on this particular platform. Each of the tests were performed
with the error correction code (ECC) enabled on the OCM
and on the caches.

The Linux operating system was used as a comprehensive
benchmark that involves much of the processor architecture.
We anticipated that Linux running a software benchmark
would have a larger cross section than that of our baremetal
tests. To increase the likelihood of observing software errors,
Linux was ran quite extensively in the processor portion of the
tests. The Linux test was setup to run the operating system on
all four cores of the Cortex-A53 processor using symmetric
multiprocessing (SMP). Each of the four processor cores ran
a separate instance of the Dhyrstone benchmark.

Surprisingly, no SDCs or crashes were seen in any of the
software tests. With over 2.51× 1011 n/cm2 neutron fluence,
we were unable to positively identify a processor SDC or
a processor hang. The cross section for the software was
calculated by assuming a single error even though no errors
were observed [4] (see Table III). We believe that the cross
section of these processor benchmarks is much lower than that
reported in Table III but much more neutron fluence is needed
to obtain a more accurate estimate.

The very low processor cross section is likely due to the
presence of SECDED ECC on the L1 data and L2 memory
caches and interleaving of cache memory words. These fea-
tures help mitigate SEUs from propagating from the cache
memories to the output of the benchmark as SDCs. When an
ECC error is detected, the bit is repaired in the cache and the
correct bit is transmitted to the processor for use.

Authorized licensed use limited to: Brigham Young University. Downloaded on April 12,2021 at 15:23:27 UTC from IEEE Xplore. Restrictions apply.

Number
of Errors

Fluence
(n/cm2)

Cross Section
(cm2/bit)

95%

Confidence

OCM 168 5.49× 1010 1.46× 10−15 2.25× 10−16

Caches 1302 8.28× 1010 1.50× 10−15 8.31× 10−17

Table IV: Per-bit cross section data from the processor.

B. PS Components SEU Measurements

Our second objective was to measure the cross section of
individual memory cells within the on-chip memory (OCM)
and caches. Even though we were not able to observe any
processor operational failures, we were able to observe upsets
within these memories by capturing exceptions and reading
processor performance registers.

To test the OCM memory and estimate a cross section,
a baremetal program was created that initialized the 256KB
OCM to a known set of values and enabled the ECC and
system interrupts. The program then repeatedly read all OCM
words and checked the OCM contents. If an error was detected
by the OCM ECC, an interrupt would be fired and the software
would capture and count the interrupt.

To measure upsets within the cache memories, baremetal
programs were written to exercise the ARM A53 memory
system by reading from all data cache locations. As memory
is read from the cache, the internal cache ECC records cache
memory upsets. The baremetal program repeatedly reads the
internal error syndrome co-processor registers on the A53
to count ECC errors. These registers record memory errors
that occur within the caches, what upset, where in memory,
and how many times that same location has been upset.
These registers were used to detect cache errors in the L1
instruction and data caches, as well as the L2 shared cache,
in the baremetal and Linux applications. The programs that
exercised the caches include a baremetal matrix multiply
test, with the error syndrome registers, and Linux running
individual Dhrystone benchmarks on each core, with the error
detection and correction (EDAC) module. The neutron SEU
cross section of the OCM and caches are shown in Table IV.

VII. HIGH CURRENT EVENTS

In addition to measuring the single-event effect behavior
of the MPSoC, our experiments monitored the presence of
radiation-induced latch-up or high current events. The objec-
tive of this study was to monitor the power events on the board
and determine the extent of the issue presented by the events.
This study emerged after the power anomaly that occurred
during the first test.

This test was performed by bypassing the on-board power
regulators and monitoring the current and voltage of each
output channel from an external power supply (Figs. 6 and
9). In this setup, the 3.3V, 1.8V, 1.2V, and 0.85V power lines
were only powered. This leaves many board peripherals un-
powered like the Ethernet and USB because they require a 5V
power line.

The power supply was monitored by the host computer
running a Python script. The Python script reads all of the
supply currents and monitors the currents, comparing the

Fig. 9: Power regulators bypassed through board test points.

Fig. 10: Current plot of one segment from the second test.
Notice the large spike in current near the end of the segment.

values based on a pre-determined threshold current value. The
threshold value was determined by monitoring the current
during normal execution and adding 20%. If the current is
above the pre-determined threshold, the script sends a reboot
signal to the power supply, causing the MPSoC to power cycle.
The full current draw of these events was not recorded as the
purpose of these scripts is to protect the board from damage
rather than fully characterizing the high current event.

Numerous current events were observed and analyzed
through the monitored currents of the external power supply.
These results showed various different power events occurring
on the board including voltage spikes and current spikes (Fig.
10 and Fig. 11).

A neutron cross section for the power events was estimated
in Table V. The only power lines that exhibited high current
events in our tests were the VCCAUX 1.8V line (the auxiliary
power rail for the PL) and the VCCINT 0.85V line (the internal
power rail for the PL). The VCCAUX power line appears to
be the most susceptible line as it was the problem power line

Authorized licensed use limited to: Brigham Young University. Downloaded on April 12,2021 at 15:23:27 UTC from IEEE Xplore. Restrictions apply.

Fig. 11: Current plot of one segment from the second test.
Notice the increased current during several periods.

Number
of Errors

Fluence
(n/cm2)

Cross Section
(cm2/line)

95%

Confidence

VCCAUX 25 3.09× 1011 8.09× 10−11 3.82× 10−11

VCCINT 1 3.09× 1011 3.24× 10−12 1.49× 10−11

Total 26 3.09× 1011 8.42× 10−11 3.88× 10−11

Table V: Power Event Cross Section Results.

for the majority of the reported current events.
On average, a current event caused an increase of 330 mA

on the particularly affected line, while some events are more
extreme, such as the one that was shown in Fig. 10. However,
these tests were performed with a current limitation to protect
the evaluation board from any potential damage.

During the third test, a second MPSoC board was tested
with the objective of understanding the nature of the events,
on-board mitigation technique effectiveness, and wear of the
chip due to these current events. This second MPSoC had
no power modifications done to the evaluation board and was
connected to a large uninterruptible power supply (UPS) so as
to guarantee that the current event would not be lost due to a
loss in power.

A current event was “captured” on the MPSoC by care-
fully monitoring the voltages and currents of the evaluation
board through a Maxim Integrated PowerTool™. Once a high
current event was detected, attempts were made to mitigate
the situation without re-powering the board. These attempts
included resetting the processor, performing a power-on reset
(PoR), and triggering resets through external JTAG commands.
A current event appears only to be resolved through a complete
power cycle of the board.

The “captured” event showed that communication to the
MPSoC board can be lost due to a current event. Communi-
cation through UART and JTAG were lost on several (but not
all) of the current events. Additionally, the event conditions
appear to persist until the board has been powered down. This
MPSoC board currently still has a “captured” current event
and will be used in a follow-up study of the long-term effects
of the current events. Other ideas to recover the board without

power down, like reducing voltages of certain power rails, will
also be tested in the future.

VIII. CONCLUSION

Simultaneous tests involving neutron SEU FPGA tests and
SEU processor tests have been performed on the Xilinx
ZU9EG MPSoC board. The first part of the tests was per-
formed focusing on the FPGA resources of the MPSoC and
showed the resulting neutron SEU cross section as determined
by the BYU JCM, Xilinx’s SEM IP, and a baremetal software
PCAP scrubber. The second part of the tests was focused on
the processor portion of the chip. The neutron SEU results
showed that the processor did not experience any SDCs or
system crashes during the extent of the tests, but that the chip
was being upset through the SEUs observed on the caches.
This series of tests has shown the neutron SEU cross section
of the various test components using several different methods.

In parallel with the PL and PS tests, high-current moni-
toring tests were performed using an external power supply
and power monitoring scripts. Numerous high-current events
were observed on the MPSoC and logged through continuous
current and voltage monitoring and recording. Various events
including voltage spikes and current spikes were observed
on the MPSoC during radiation testing. The 1.8V VCCAUX
appears to be the most susceptible power rail to power events
induced by neutron radiation and an estimate neutron cross
section obtained.

REFERENCES

[1] Zynq UltraScale+ Device - Technical Reference Manual, Xilinx.
[2] L. Hansen, Unleash the Unparalleled Power and Flexibility of Zynq

UltraScale+ MPSoCs, Xilinx.
[3] S. Patil and V. S. K. Bhaaskaran, “Optimization of power and energy in

FinFET based SRAM cell using adiabatic logic,” in 2017 International
Conference on Nextgen Electron Technologies: Silicon to Software
(ICNETS2). Chennai, India: IEEE, March 2017.

[4] H. Quinn, “Challenges in testing complex systems,” IEEE Transactions
on Nuclear Science, vol. 61, no. 2, pp. 766–786, Apr 2014.

[5] A. Gruwell, P. Zabriskie, and M. Wirthlin, “High-speed programmable
FPGA configuration through JTAG,” in 2016 26th International Confer-
ence on Field Programmable Logic and Applications (FPL). Lausanne,
Switzerland: IEEE, Sept 2016.

[6] LANSCE. Weapons neutron research facility at lansce. [Online].
Available: http://www.lansce.lanl.gov/facilities/wnr/index.php

[7] LANSCE. Weapons neutron research flight paths. [Online]. Available:
http://www.lansce.lanl.gov/facilities/wnr/flight-paths/index.php

[8] JEDEC, Measurement and Reporting of Alpha Particle and Terrestrial
Cosmic Ray-Induced Soft Errors in Semiconductor Devices, JEDEC
Standard.

[9] I. Herrera-Alzu and M. Lopez-Vallejo, “Design techniques for Xilinx
Virtex FPGA configuration memory scrubbers,” IEEE Transactions on
Nuclear Science, vol. 60, no. 1, pp. 376–385, Feb. 2013.

[10] A. Stoddard et al., “A hybrid approach to FPGA configuration scrub-
bing,” IEEE Transactions on Nuclear Science, vol. 64, no. 1, pp. 497–
503, Jan. 2017.

[11] Soft Error Mitigation Controller v4.1, Xilinx.
[12] T. Bates and C. Brideges, “Single event mitigation for Xilinx 7-series

FPGAs,” in 2018 IEEE Aerospace Conference. Big Sky, MT, USA:
IEEE, March 2018.

[13] A. Stoddard, A. Gruwell, P. Zabriskie, and M. Wirthlin, “High-speed
PCAP configuration scrubbing on Zynq-7000 All Programmable SoCs,”
in 2016 26th International Conference on Field Programmable Logic
and Applications (FPL). Lausanne, Switzerland: IEEE, September
2016.

[14] Device Reliability Report - Second Half 2017, Xilinx.
[15] H. Quinn et al., “Using benchmarks for radiation testing of micropro-

cessors and FPGAs,” IEEE Transactions on Nuclear Science, vol. 62,
no. 6, pp. 2547–2554, Dec 2015.

Authorized licensed use limited to: Brigham Young University. Downloaded on April 12,2021 at 15:23:27 UTC from IEEE Xplore. Restrictions apply.

