
1

An XML Schema for Representing Reusable IP
Cores for Reconfigurable Computing

Nathaniel Rollins, Adam Arnesen, and Michael Wirthlin
NSF Center for High-Performance Reconfigurable Computing (CHREC)

Dept. of Electrical and Computer Engineering
Brigham Young University

Provo, UT. 84604, USA
Email: nhrollins@gmail.com, adamarnesen@gmail.com, wirthlin@byu.edu

Abstract— The reuse of intellectual property (IP) cores within
reconfigurable computing systems is a promising approach for
improving the productivity of reconfigurable system design.
Further, there are a large variety of reusable IP cores available for
a variety of application-specific functions. These cores, however,
are created from different design tools and are difficult to
integrate into a single reconfigurable system design. To facilitate
the reuse of these cores, an XML schema has been created for
representing the essential details of a core in a reconfigurable
computing design environment. This paper presents this XML
schema and describes how it can be used to facilitate reuse in
reconfigurable computing systems.

I. INTRODUCTION

There is great interest in using field programmable gate
arrays (FPGAs) and other reconfigurable devices to perform
application-specific computation. This form of computing, of-
ten called reconfigurable computing (RC), achieves high levels
of computational efficiency by customizing a digital circuit
(usually within an FPGA) to exploit the natural parallelism
of the algorithm. Reconfigurable computing has been used to
provide very high computational efficiency for a wide variety
of applications [1].

While reconfigurable computing offers significant potential,
reconfigurable computing systems are difficult to “program”.
Perhaps the biggest limitation preventing the widespread use
of reconfigurable computing is the amount of effort required to
create working RC programs. Unless design productivity for
reconfigurable systems significantly increases, reconfigurable
computing will be limited to the few dedicated application
experts that have the skills necessary to create low-level FPGA
circuits.

One important way of addressing this productivity problem
is to employ more design reuse. Reuse has been successfully
used in software engineering to significantly improve design
productivity and facilitate the development of complex soft-
ware systems by those with limited software experience [2].
One study has shown that under ideal conditions, design time
can experience a 2× reduction for design with static cores
and a 3-8 times reduction for design with parameterizable
cores [3]. Successfully applying reuse within reconfigurable

This work was supported by the I/UCRC Program of the National Science
Foundation under Grant No. 0801876.

systems offers significant potential to increase design produc-
tivity.

Reuse of intellectual property (IP) cores, however, is diffi-
cult. Reusing a digital circuit within an RC system requires
the designer to: 1) Select the appropriate circuit core, 2)
understand the details of the core, 3) create interface circuitry
to integrate the core into the system, and 4) verify the core
within the system. One study suggested that reuse was not
cost effective unless the cost of integrating the core within a
system is less than 30% the cost of creating the core from
scratch [4].

Another challenge limiting core reuse within reconfigurable
systems is the number and variety of tools that are used
to create high-performance cores. IP cores are created in a
variety of tools and languages including traditional HDLs,
high-level design tools, and module generator tools such as
Xilinx coregen [5] and JHDL [6]. It is difficult and time
consuming to integrate cores from such a wide variety of
design tools. Further, there is no standard way to integrate
these cores into high-level design environments.

One way of addressing this problem is to encapsulate the
details of reusable cores in meta-data that allows design tools
targeting reconfigurable computing to automatically evaluate,
manipulate, and instance cores within a design. To support this,
the meta-data must describe the core interface, any third-party
core generation tools, and core parameters. The IP-XACT
specification [7] developed by the SPIRIT consortium is an
example of a XML meta-data format for facilitating reuse
within SoC design.

This paper presents an approach for encapsulating circuit
cores with meta-data in XML. This approach is based on
several concepts used in IP-XACT with customizations for
reconfigurable computing. This paper will begin by providing
an overview of IP-XACT and follow by discussing the differ-
ences in the goals of IP-XACT and the goals of reconfigurable
computing systems. The XML schema used in this approach
will be described with an emphasis on core parameterization,
core interface specification, and data types. Finally, several
examples will be given to demonstrate the utility of the XML
schema.



2

II. IP-XACT

The SPIRIT Consortium developed a core description spec-
ification called IP-XACT to support reuse in system-on-chip
(SoC) design and to simplify SoC design space exploration
using reusable IP [7]. The IP-XACT specification includes
an XML schema that defines XML elements for describing
IP cores. This schema defines how the cores interface with
each other and describes how external tools interact with
IP-XACT compliant design tools. IP-XACT compliant tools
enable designers to drag-and-drop complex IP into a design
and then use third party tools to generate and verify SoC
designs.

Figure 1 provides an overview of the IP-XACT approach
for SoC design. Reusable cores are defined as components in
XML and automatically imported into an IP-XACT compliant
design environment. The designer selects IP from the com-
ponent library and creates complex SoC designs with limited
effort. After composing the design, generator chains interface
with third party tools to verify and synthesize the design.

Fig. 1. IP-XACT’s Design Paradigm includes bus definitions and other items
that make it useful for SoC design [7].

IP-XACT facilitates the interconnection of complex IP using
bus definitions defined in XML. An IP-XACT bus definition
describes all the ports of a standard bus or IP interconnection
scheme. For example, the AMBA bus definition describes the
data bus, address bus, clock signals, reset, etc. used by all
AMBA bus compliant cores. IP cores are created that conform
to these previously defined bus definitions. Two IP cores that
comply to the same bus definition can easily be connected
within the design environment. The design tool can make the
appropriate signal connections to insure that the devices are
properly connected to the bus.

The IP-XACT XML schema for components defines a
number of elements for describing details for a reusable core.
Several important elements are summarized below.

1) Naming: A unique identifier is essential to enable proper
referencing of cores. The core vendor, library, name, and
version (VLNV) are the primary naming elements to
uniquely identify a core.

2) Bus Interface: One or more bus interfaces are included
in a core. Each bus interface names the type of bus the
core can interface with and lists the ports on the core
that are associated with that particular bus interface.

3) Choices: Core parameters whose values are constrained
to a certain set of enumerated values are associated with
a choice.

4) File Sets: In almost all cases there is a need for external
files to be associated with a core. Multiple sets of files
and their locations can be stored in IP-XACT as file sets.

5) Model: Models in IP-XACT list ports, model parameters
and views. Ports are listed here in addition to their listing
in a bus interface to facilitate ad-hoc port connections.
Any parameters for a core are also listed here. Views
reflect applicable file builders, associated file sets, and
any environment specific parameters.

6) Component Generators: Generators contain informa-
tion, such as paths to executable files, needed to access
external tools.

The use of the IP-XACT standard for defining reusable IP
cores has simplified the process of reusing cores for SoC
design. Many companies now provide IP-XACT compliant
design tools and a number of vendors offer compliant IP
cores. The recent adoption of IP-XACT by several companies
and design flows suggests that this standard will succeed in
simplifying reuse-based design.

The schema developed in this study borrows heavily from
IP-XACT for basic elements used in describing individual
cores. Most of the elements described above are included in the
XML schema that we have created. The important differences
in this schema will be described in more detail in the next
sections.

III. CORE REUSE FOR RECONFIGURABLE COMPUTING

The goals of the IP-XACT XML schema for IP reuse
in SoC design are very similar to the goals of IP reuse in
reconfigurable computing. Reuse of IP in reconfigurable com-
puting, however, is slightly different and requires additional
support within the XML schema. This section will discuss
some of the differences in these design environments and how
these differences influence the XML structure for describing
reusable cores.

In a typical system-on-chip design environment, the de-
signer manually explores various system architectures by
choosing a processor core, communication busses, memory,
and IP to operate on the bus (see Figure 1). The commu-
nication mechanism between processors and cores is usually
based on pre-defined bus protocols such as AMBA, OPB,
PCI, etc. This communication between cores is relatively
coarse grain and involves bus transfers using a predefined
and often complex communication protocol. The IP used in
SoC design is also relatively coarse grain. The IP cores are
usually bus-based circuits that provide complex computing or
I/O functions.

A reconfigurable computing development environment is
quite different from SoC design. Ideally, the selection and
composition of reusable IP is done automatically by a compiler



3

or high-level synthesis tool rather than by the designer. To
support the compiler in the selection of reusable IP cores,
the XML schema must provide more detailed information
about the core. Information about parameters, functionality,
and performance will aid the compiler in the selection of the
most appropriate IP core.

The granularity of IP used in reconfigurable systems is
usually more fine-grain than the IP used in SoC design. Rather
than using large bus-based circuits to compose a system, a
large number of relatively simple circuits such as arithmetic
operators or application specific computing functions are used
in a reconfigurable computing circuit. These fine-grain circuit
modules are also heavily parameterized. To exploit the benefits
of reconfigurable computing, most operations are heavily
customized in bit-width, operating modes, exception handling,
etc. The XML schema must support extensive customization
within reconfigurable systems.

The communication mechanisms of IP cores in reconfig-
urable computing are more fine-grain and customized than
the communication mechanism of cores in a SoC system.
Rather than using global coarse-grain bus based communi-
cation, reconfigurable systems often rely on custom, light-
weight, and distributed communication mechanisms. IP cores
are often directly connected to each other with limited hand-
shaking or protocol overhead. Because global standardized
bus communication is less likely in reconfigurable systems,
the notion of bus definitions is not included in this schema.
Instead, custom elements are added to the schema to support
description of custom interface constructs found in many light-
weight communication protocols.

The XML schema introduced in this study provides a
standard for IP core reuse (Figure 5). This XML-based IP
core specification provides a standard way of representing IP
cores, and is the primary focus of this study. Although this
specification has some similarities to IP-XACT, it has signifi-
cant differences. The main differences are in the representation
of parameters, core interfaces, and data types. These three
core details are the most challenging details to adequately
encapsulate in a standard way.

IV. PARAMETERIZATION

Parameters are an essential part of reusable IP cores. The
flexibility that comes with parameterization enables a single
core to represent many non-parameterizable (static) cores.
Thus the more parameterizable a core is, the more reusable
it can be. Or, the more reusable a core needs to be, the more
parameterization is required.

Describing the parameters of any given IP core in a standard
way is difficult since they can be complicated to describe and
resolve. Consider for example the coregen FIR filter compiler
which represents a parameterizable FIR filter core. This core
includes over 50 parameters. Some of them are simple to
resolve. For example the addpads parameter is either true
or false and indicates whether I/O pads should be added
to the circuit or not. Some of the parameters, however, are
much more complicated to resolve. For example, the value
of the decimation rate parameter depends on the values

of the rate change type and the interpolation rate

parameters.

A. Parameters in Reusable Cores

In general, parameters can be classified as either simple
parameters or complex parameters. A simple parameter is a
parameter which is resolved by the actual designer (much like
a VHDL generic). For example, a port bitwidth which ranges
from 2 to 16 bits is chosen by a designer to be 8 bits wide.
This kind of parameter is simple and easy to describe and
resolve.

Complex parameters are more difficult to describe and
resolve. These kind of parameters are resolved by either
some other parameter or by the result of some mathematical
expression. For example, the bitwidth of some port called addr
may be the log2() of the bitwidth of another port called data.

Parameterizable cores may have complicated interrelated
parameter options and configurations. These complex relation-
ships lead to legal and illegal core configurations. Listing all
possible legal configurations created from every permutation
of parameter combinations is an inadequate way to address
this problem.

There more efficient ways of addressing this issue. An
approach at one extreme includes all dependency information
in the core representation. This means parameter dependen-
cies are both described and resolved in the core description.
The advantage of this approach is that the core description
completely encapsulates the resolution of all parameters. The
disadvantage is that this approach requires a complicated core
description standard.

Another approach describes parameters, but does not pro-
vide parameter resolution information within the core de-
scription. This approach relies on an external tool to resolve
dependencies or validate legal configurations. For example,
consider again the example of the two parameters whose
values represent the bitwidth of the ports addr and data. The
legal core configuration requires that the bitwidth of addr to
be the log2() of the bitwidth of data. But under this less
complicated parameter approach the values of the parameters
representing these two bitwidths can be independently set even
if they lead to illegal core configurations. The advantage of
this approach is that it greatly simplifies the core description
standard. The disadvantage is that it relies on a tool to resolve
parameter dependencies and validate core configurations.

B. XML Representation of Parameters

The XML schema in this study completely describes and
resolves parameter dependencies in the XML. This means
that the XML core descriptions are more complicated. For
example, the XML schema includes a region for mathematical
expressions, since many parameters are resolved by the result
of a mathematical expression.

The XML schema representation for parameters is shown
in Figure 2. This figure indicates that a parameter has a name,
a sourceName, a data type, an optional description, and a
value. The name of the parameter is the name that is used
within the XML to refer to this parameter. The sourceName



4

is the name used to reference this parameter in the core’s actual
source code.

Fig. 2. The XML schema view of how parameter values are represented and
resolved.

A parameter’s value is expressed in one of four ways:
1) value: An actual parameter value (simple parameter).
2) valueRef: This is a label that refers to some other

parameter. In other words, the parameter’s value is the
same as the referenced parameter.

3) valueExpression: This is a label that references a math-
ematical expression. The value of the parameter is equal
to the result of the referenced mathematical equation.

4) dependentValues: This describes an if-else type of
parameter dependency resolution.

Consider an example of a parameter that determines the
bitwidth of a filter coefficient input port. Suppose that within
XML, the parameter is referenced by the name CSET-

CoefWidth, but in the actual core source code the parameter
is called coefficient width. Also suppose that the port’s
bitwidth value can range from 2 to 32 bits and is set to 16
by default. Such a simple parameter would be represented in
XML as shown below:

<chrec:coreParameter chrec:dataType="unsigned int">
<chrec:name>CSETCoefWidth</chrec:name>
<chrec:sourceName>coefficient_width
</chrec:sourceName>
<chrec:value chrec:minimum="2"

chrec:maximum="32"
chrec:resolve="user">16</chrec:value>

</chrec:coreParameter>

Next, consider an example of a complex parameter. Con-
sider a parameter that determines the bitwidth of a filter
select port. Within XML the parameter is named filterS-

electBW, but in the actual source code the parameter is
called filter select width. The value of the parameter is
determined by the result of a mathematical expression called
filterSelectBWExpr. This expression calculates the log2()
of a parameter called CSETCoefSets whose value represents

the number of filter sets to select from. This parameter and its
associated mathematical expression are represented in XML
as shown below:
<chrec:coreParameter chrec:dataType="unsigned int">

<chrec:name>filterSelectBW</chrec:name>
<chrec:sourceName>

filter_select_width
</chrec:sourceName>
<chrec:valueExpression

chrec:resolve="generated">filterSelectBWExpr
</chrec:valueExpression>

</chrec:coreParameter>

. . .

<chrec:expression>
<chrec:name>filterSelectBWExpr</chrec:name>
<chrec:returnType>int</chrec:returnType>
<chrec:expressionString>ceil(log2(CSETCoefSets))
</chrec:expressionString>

</chrec:expression>

Among the most challenging details to encapsulate in an IP
core description standard are parameters and their dependen-
cies. The XML schema introduced in this study fully describes
and resolves these complex dependencies within the XML core
description.

V. INTERFACE SPECIFICATION

One of the biggest challenges to describing IP cores in a
standard way is expressing core interface information. Core
interface descriptions must provide all the necessary infor-
mation for a hardware designer or design tool to correctly
interconnect reusable cores. To address this challenge, existing
core reuse specifications constrain core interfaces to a bus-
based, socket-based or some other standard interface[7], [8].
When core interfaces are constrained to a given interface
standard, core interconnection is greatly simplified. Interface-
constrained cores can simply connect in a Lego-like manner.

In order to achieve independence from pre-defined specifica-
tions, the amount of information needed to completely specify
an interface increases dramatically. The amount of information
needed is vast: connection of datapath signals, correct timing
and interface of control signals, proper distribution of clock
and reset signals, presence or absence of optional ports, depen-
dencies between signals, grouping of signals and much more.
Our XML schema only includes a small subset of the needed
information including Optional Ports, Signal Dependencies,
and Port Grouping.

A. Optional Ports

Some IP cores contain ports or sets of ports that are
present or absent depending on a parameter’s value for that
core. For example, a coregen divider that supports both fixed-
point and floating-point operations has different interface ports
depending on the desired type. Our schema is able to represent
individual ports as well as groups of ports that are added to or
removed from a design based on a parameter. The following
example shows how the presence of a group of optional ports
is described in XML.

<chrec:coreInterface>
<chrec:optionalPorts>



5

<chrec:dependentParameter>
<chrec:parameterName>

CSETDataType
</chrec:parameterName>
<chrec:whenValue>

Fixed
</chrec:whenValue>

</chrec:dependentParameter>
</chrec:optionalPorts>

. . .
<chrec:coreInterface>

In the above example, the ports that are described in this
core interface will be present in the core only if the value
of the parameter CSETDataType is equal to Fixed meaning
that the user wants a fixed point implementation of the core.
The ability to dynamically determine the presence of a port is
essential to interfacing cores.

B. Signal Dependencies
Signal dependencies are part of the basis of timing infor-

mation that must be included in a port’s interface information.
A particular port may be synchronously or asynchronously
dependent on another signal. For example, the data on a port
may only be valid when another signal has a particular value
or data may need to be introduced to a port only when a
related signal is asserted. For a port called DIN, dependency
information is represented in XML as shown below:

<chrec:synchronousDependency>
<chrec:clockName chrec:active="rising">

CLK
</chrec:clockName>
<chrec:dependentSignal chrec:active="high">ND
</chrec:dependentSignal>

</chrec:synchronousDependency>

In the above example the data signal DIN is valid only when
the control signal ND is high and when the clock signal CLK is
on its rising edge. The ability to represent inter-dependencies
between signals is important when these interfaces are to
be connected dynamically by a compiler or another design
environment.

C. Port Grouping
The schema groups ports in XML according to a basic

classification system. Ports are grouped in this way to enable
tools and compilers to deduce basic information about the
function of a port simply because of its grouping. For example,
all clock ports are listed in a clocks group. This enables a tool
to search only one section to find a port with the needed clock
properties instead of having to search and test every port. The
schema classifies ports as shown in the following example.

<chrec:coreInterface>
<chrec:name>main</chrec:name>
<chrec:clocks></chrec:clocks>
<chrec:resets></chrec:resets>
<chrec:controlSignals></chrec:controlSignals>
<chrec:dataSignals>

<chrec:data></chrec:data>
<chrec:address></chrec:address>

</chrec:dataSignals>
</chrec:coreInterface>

As seen in the example, ports are classified as clocks, resets,
control, or data. Further, a data signal may be classified as data

or address. This classification of ports groups the ports in all
interfaces. This simple classification, allows a tool to infer
properties about interfaces that need not be explicitly listed
in XML. For example, a port in the clock section does not
connect to a port listed in a reset section.

In order to be independent of pre-defined interface stan-
dards, the schema faces the challenge of representing a vast
amount of information about each port and interface on a core.
The schema addresses an initial subset of this information
by addressing optional ports, signal dependencies, and port
grouping.

VI. DATA TYPES

The types associated with ports for SoC design are bit-based
types (i.e. aggregates of bits such as std logic vector in
VHDL). While these types adequately represent the low-level
hardware, they do not represent the high-level type information
used within compilers. When IP cores are instanced by a high-
level compiler, raw bit-based signals do not provide enough
information. Instead, detailed high-level type information is
needed for every data signal. These types include integer types,
fixed-point types, floating point types, and other composite
types.

In addition to the need for high-level types for compilers,
this level of typing is needed to correctly connect cores at a low
level. This typing information is important when connecting
two cores that have different types on ports that must be
connected. For example, if a floating-point port on a core needs
to be connected to a fixed point port on another core, there
will need to be a data type conversion and a re-mapping of
bits from floating to fixed point. Data typing is essential to
facilitate this remapping.

Within the XML schema proposed in this work, information
for both the low-level bit-based hardware types as well as the
high-level types is needed in the IP core. The type information
would indicate the exact bit-based representation of the signal
(i.e. bitwidth of the given type including fixed point, integer,
floating point, bit, Boolean and any application-specific type).
It is also important to include support for parameterizable
types that are typically not supported in traditional compilers
(i.e. parameterizable integers, floating point, etc.).

To address this issue, the schema include elements that pro-
vide support for mapping high level and parameterizable data
types to their associated bit-based representation. For example
a customizable fixed point data type would be described in
XML as explained in Table I.

In Table I the element chrec:fixedPoint signifies on a
high level that this is a fixed-point type. The details of this
type are completely described by a bitwidth and a fractional
width, in this case a 16 bit fixed-point number with a 13
bit fractional part. The bit width could also be a parameter
reference and resolve to that parameter’s value. Similarly,
the fractional bitwidth can be a parameter reference which
resolves to parameter value. On the bit level this type is
implemented with a std logic vector whose type is defined
by ieee.std logic 1164.

This XML implementation of typing allows communication
and mapping between high-level and bit-based types. With this



6

TABLE I
XML ELEMENTS AND THEIR VALUES DESCRIBING BOTH HIGH-LEVEL

AND BIT-BASED TYPES.

Typing Information in XML
XML Element Data

Bit Level Type Information
chrec:sourcename std logic vector
chrec:typeDefinition ieee.std logic 1164
chrec:bitWidth 16 (or param)

High Level Type Information
chrec:fixedPoint (element defines type)
chrec:fracBits 13 (or param)
chrec:bitWidth 16 (or param)

information, a compiler could interpret the type of an interface
simply as a high level type without being concerned with the
bit level implementation. This information also facilitates bit
level conversion of types in the interconnection between ports
on different cores. By defining high-level and their associated
bit-based types in a single segment of XML, the schema
provides support for high level compilers as well as low level
verification and synthesis tools.

VII. EXAMPLES

In order to demonstrate the ability of this schema to repre-
sent cores from different environments in a standard way, this
paper includes an example of a coregen FIR Filter core and
a JHDL QPSK core that implements the carrier phase PLL
and rotation (called Carrier Phase PLL and Rotate) that
have been imported into XML. This demonstration includes
creation of a small library of cores by expressing these cores
and several other cores from different environments in XML.
A basic Design Tool is created to demonstrate core parameter
manipulation. Some generators are also created to demonstrate
communication between XML core representations and third
party tools.

A small library is created by expressing several existing
IP cores in XML. The library consists of cores from many
different environments. Figure 3 shows how the XML schema
presented in this study enables cores from different environ-
ments to form a core library. After IP cores are imported into
the XML core library, cores from all environments have a
uniform representation. In this study, the library of XML cores
consists of cores from VHDL, Verilog, Impulse C, coregen,
JHDL, and System Generator.

In addition to representing cores from many different lan-
guages, a simple design tool was created that parses core XML
and creates a custom GUI for each core which provides an
abstracted view of the core. Figures 4 and 6 are examples
of cores loaded into the design tool. On the top right of
the GUI is listed the name of the core as well as keywords
that help to define its function for the user. On the left is
a panel which provides the user with access to parameters
that can be set. If desired the user can create a new instance
of the core with customized parameters and then export the
schema-compliant XML as an instance of the original core.
After manipulating parameters the user can use generators to

Cores

Any 

Language

COREGen

System 

Generator

Impulse C

Verilog

VHDL

XML
Schema

Cores

Any 

Language

COREGen

System 

Generator

Impulse C

Verilog

VHDL

Fig. 3. Cores from different languages and environments are imported into
the standard form represented by the schema.

create implementation files that are needed to use the modified
instance in a design.

A. Xilinx coregen FIR Filter

The Xilinx coregen [5] FIR Filter is an example of a
complex core. It contains multiple complex parameter depen-
dencies, dependencies connected to mathematical expressions,
and optional ports. Figure 4 shows the custom GUI that
is generated by the design tool for this core. Note that in
the figure many of the ports are not present in the pictured
configuration and are represented by empty boxes.

Fig. 4. The GUI core manipulation tool functions as a design tool, interfacing
with core XML and external generators. Here is shown a coregen Filter core.
Note the complexity of the core and the absence of some optional ports.

After the core XML is loaded into the GUI design tool, the
user is able to change the parameters listed as user resolvable
in the parameters section of the XML. As these parameters
change, the GUI updates the visual representation of the
core, enabling or disabling ports, as the parameters and their



7

JHDL

VHDL

Any

Language

IP Cores
Design Tool

XML 
Design

Import GeneratorsJHDL

VHDL

Any

Language

Core Library Vendor Tools

3rd party 
tool

Synthesis

Simulation

COREGen

Compose

Design

Fig. 5. The XML schema allows a design tool to compose designs from cores taken from a library of reusable XML cores. The schema also facilitates
communication between the design tool and third party vendors.

accompanying mathematical expressions require. Parameters
not directly affecting optional ports, such as filter bandwidth,
sampling rate, and number of filter coefficients, can also be
set.

When all parameters have been set to the desired values
for a particular implementation, the user clicks the “Generate”
button. The design tool knows what external tools it has access
to and when it receives the generate command it reads the
core’s XML to determine which of those tools should be run
to implement this core. In this case a VHDL wrapper for the
core is first generated, the design tool then calls the coregen
executable. After coregen has generated the instance of the
core the design tool then synthesizes the core and generates a
bit stream using the Xilinx ISE.

B. JHDL Carrier Phase PLL and Rotate

The JHDL [6] Carrier Phase PLL and Rotate is a much
more simple core than the FIR filter. However, it is important
that the schema supports this core as it demonstrates that the
tools that implement this schema can be completely language
independent and still operate on any core that complies to
the schema. Supporting this type of core contributes to the
development of the schema by requiring extended support of
external files and variables.

Figure 6 shows the JHDL core in its custom GUI. Note that
there is only one user-resolvable parameter, a bitwidth, and
therefore the customization of this core is simple. By simply
changing this parameter in the XML, the design tool is able
to use the schema to tell the JHDL compiler how to set that
parameter in its implementation. Similar to the filter, when
this core is generated a VHDL wrapper is created along with
a netlist and synthesized bit stream.

In both the coregen Filter and the JHDL Car-

rier Phase PLL and Rotate, the design tool is able to
interpret the details of the core, provide user access to needed
parameters, present the user with an abstracted view of the
core, and ultimately create usable implementation files. This
demonstrates the ability of the schema to represent cores from

Fig. 6. Custom GUI displaying here the JHDL Carrier Phase PLL and Rotate.
Note the simplicity of this core compared with Figure 4

different environments, their complex parameter dependencies,
and other details and communicate these to a design tool
independent of the actual implementation of the core.

VIII. CONCLUSION

This paper introduces an XML-based approach to encapsu-
lating the details of reusable IP cores for reconfigurable com-
puting. This work builds upon the IP-XACT specification [7]
which describes IP cores for SoC design. The XML schema
introduced in this study differs from IP-XACT in the way
that it addresses core interfaces, data types, and parameter
dependencies.

This study demonstrates how the XML schema introduced
can be used to represent cores from different environments.
These XML cores form a library of reusable cores. This study
also demonstrates how a generic design tool can use the XML
schema to manipulate cores and communicate with third party
tools.



8

Future studies will demonstrate how this specification can
be used to enable design composition. Figure 5 shows how a
generic design tool could be used to create designs built from
cores imported from an XML core library. The design tool
would also communicate with third party tools in a standard
way in order to simulate and synthesize designs.

Future studies will also investigate how this specification
can be used to enable interface synthesis. In order for IP cores
to be used together to create a design, their interfaces must
be correctly interconnected. Future studies will investigate how
this interconnection can be automated by a design tool or high
level language.

REFERENCES

[1] Scott Hauck and Andre DeHon ed. Reconfigurable Computing: The
Theory and Practce of FPGA-Based Computing. Morgan Kauffman,
2007.

[2] B.W. Boehm. Managing software productivity and reuse. In IEEE
Computer, volume 32, pages 111–113, September 1999.

[3] Annette Reutter and Wolfgang Rosenstiel. An efficient reuse system for
digital circuit design. Technical report, University of Tubingen, 1999.

[4] Roberto Passerone and James A. Rowson. Automatic synthesis of
interfaces between incompatible protocols. In Proceedings of the 35th
Design Automation Conference (DAC 1998), pages 8–13, June 1998.

[5] Xilinx, Inc. CORE Generator Help, 2007.
[6] P. Bellows and B. Hutchings. JHDL - An HDL for reconfigurable systems.

In IEEE Symposium on FPGAs for Custom Computing Machines, page
175, 1998.

[7] SPIRIT consortium. IP-XACT v1.4: A specification for XML meta-data
and tool interfaces, 2008.

[8] Wolf-Dietrich Weber. Enabling reuse via an IP core-centric communica-
tions protocol: Open core protocol. Technical report, Sonics, Inc., 2000.


