
Multi-bit Fault Injection for FPGAs with SPFI

Grzegorz G. Cieslewski, Adam Jacobs, Alan D. George, and Ann Gordon-Ross

NSF Center for High-Performance Reconfigurable Computing (CHREC),

ECE Department, University of Florida

SRAM-based FPGA devices are an attractive option for on-board data processing

on space systems due to higher computational capabilities and a lower power envelope

than traditional processing devices. However, FPGAs present unique reliability verifi-

cation challenges because single-event upsets (SEUs) can trigger both data errors and

configuration memory errors, which may cause deviations from the expected system

functionality. To evaluate system reliability, traditional fault-injection testing uses nu-

merous test vectors to observe effects induced by a change of a single configuration

memory bit at a time. This single-bit fault-injection (SBFI) methodology provides

high fault coverage and testing repeatability, but requires long fault-injection time due

to the large number of test vectors required to verify the entire design’s functionality.

Long injection times are further exacerbated as configuration memory size and de-

sign complexity increase. To shorten injection time, we propose our Simple, Portable

Fault Injector platform for FPGAs (SPFI-FPGA) used in tandem with a novel multi-

bit fault-injection (MBFI) methodology which modifies multiple configuration memory

bits, referred to as a batch, during each test. We optimize our proposed methodology

to efficiently detect the faulty bits within a batch, adaptively select the optimal batch

size, and optimize the fault-injection sequence based on the design’s placement. Using

relevant case studies, SPFI-FPGA augmented with MBFI methodology reveals up to

49.7× speedup in fault-injection time.

1



I. Introduction

State-of-the-art space systems employ new sensor technologies that collect more data than can

be transmitted back to the base station. The bottleneck is caused by limited transmitter power

and bandwidth, target visibility, and high transmission latency. On-board data processing can mit-

igate these limitations by performing more data processing on the system before transmitting the

smaller, processed results. Since traditional CPU-based technologies often cannot meet the increas-

ing high-performance computing demands for space systems, reconfigurable computing, dominated

by field-programmable gate arrays (FPGAs), provides an attractive and powerful alternative, of-

fering advantages in performance, energy efficiency, size, and adaptability. However, since FPGAs

store system functionality in configuration memory, they present unique reliability and fault-testing

challenges with respect to single-event upsets (SEUs).

In order to mitigate SEUs, space systems typically employ radiation-hardened devices. How-

ever, the radiation-hardening process results in smaller, slower, and more expensive devices than

commercial-off-the-shelf (COTS) counterparts. Even though COTS devices provide unprecedented

levels of flexibility, they are susceptible to SEUs caused by high-energy particles, which can cause

data corruption and device latchup. Unfortunately, SRAM-based FPGAs are particularly sus-

ceptible to SEUs as compared to non-reconfigurable devices because SEUs can additionally cause

configuration memory errors, which can result in deviations from the expected system functionality.

In order to leverage the benefits afforded by FPGAs and maintain high system reliability, tradi-

tional and innovative fault-tolerant (FT) design methodologies are required as well as an effective

fault-testing methodology.

Fault testing is the process of evaluating system or device reliability. Previous work proposes

numerous fault-testing methodologies, ranging from simulation and fault injection to physical radi-

ation testing, but no single method has provided an optimal solution with respect to fault-testing

speed and fault coverage. The predominant injection methodology for non-reconfigurable devices

modifies device memory elements, such as cache and registers, and observes the resulting changes in

device functionality. FPGA fault injection is similar in basic principle, but since the configuration

memory stores the system’s functionality, the configuration memory accounts for the majority [1]

2



of all susceptible bits, and should therefore be the focus of FPGA fault-testing.

Traditional injection methodologies use single-bit fault injection (SBFI), where a single con-

figuration memory bit is altered during each test. However, since injection time increases as the

configuration memory size increases, FPGA injection time is becoming prohibitively long, mak-

ing comprehensive fault-injection testing nearly impossible. Alternative methods decrease injection

time using statistical sampling to select a subset of configuration memory bits to test, as opposed to

the entire configuration memory, and use confidence intervals to show bounds on the susceptibility

estimate for the entire device. However, an accurate susceptibility prediction with a tight confidence

interval requires a large number of samples, which may still result in long injection times.

In this paper, we propose a new Simple, Portable, Fault Injector platform for FPGAs (SPFI-

FPGA) in conjunction with a novel multi-bit fault-injection (MBFI) methodology, which signifi-

cantly decreases injection time as compared to traditional reliability verification techniques. SPFI-

FPGA performs fault injection using a mix of full reconfiguration (FR) and partial reconfiguration

(PR) that minimizes the time required to modify configuration memory and improves fault-injection

speed. Our MBFI methodology mitigates the effects of increasing configuration memory size and

large test-vector sets by modifying multiple bits, called a batch, in configuration memory during each

test. We optimize our methodology to efficiently detect faulty bits within a batch, adaptively select

the optimal batch size, and optimize the fault-injection sequence based on the design’s placement.

SPFI-FPGA currently supports the Xilinx Virtex-4, Virtex-5 and Virtex-6 FPGA families, however

the methodologies proposed in this paper are applicable to a wide range of FPGA devices. Using

relevant case studies, our SPFI-FPGA platform augmented with MBFI methodology reveals up to

49.7× speedup in injection time as compared to SBFI.

The remaining sections of this paper are organized as follows. Section 2 surveys previous work

related to fault injection and testing. Section 3 provides an overview of SPFI-FPGA, SBFI and

testing methodologies. Section 4 details our proposed MBFI methodology and optimizations to

decrease the injection time. In Section 5, we evaluate testing performance (injection time) of SPFI-

FPGA augmented with our MBFI methodology. Finally, Section 6 provides conclusions and outlines

directions for future work.

3



II. Background and Related Research

SRAM-based FPGAs are commonly used in space systems. FPGAs improve performance and

reduce component overhead for many applications as compared to non-reconfigurable space-qualified

parts. In addition, an FPGA’s reconfigurable architecture facilitates quick, on-site design changes,

which alleviates the design-time impacts of late-stage design bugs and system functionality additions,

and provides the ability to repurpose system functionality after deployment. In this section, we first

briefly review FPGA architectural fundamentals and reconfiguration methods, which form a basis

for understanding our fault-testing methodology. Next, we discuss how radiation affects FPGAs

and various existing fault-injection tools to study these effects. We note that, for the remainder of

this paper, we will focus on Xilinx FPGAs (and Xilinx-based terminology) because these FPGAs

are predominately used in space systems with support for PR. However, even though we focus on

Xilinx FPGAs, our analysis and injection methodologies can be generalized to any FPGA.

A. FPGA Architecture

A Xilinx FPGA’s architectural resource types include configurable logic blocks (CLBs) and

specialized cores (BlockRAMs, multipliers, etc.) that are linked by a programmable on-chip inter-

connect. CLBs consist of relatively small components including look-up tables (LUTs), multiplexers,

flip-flops (FFs), and supporting structures composed of basic logic gates, which enable implemen-

tation of complex logic functions. The on-chip programmable interconnect is a grid of switchboxes

linked by wire segments of various lengths. Each switchbox integrates a large number of pro-

grammable switches allowing for custom routing of signals between CLBs and specialized cores. An

FPGA’s configuration memory is reconfigured using a full bitstream, which contains the logic and

routing configuration as well as initial values for the BlockRAMs and FFs. The majority of a full

bitstream’s bits are responsible for switchbox configuration, followed by the BlockRAMs and other

components [2, 3] An FPGA can be reconfigured via FR or PR. FR uses a full bitstream file that al-

ters all of the configuration memory, while PR uses a partial bitstream file that alters only a portion

of the configuration memory. A frame, the smallest programmable unit that a partial bitstream can

alter, contains 1312 bits. Since modifying a single configuration memory bit requires reprogramming

4



an entire frame, injection time can be lengthy for SBFI methodology. FPGA configuration memory

is logically divided into the top and bottom halves, which are mirror images of each other, and each

half is divided into a series of rows and columns that form a coarse grid. The frame address, used

to uniquely identify each frame, reflects this organization and consists of a top/bottom bit, block

type, row, column, and minor addresses. Minor addresses describe the location of a frame inside

each grid rectangle. Different FPGA models will have different ratios of rows, columns, and block

types to reflect various device sizes and specializations. The device geometry describes the details of

a particular FPGA model and provides mapping information detailing each frame’s function (e.g.,

IOB, CLB, DSP, BlockRAM) and allows for a coarse classification of the bits in each frame. FPGAs

can be reconfigured using a variety of interfaces [4, 5]. The JTAG port is the most commonly used

reconfiguration and debugging interface since it is simple and available on most devices. However,

JTAG speed is limited due to serial communication and the ability to daisy-chain multiple devices.

Since this speed limitation is not suitable for systems that require rapid configuration for fast system

bootup, the SelectMAP port is a faster alternative. SelectMAP offers a higher configuration speed

due to a higher clock rate and a dedicated parallel connection.

B. Radiation Effects

While all space systems are vulnerable to radiation-induced faults, an FPGA’s reconfigurable

nature makes it more susceptible. SEUs, which cause transient faults in FFs and BlockRAMs, are

similar to upsets on fixed-logic platforms and can lead to data corruption or single-event functional

interrupts (SEFIs), where a device or design can enter an unexpected operating state. However,

configuration memory faults are unique to FPGAs, as the function of the logic and interconnection

network is controlled by the configuration memory. Configuration memory faults can lead to un-

predictable application behavior due to broken connections, the formation of new connections, or

changes to the LUTs that describe the logical functions. Radiation effects on reconfigurable FPGAs

can be emulated by modifying the configuration memory’s bits. Previous work showed that the vast

majority of errors on FPGAs were attributed to SEUs in the configuration memory [1] and not errors

in the embedded FFs, as the FFs represents only a small fraction of the total configuration memory

5



bits. For example, in the Virtex-4 SX55, the configuration memory’s size (not including BlockRAM)

is 15.4 million bits and the total number of FFs attached to slices is approximately 49,000 bits, thus

making configuration memory upsets over 300 times more likely [6] than FF upsets. In order to

investigate the effects of faults on FPGAs, effective fault-injection tools are required.

C. Fault-Tolerance Methods

To mitigate SEU effects in space systems, fault-tolerant FPGA designs use a variety of fault

tolerance methods to improve reliability. The most popular and overhead-intensive method is triple-

modular redundancy (TMR). TMR uses three identical replicas of the same module (design) working

in lock step. The outputs of these models are compared using a majority voter to mask errors

affecting any single module. TMR has a very high overhead (greater than 200%) because of the

module replication and addition of the voter. There are two primary TMR variations: external

and internal. External TMR uses three independent FPGAs connected to a reliable fourth device,

which acts as the majority voter. Internal TMR places all replicated modules and the majority voter

onto single FPGA. Whereas external TMR is more reliable than internal TMR because of a lack

of a single-point of failure, external TMR requires more devices, power, and physical space [7]. To

repair fault modules, TMR is usually augmented with a configuration scrubbing technique, which

continually checks configuration memory for SEU-induced errors. The scrubber verifies configuration

memory by reading the contents of the configuration memory and verifying embedded checksums

or comparing it to the full bitstream file. When the scrubber detects a configuration memory error,

it corrects the affected bit and signals the affected TMR module to resynchronize with the rest of

the system.

Some lower-overhead, fault tolerance alternatives to TMR include (but are not limited to) self-

checking pairs (SCP) [8], error-correcting codes (ECC), and algorithm-based fault tolerance (ABFT)

[9, 10]. Many of these alternative techniques can detect errors quickly, but may require additional

processing or re-computation to correct the errors.

6



D. Fault-Injection Platforms

Several injection platforms have been proposed in literature in recent years. Most of the pro-

posed work is focused on reducing injection time by specializing hardware, which can limit the tool’s

portability and reusability.

Johnson, et al. [11] proposes an upset simulation methodology that uses a specialized platform,

SLAAC-1V, consisting of two identical FPGAs (Virtex XCV1000s) executing in parallel and a voter

to compare the FPGAs’ outputs. One FPGA is configured using a corrupted bitstream, the other

FPGA is configured with the original bitstream, and both FPGAs are supplied with the same input

vectors. A difference in the FPGAs’ outputs indicates that the corrupted bitstream causes a change

in the configuration memory that enables an undesirable effect. This platform’s custom, parallel

architecture allows for high-performance testing and does not require golden standard (expected,

fault-free outputs) to verify correct functionality tested FPGA.

The Xilinx Research Test Consortium (XRTC) platform [12] uses a base motherboard from

SEAKR Engineering with a daughter-card containing an FPGA as the device-under-test (DUT).

The motherboard contains two FPGAs that monitor the DUT’s functionality and verify the DUT’s

outputs against a golden standard. Fault injection is performed through the JTAG port using

an external computer or, in later versions, is integrated into the motherboard over the SelectMap

port [6]. Even though the XRTC platform offers high performance, obtaining the golden standard

requires a two-step testing approach where the first execution establishes the golden standard and

the second execution determines the effects of the fault. However, like the SLAAC-1V platform,

the XRTC platform uses specific hardware and custom boards and cannot be used with any other

FPGA devices without a significant redesign.

Violante, et al. [13] proposes a System-on-Chip (SoC) platform and a split design that divides

the FPGA (both physically and logically) into the unit-under-test (UUT) and supporting logic

consisting of an embedded PowerPC, a timing unit, and an Internal Configuration Access Port

(ICAP) controller. The tested logic is placed in the UUT and constrained to a portion of the

FPGA to allow for PR. The supporting logic performs the fault injection using user-supplied test

vectors (comprised of input data and the corresponding golden standard), which are stored on the

7



FPGA, and collects the results. This fault-testing method outperforms both the SLAAC-1V and

the XRTC platforms in terms of performance due to the high-speed internal ICAP controller for

PR and storage of the test vectors on the FPGA, which eliminates slow off-chip transfers. Although

this tool is suitable for testing individual design components, the split design limits applicability

and does not allow for standalone system testing. Additionally, available on-chip memory limits

test vector sizes and the UUT is constrained to only resources not used by the supporting logic.

The Virtex-II SEU Emulator (V2SE) [14], which is similar to the XRTC platform, uses the

SelectMap port for high-speed fault injections in combination with COTS and custom-designed

hardware. Whereas the SelectMap port allows for fast reconfiguration, it is not as popular as the

JTAG port and thus is not present on all devices.

III. SPFI-FPGA

SPFI-FPGA [15] is a flexible fault-injection platform for Virtex-4 and Virtex-5 FPGAs that tests

the behavior of designs subjected to configuration memory faults. SPFI-FPGA is a subplatform

of the larger SPFI platform that is targeted at system-level testing for various devices, including

FPGAs, CPUs (e.g., PowerPC), and many-core devices (e.g., TILE64) [16]. SPFI provides maximum

portability across a wide range of systems and enables high-performance, in-system testing. While

SPFI-FPGA’s performance is important, we avoid custom approaches that improve SPFI-FPGA’s

performance at the expense of limiting the platform’s portability.

A. SPFI-FPGA System Architecture

Figure 1 shows SPFI-FPGA’s high-level system architecture divided into three major software

components: campaign generator (CG); management engine (ME); and test generator program

(TG). The CG and ME execute on a host computer attached to the FPGA while the TG can be

split between the host computer and the FPGA. Based on user parameters and the design’s bitstream

files, the CG generates a fault-injection campaign (FIC) file containing information necessary for

the ME to identify the injection locations. During injection testing, the ME communicates with the

FPGA over the programming interface (PI) to inject and remove faults, while the TG communicates

8



over the testing interface (TI) to assess the functionality of the FPGA.

User
Parameters

Campaign
Generator (CG)

Management
Engine (ME)

CG
Parameters

Runtime 
Parameters

Fault−Injection
Campaign (FIC) File

Verification Results

Results
Database

FPGA
(Virtex−4,5)

Test Generator (TG)
Program

Test
Interface (TI)

Programming
Interface (PI)

Bitstream Files

Specialized Directives

Fig. 1: Block diagram of SPFI-FPGA’s high-level system architecture. Primary software

components, highlighted in grey, execute on a PC attached to the FPGA (functionality of the TG

program may be partitioned between PC software and hardware wrapper on the FPGA).

The CG is the primary interface between user and the ME. The CG creates the FIC file based

on user-specified parameters and automatic analysis of the design bitstream files. The FIC file

contains injection locations (configuration memory addressing information for the injection bits)

and an optional frame offset, which allows for fast localization of injection bits in the bitstream file

by the ME at the time of injection.

User-specified parameters include fault-injection area, resource type, and number of bits to be

tested. Users specify rectangular injection areas using two frame addresses to denote the rectangle’s

diagonal vertices and the type of the resource to be tested. If the user-specified area contains more

configuration bits than the number of bits in the campaign, the CG chooses which bits to test based

on a random sampling of the injection area. In cases where the user wants to test a particular

set of bits, the CG can be bypassed and the user can directly create the FIC file. Automatic

bitstream analysis increases SPFI-FPGA’s portability by eliminating the need for a device database

describing the geometry of each supported device. The device geometry describes the mapping

9



of a frame address to the approximate logical location on the device, which provides information

about each frame’s function (e.g., IOB, CLB, DSP, BlockRAM) and is used to decode the frame

addressing scheme in the full bitstream file. The ME performs bitstream analysis by correlating the

full bitstream file and the debug bitstream file generated by the Xilinx BitGen tool [17]. Similarly

to the full bitstream file, the debug bitstream contains all of the frames required to initialize the

device, however each frame in the debug bitstream file is clearly delimited and tagged with the frame

address. The functional classification of each frame is performed using a two-pass approach. During

the first pass, the ME uses the block type portion of the frame address to distinguish the frames

containing the BlockRAM contents from other frames. The second pass counts the number of minor

frames in row/column intersection. Each type of resource has a distinct number of minor frames

required for programming, which allows the ME to perform functional classification. More detailed

classification of bits in the bitstream requires detailed knowledge of the proprietary structure of the

FPGA which is not publicly available.

The ME orchestrates SPFI-FPGA’s main operation and is responsible for campaign manage-

ment, FPGA monitoring, fault insertion and removal, and data logging. The ME’s primary inputs

are the design’s bitstream files (full and debug bitstreams), the FIC, and user-specified ME runtime

parameters. The ME runtime parameters allow users to control the type of campaign management

used as well as various timeout mechanisms.

The ME’s campaign management determines the order in which the faults are tested and orches-

trates functionality verification. Ordering of the fault locations in the FIC file does not determine

the runtime injection order. The ME employs different injection methodologies that change the

injection order to improve the performance of testing. The TG performs functionality verification,

when requested by the ME, using specialized directives stored in environmental variables. These di-

rectives specify the temporary storage location and basic state information about the ME (injection

time, current fault locations, and iteration number). In addition to specialized directives, the ME

can pass optional arguments to the TG as directed by the user. The TG returns the functionality

verification results to the ME, which directs the ME’s next steps as dictated by the current injection

methodology. The injection results collected by the ME and the TG are logged in a results database,

10



which the user can use for detailed off-line statistical analysis.

The PI facilitates FPGA monitoring and programming and the ME provides a flexible ap-

plication programming interface (API) for a variety of PIs. Since the JTAG port is available and

accessible on most platforms, it serves as the primary PI, however a high level of abstraction in SPFI-

FPGA’s architecture provides an easy and modular way for incorporating specialized PIs, such as

SelectMap. The ME inserts and removes faults from bitstreams by automatically generating partial

bitstream files with data frames that modify the appropriate configuration memory.

The TG verifies the FPGA’s functionality and provides the verification results as feedback to the

ME. To maximize flexibility, the TG is a user-defined, plug-in application that communicates with

the FPGA using the test interface (TI). The user must carefully define the TG since improper TG

design can result in misclassification of injected faults and introduction of false-positives and false-

negatives. The TG’s complexity can vary widely due to design choices and system architecture.

The simplest version can leverage the FPGA system’s built-in self-test (BIST) feature to enable

verification with little TG interaction. After the BIST completes, the test results are transferred

back to the TG, which are forwarded on to the ME. The more complex TG version requires the TG

to generate a set of test vectors to be transferred to the FPGA for self-testing. The results produced

by the FPGA are transferred back to the TG to verify correctness. The most complex version of TG,

divides the functionality between the PC host computer the design wrapper on FPGA. The wrapper

is responsible for generating/storing test vectors and interfacing with the tested design, while the

computer component of the TG is responsible for interfacing between wrapper and the ME. Such

divided design can greatly reduce verification time as the test vectors can be stored directly on the

FPGA.

B. Single-Bit Injection Methodology

Figure 2 depicts our single-bit fault-injection (SBFI) methodology, which leverages SPFI-FPGA

and focuses on portability and correctness as well as performance and repeatability. Similarly to

previous FPGA injection techniques [11–13], SBFI tests the vulnerability of a single configuration

memory bit at a time. Since the main portability consideration is the type of configuration interface,

11



the JTAG port is the primary programming interface (testing methodology is the same regardless

of programming interface).

Get next
fault location

Generate partial 
faulty and non−faulty

bitstreams

Inject fault via PR
(optional reset)

Verification

Observable
errors?

Repair fault via PR
(optional reset)

Designate fault
as benign

Retest?

Repair fault via FR
(mandatory reset)

Designate fault
as malicious

Yes

No

Recovery Procedure

Yes No

Read FIC

Last fault location?

Generate FIC file End

Yes

No

Fig. 2: SBFI methodology. Dark-grey action is performed by the CG, white actions by ME, and

light-grey actions by TG.

Our SBFI methodology provides high-performance injection using a mixture of PR and FR

techniques. Before the injection starts, we use CG to generate the FIC file. At runtime, the ME

reads all of the fault locations from the FIC and recovers all the necessary frames from the debug

bitstream file. The injection process starts when the ME selects a fault location to be tested. The

fault is inserted by inverting the specified configuration memory bit into the configuration frame with

corresponding address. Next, the ME generates two partial bitstreams: a faulty partial bitstream

with the inverted configuration memory bit; and a non-faulty partial bitstream with the correct

configuration memory bit. Due to limitations of Xilinx bitstream format, both partial bitstreams

12



contain a whole frame in order to inject a single fault. Using the faulty partial bitstream the ME

uses PR to inject the fault into the FPGA. To increase fault-testing coverage, the FPGA’s internal

execution state can be reset after injection using a reset option in the user-specified ME runtime

parameters. Resetting the FPGA before verification enables the design’s startup behavior to be

tested with respect to the injected fault; alternatively if the design is not reset, changes to the

startup behavior might not be detected. However, in cases when the startup behavior is lengthy

and will be performed infrequently in the final design, the user may opt to not reset the FPGA to

improve testing performance. The TG verifies the FPGA’s operation and, based on the outcome

of the operation (observable errors detected in the output), an appropriate recovery procedure is

taken. If the TG does not observe an error, the FPGA is reconfigured with the non-faulty partial

bitstream to repair (remove) the faulty bit, and the injected fault is designated as benign. If the TG

detects an observable error, FR is used to repair and reset the FPGA to a nominal state. The faulty

bit is then retested to remove any bias introduced by false positives that can occur due to multiple

PRs, lack of testing coverage in the TG, or inconsistent behavior of other devices attached to the

FPGA. If the TG detects errors during both tests, the injected fault is designated as malicious. The

process loops to the fault location selection and is repeated until all the faults specified in the FIC

are tested.

The performance (execution time) of our SBFI methodology can be approximately modeled as

tsbfi = tpr + tv + pe(2tfr + tpr + tv) + (1− pe)tpr + tc (1)

where: tsbfi denotes the average execution time for one injection; tfr and tpr denote the full and

partial reconfiguration times, respectively; tv denotes the TG’s verification time; susceptibility de-

noted as pe is the probability that the injected fault will be manifested as an observable error; and

tc denotes the constant software overhead per injection. The tsbfi is strongly dependent on the TG’s

performance as well as the PI’s speed.

C. Fault-Testing Methodologies

We propose two fault-testing methodologies based on the tested design’s architectural layout

and source of input stimulus. Module-level injection (Figure 3a) tests small modules that require

13



input data to be explicitly provided, whereas system-level injection (Figure 3b) tests standalone

systems that interface directly with external components.

FPGA

System Board

FPGA

Other
Comp.

FPGA

System Board

FPGA
Module
Design

Other
Comp.

Other
Comp.

TG Wrapper
Test Vectors

TG

ME

TI

PI

PC

(a) Module-level Injection.

FPGA

System Board

FPGA

TG
Test

Vectors Other
Comp.

FPGA
ME

System Board

FPGA

System
Design

Other
Comp.

Other
Comp.

TI

PI

PC

(b) System-level Injection.

Fig. 3: SPFI-FPGA testing methodologies.

Module-level injection is most suitable for small designs (module designs) that do not interact

with any external components and occupy only a fraction of the FPGA. Such module designs

typically have reduced complexity requiring fewer test vectors as compared to larger, more complex

designs. The remaining FPGA area can be used to offload most or all of the TG’s features from

the attached host computer (PC, laptop) in the form of a TG wrapper. The TG wrapper consists

of test vectors stored in the remaining BlockRAMs, TG interface, logic required to pass the test

vectors to the tested design module, and comparison logic required to verify the module outputs

against a golden standard. The functionality allowing the TG to interface with the ME as well as

the interface to the TG wrapper remains on the host computer. Module-level injection increases

injection performance by reducing or removing the communication delay between the TG and the

FPGA via the TI.

System-level injection is most suitable for complex system designs that occupy the majority

of the FPGA and are integrated with other external components (e.g., SDRAM, network, ADCs).

For these large designs, a full-featured TG wrapper cannot fit on the remaining FPGA area, all

of (or the majority of) the TG executes on the host computer and communicates with the system

design via the TI, which might not be directly attached to the FPGA but instead to an intermediary

device (microcontroller, etc.). In addition of providing the input vectors and verifying the FPGA’s

output, the TG could be used to initialize the FPGA during boot-up, perform BIST, or trigger

14



the computation on the system. System-level injection allows observing the response of the entire

system to the FPGA faults and can be used for testing complete space systems prior to deployment.

D. Fault-Injection Bottlenecks

We designed SPFI-FPGA to be portable across a variety of FPGA types and systems; however

increasing portability generally decreases injection performance due to many bottlenecks affecting

the injection process. The JTAG port is SPFI-FPGA’s main performance bottleneck. Even though

JTAG is available on most platforms and provides additional FPGA debugging features (boundary

scan, device reset) that are not available for other PIs (e.g., SelectMAP, SlaveSerial), JTAG has

limited communication speed (serial interface), limited clock rate, and in many cases the perfor-

mance characteristics of the software/hardware interface between host computer and the JTAG

programming cable are poor.

Additionally, the TG limits SPFI-FPGA’s performance. A comprehensive and representative

test-vector set for a complex module can be very large and require lengthy verification time that

can be many orders of magnitude greater than injection time [18]. In the module-level testing

methodology, storing test vectors onboard the FPGA can mitigate injection time.

The error rate, regardless of the testing platform, can also create a performance bottleneck.

Error rate influences SPFI-FPGA’s performance because the taken recovery procedure, and thus

recovery time, is dictated by the TG’s verification results. When the TG detects an error, the

FPGA is fully reconfigured and the location is retested, whereas if the TG does not detect an error,

the FPGA is partially reconfigured to remove the faulty bit. Since FR is very time consuming

as compared to PR, the recovery procedure for observable errors can take an order of magnitude

longer to execute. Fortunately, this bottleneck is not as prominent when testing the susceptibility of

fault-tolerant designs, as the error rate is usually very small, causing only a few full reconfigurations.

Most FPGA’s are equipped with an on-board FLASH subsystem that stores the initial full

bitstream for rapid FPGA reconfiguration (fast FR). Therefore, to reduce the time required to

perform FR when the TG detects an error, SPFI-FPGA leverages this subsystem to improve overall

injection performance. Fast FR can be triggered using two mechanisms: a specialized JTAG signal;

15



or a command issued to the subsystem. Commands to the subsystem are issued via a user-provided

custom plug-in program, which interfaces with the FPGA.

IV. Multi-Bit Fault Injection

The main goal of any fault-injection system is to provide timely and accurate susceptibility

characterization of a given design and device (high injection performance), while maintaining porta-

bility. Unfortunately, many bottlenecks affect the achievable injection performance. One method

for achieving a high injection rate is to modify a portion of the injection platform to remove bot-

tlenecks. In particular, a modified PI can greatly improve the injection performance by decreasing

FR and PR times, however, these modifications require major changes to the injection platform

components, resulting in customized hardware that is tied to the particular platform (or narrow

set of platforms) being tested and thus decreases portability. Alternatively, injection performance

can be increased by decreasing the total number of required injection operations while maintaining

the quality and fidelity of the injection results. Our methodology is inspired by multiple-bit upsets

(MBUs) [19], which are caused by cosmic radiation, and occur when multiple faults are introduced

due to an interaction with a single cosmic ray.

In this section, we propose a MBFI methodology that reduces the number of fault injections by

coalescing multiple, single-bit injections into a single multi-bit injection, called a batch and uses both

FR and PR and leverages SBFI methodology concepts. MBFI methodology yields identical results

as compared to SBFI while significantly increasing the fault-injection performance. Subsection IVA

describes the details of the proposed methodology and the modifications to SPFI-FPGA to support

this methodology. Subsection IVB presents an optimization strategy that alters the order in which

faults are injected to improve performance. In Subsection IVC, we show an algorithm for dynamic

batch optimization and in Subsection IVD we discuss how to effectively apply our methodology to

TMR designs.

A. Multi-Bit Injection Methodology

Figure 4 depicts our MBFI methodology as integrated into SPFI-FPGA. Initially, similarly to

SBFI, the CG creates an FIC file. To ensure that bits in a batch belong to different CLBs, the

16



ME preprocesses the fault locations stored in the FIC file by first partitioning the fault locations by

frame address (excluding minor address bits) into bins, where each bin’s members are constrained by

the same row/column address combination. Since fault locations in the FIC are selected randomly,

some row/column addresses may occur more frequently than others, causing uneven partitioning

which can lead to suboptimal batch selection. After preprocessing is completed, the ME begins

injection by generating a batch. To generate a batch, the ME selects a single bit from each bin

until the desired number of fault locations (batch size) is reached. Since each batch generation

removes fault locations from the bins, if the batch size exceeds the number of non-empty bins,

the resulting batch size is simply decreased to match the number of non-empty bins. To mitigate

the uneven partitioning resulting from initial selection and removal of fault locations during the

batch generation, the ME sorts bins in order of descending number of members before starting each

batch generation process. The combination of preprocessing and sorting allows the batch generation

process to maintain the user designated (static) batch size through as much of the FIC as possible.

Following the batch generation process, the ME creates both the faulty and non-faulty partial

bitstreams. The faulty partial bitstream combines all of the required frames associated with all of

the faulty bits specified in the batch, and the faulty bits are inverted. The number of faulty bits

affects the reconfiguration time, since the reconfiguration time increases linearly with the number of

configured frames and the number of frames in the bitstream is equivalent to the number of faults

injected.

The TG’s verification procedure is similar to single-bit injection, except in the case where an

observable error is detected. We use a binary search algorithm with branch and bound, depicted in

Figure 5, to detect faulty bits that caused the error. The binary search recursively divides the batch

into two sub-batches. Each sub-batch is separately tested using multi-bit injection and branch and

bound prunes the sub-batches that do not produce an error. This search process continues until

bits that caused the error are determined. The example in Figure 5 shows a batch of size 16 with a

single faulty bit. It takes 9 tests in total to detect the faulty bit.

17



Read FIC
FIC preprocessing

Last fault location?

Generate FIC file End

Yes

No

Yes

Get next batch 
or sub−batch

of fault locations 

Generate partial 
faulty and non−faulty

bitstreams

Inject fault via PR
(optional reset)

TG Verification

Observable
errors?

Repair fault via PR
(optional reset)

Designate faults
as benign

Repair fault via PR
(mandatory reset)

Divide batch into 
two sub−batches

Test using single−bit
FI methodology

Yes

No

Recovery Procedure

Test each sub−batch
recursively

Batch
Length = 1?

No

Fig. 4: Multi-bit injection methodology. Dark-grey, white, and light-grey components are part of

the CG, ME, and TG, respectively.

B. Campaign Sequence Optimization

Bitstreams contain considerably more ‘0’ bits than ‘1’ bits because no design can take full ad-

vantage of the interconnect fabric in an FPGA. Our experimental results revealed that the majority

of observable errors are caused by ‘1’ to ‘0’ transitions as opposed to ‘0’ to ‘1’ transitions. Since the

majority of the FPGA’s configuration bits are responsible for routing signals, ‘1’ to ‘0’ transitions

are more likely to affect signal routing. In Xilinx FPGAs, switchboxes not used for routing contain

only ‘0’ bits and switchboxes that are used for routing contain some ‘1’ bits. Therefore, ‘0’ to ‘1’

transitions can create short circuits and ‘1’ to ‘0’ transitions can create open circuits (i.e., ‘0’ to ‘1’

18



0−7

0 1 2 43 5 6 7 8 9 10 11 12 13 14 15

0−7 4−5 6−7 8−9 10−11 12−13 14−15

0−3 4−7

0−1 2−3

0−7

0−15

8−11 12−15

8−15

Successful TG 
verification

Failed TG verification

Not tested

Decision to test the 
sub−batch

Decision to prune the 
sub−batch

0−1 3

2−3 2

4−5 4

Fig. 5: Example decision tree used by binary search algorithm to determine faulty bits in a batch.

The numbers inside nodes indicate range of bits in the current sub-batch. Circular nodes indicate

batch tests while square nodes indicate single-bit tests.

transitions can create new, but unused signal routing, and ‘1’ to ‘0’ transitions can break required

signal routing).

Based on this observation, campaign management can improve fault-testing performance by

optimizing the sequence of tested bits based on the outcome of the bit upset (‘1’ to ‘0’ or ‘0’ to ‘1’).

If ‘0’ to ‘1’ transitions are grouped at the beginning of the campaign and ‘1’ to ‘0’ transitions are

grouped at the end, the fault distribution can be skewed from a uniform scattering throughout the

campaign to a low-concentration area where faults are less likely to occur (at the beginning of the

campaign) and a high-concentration area (‘1’ to ‘0’ transitions at the end of the campaign). Cam-

paign sequence optimization (CSO) increases the fault-testing performance for larger batch sizes.

CSO is implemented in SPFI-FPGA by augmenting the FIC preprocessing and batch generation

process. In addition to partitioning the fault locations into bins, each bin is sorted where the ‘0’ to

‘1’ transitions are selected first during the batch generation process. During the batch generation

process, the ME selects ‘0’ to ‘1’ transitions first, until none are available, then it starts selecting

the ‘1’ to ‘0’ transitions.

C. Dynamic Batch-Size Optimization

The main difficulty the user experiences using MBFI methodology is determining a static batch

size to obtain the best injection performance. However, there is no single, optimal batch size since the

optimal batch size is dependent on the type and complexity of the design being tested. Suboptimal

19



batch sizes can result in decreased injection performance, but determining the optimal batch size is

difficult and requires a detailed timing model of SPFI-FPGA and prior knowledge of the design’s

characteristics. Determining the optimal batch size is further complicated by designs employing

FT techniques, since a detailed knowledge of the design’s sub-modules and the susceptibilities of

each sub-module are needed. Additionally, smaller than optimal batch sizes increase the number of

batch tests, and larger than optimal batch sizes increase the number of false-positive batch tests.

However, false-positive batch tests do not affect the outcome of the fault testing and are pruned out

during the binary search. False-positive tests are batch tests that fail, but no individual faulty bit

causes a fault. False positives are especially prominent in FT designs where a combination of faults

is required in order for an observable error to occur. Additional complications in determining the

batch size are also introduced when using CSO where susceptible bits are not distributed uniformly

across the campaign. Whereas using different batch sizes for each part of the campaign could

yield nearly optimal performance, but prior knowledge of susceptibilities is required for ‘0’ to ‘1’

transitions and ‘1’ to ‘0’ transitions. Therefore, in order to address these difficulties in determining

an optimal batch size, we propose a dynamically variable size where the batch size changes during

the FIC.

A dynamic batch-size optimization (DBSO) can improve fault-injection performance and allow

for better usability of SPFI-FPGA. Instead of statically choosing a batch size at the beginning of

an FIC and waiting until the end of injection to determine the fault-injection performance, the

ME dynamically varies the batch size. During runtime, the ME records average batch testing time

for each batch size and after each batch, the ME calculates the new batch size using Algorithm 1.

Since the batch testing times are collected during the runtime, the average batch test time varies

significantly during the beginning of the FIC since few testing times have been collected. To address

these variations, we use a greedy hill-climbing algorithm combined with a random walk algorithm

for selecting the next batch size [20].

Algorithm 1 shows the proposed DBSO process. The algorithm takes as input the current batch

size s, user-defined parameter α, and an array tb[x] that contains the average batch testing times for

batch size x and calculates and returns the next batch size snext. Step 1 (hill climbing) uses local

20



Algorithm 1 Dynamic Batch Size Optimization.

Input: s, tb[], α Output: snext

1: if tb[s− 1] > tb[s] > tb[s+ 1] then {Step 1 - Hill Climbing}

2: snext = s+ 1

3: else if tb[s − 1] < tb[s] < tb[s+ 1] then

4: snext = s− 1

5: else {Step 2 - Weighted Random Walk}

6: if rand() < α then

7: snext = s− 1

8: else

9: snext = s+ 1

10: end if

11: end if

12: return snext

gradient information about tb[x]. If tb[s+1] < tb[s] < tb[s− 1], the algorithm increases snext by one

. If tb[s − 1] < tb[s] < tb[s+ 1], the algorithm decreases snext by one. If both line 1 and 3 fail, the

algorithm moves to Step 2 (weighted random walk), where snext is either decreased or increased by

one randomly based on the probability α of decreasing the batch size. This random walk enables

the algorithm to escape local minimums and increases the number of time measurements on batches

next to s. SPFI-FPGA uses α = 0.5, which favors increasing the batch size during the initial batch

tests due to uninitialized values in tb[]. In these cases, increasing α stabilizes the algorithm at a

small performance penalty.

D. Placement-Aware Fault Injection

COTS FPGA-based space systems rely on TMR to mitigate effects of SEUs. In many cases,

multiple cores are located on the same FPGA to minimize size, weight, and power requirements

using tools like the Xilinx TMRTool [21] or BYU Tool [22]. However, complete internal TMR is

impossible to achieve for a single FPGA because of the single points of failure inherent in the FPGA

fabric. Performing injection on a true TMR design should show that no single SEU can affect the

output of the design, however when using MBFI methodology it is possible to corrupt bits in more

21



than one module of the TMR core, which induces a false positive batch test and has a negative

impact on injection performance.

Fault-injection performance for a TMR design on a single FPGA can be significantly improved

by leveraging the underlying structure of TMR designs. The placement-aware fault-injection (PAFI)

technique leverages the TMR structure as placed on the FPGA, where three modules are physically

separated on different parts of the chip. Without knowing the structure of the TMR design, SPFI-

FPGA can only create campaigns that uniformly test bits across the TMR design as depicted in

Figure 6a. However, if the structure of the TMR layout is known prior to fault-injection, the FIC

can be split into three FICs where each part of campaign tests only one module of the TMR system

as depicted in Figure 6b. Separately testing each single module significantly reduces false positive

batch tests and allows for larger batch sizes, thereby reducing the injection time and significantly

improving testing performance.

A

A

A

A

A

A

A

A

A

A

A

A

Core 1

Core 2

Core 3

W
ra

pp
er

(a) TMR core targeted with a

single FIC (A).

A

B

B

C

A

A

B

C

B

A

C

C

Core 1

Core 2

Core 3

W
ra

pp
er

(b) TMR core targeted using

PAFI with three FICs (A, B,

C).

Fig. 6: PAFI applied to a TMR core. Each square in the grid denotes a bit that can be tested.

Dark squares denote bits targeted while symbols (A, B, C) inside of dark squares indicate the FIC

to which the bits belong.

V. Results

We use three diverse case studies on three different FPGA test boards to evaluate the per-

formance of our SPFI-FPGA platform augmented with MBFI methodology and to showcase the

platform’s effectiveness, portability, and efficiency in detecting faults. Each case study is designed

22



to evaluate a different combination of key factors (e.g., susceptibility, verification time, and fault-

testing methodology) that effect SPFI-FPGA’s performance. The first study performs a fast Fourier

transform (FFT) on a Xilinx ML401 development board with a Virtex-4 LX25 FPGA. This study

uses the module-level testing methodology, has the fastest verification time, and highest fault sus-

ceptibility out of the three studies. The second study runs a MicroBlaze system that performs LU

decomposition on a Xilinx ML501 board with a Virtex-5 LX50 FPGA. This study uses the system-

level testing methodology, which has the slowest verification time, while the fault susceptibility falls

between the other two studies. The third study performs a matrix multiply (MM) on a NASA

SpaceCube [23] platform with a Xilinx Virtex-4 FX60 FPGA. This study uses a hybrid approach

between the module- and system-level testing methodologies, the verification time is slower than the

FFT study but faster than the MicroBlaze study (i.e., the MM study has a midrange verification

time), and the lowest fault susceptibility out of the three studies. Each study evaluates two types

of cores: a base core with no fault-tolerant features (NFT) and a coarse-grain TMR core that is

suitable for space systems.

Each study uses a similar experimental system setup. The FPGA test board is connected with

the PI and the TI to a Linux-based host computer that runs a portion of SPFI-FPGA (the ME

and the TG) (Figure 3). Depending on the testing methodology, the TG’s functionality can be

partitioned between the host computer and the FPGA (Section 3.3). The PI uses a Xilinx Platform

Cable and the TI uses an FTDI 232R (FFT and MicroBlaze studies) or an FTDI 2324H (MM study)

USB-to-serial converter cable to interface with FPGA logic.

Table 1: Case-study attributes.

Case

Study

FPGA

Type

FR

Time

[s]

PR Time

(min-max)

[ms]

Max

Batch

Size

NFT Core

Suscept.

TMR

Core

Suscept.

Verif.

Time

[s]

FFT V4 LX25 3.6 110-180 40 5.5% 0.10% 0.03

MicroBlaze V5 LX50 5.6 80-180 40 1.6% 0.03% 2.01

MM V4 FX60 6.2 80-280 130 1.5% 0.01% 0.29

23



Table 1 summarizes attributes for each study. The FR and the PR times for each platform

vary based on the JTAG performance and the type of FPGA. The PR times are dependent on

the batch size since the number of frames in the partial bitstream is equivalent to the batch size.

The maximum batch size varies based on the area occupied by the core on the FPGA and is

equivalent to the initial number of bins generated during batch selection (Section IVA). The

FFT and MicroBlaze studies’ maximum batch sizes are 40 and the MM study’s maximum batch

size is 130. We measured the susceptibilities (pe) and verification times for each core during our

experiments. Each core’s susceptibility is constant and depends on the design’s complexity and how

the design is mapped to the FPGA. The fault susceptibility is estimated as a ratio of malicious faults

recorded during FIC over the total number of fault injections performed (e.g., for the FFT NFT

core, 552/10000 = 0.0552). As expected, the NFT cores show much higher susceptibility than the

TMR cores. The average verification time is obtained based on the data collected by SPFI-FPGA

during each experiment.

We evaluate the performance of SPFI-FPGA by comparing the total FIC injection times for

SBFI to MBFI using three different optimization strategies: CSO, DBSO, and PAFI. For each study,

we first measure the baseline injection times using SBFI for the NFT and TMR cores. Next, we

collect the injection times for the NFT and TMR cores using MBFI and MBFI with CSO using a

static batch size. We vary the batch size for each experiment from two up to the maximum batch

size possible. Additionally, we perform another set of experiments on the TMR core using PAFI and

measure the injection times for MBFI and MBFI with CSO. To evaluate injection time for DBSO,

we perform one experiment for each combination of optimizations (NFT, NFT & CSO, TMR, TMR

& CSO, TMR & PAFI, and TMR & PAFI & CSO). We report performance in terms of speedup,

which is calculated as the ratio of baseline SBFI injection time over MBFI injection time.

To compare the different optimization strategies, we use two randomly generated FIC files per

study: one for the NFT cores and one for TMR cores. To obtain a fair estimate of the core’s

susceptibility and injection times while maintaining a reasonable injection time, we inject 10,000

faults per experiment.

24



A. FFT Case Study

FFT is a key signal-processing algorithm used in space-based applications, such as signal fil-

tering, synthetic aperture radar (SAR) [24], and software-defined radio (SDR) [25]. FFT is highly

amenable to FPGA implementation, resulting in compact and efficient use of the FPGA fabric. In

this study, the FFT core performs a 1024-point complex fixed-point FFT, where each point consists

of two 32-bit values. We generate the FFT core using the Xilinx CoreGen tool, which optimized the

design for the ML401 board. We choose the module-level testing methodology (Figure 3a) for the

FFT study as the core created is not designed to interface with external logic and requires a wrapper

to provide test vectors. Additionally, the core occupies a small area of the FPGA that allows for

limited storage of the test vectors in the remaining BlockRAMs, as shown in Figure 7. Only two

randomly generated test vectors are used due to the limited number of BRAMs available for the

wrapper on the LX25 FPGA. The FFT’s TMR core integrates the voting logic into the wrapper.

The host’s TG partition is lightweight and only sends verification requests to the wrapper module.

The wrapper module performs the verification and returns the number of errors encountered during

the verification process. The FFT core has shortest verification time as it uses module-level testing

methodology and does not require sending the test vectors over the TI.

ML−401

TG

ME

TI − USB

Host PC (Linux)

PI − JTAG
Virtex−4 LX25

TG/Wrapper
Test Vectors

FFT
or

TMR
FFT

Data

Ctrl.

Fig. 7: Experimental setup of the FFT study.

Figure 8 depicts injection speedups attained by SPFI-FPGA using MBFI methodology versus

increasing batch size for the FFT NFT, TMR, and TMR with PAFI cores. MBFI methodology yields

only minor speedups for the FFT NFT core due to the combination of the FFT NFT core’s high

susceptibility and fast verification time. In this situation, the cumulative FR and PR times dominate

the total injection time and thus prohibit large speedups. MBFI methodology achieves moderate

speedups for both FFT TMR cores due to these cores lower fault susceptibility as compared to the

25



0 5 10 15 20 25 30 35 40

0

2

4

6

8

10

12

14 FFT TMR & PAFI
FFT TMR
FFT NFT

Batch Size

S
pe

ed
up

Fig. 8: Injection speedup for FFT study.

FFT NFT core, and thus requiring fewer reconfigurations.

Table 2 summarizes the FFT study results for each core version both with and without using

CSO. Columns two and three show the best speedups (corresponding to maxima in Figure 8) and

the associated runtimes when not using the DBSO algorithm. Columns four and five show the

speedups and associated runtimes when using the DBSO algorithm. Column six compares these

speedups using the ratio of the DBSO time over the best time, which shows the efficiency of the

DBSO algorithm. The maximum speedups attained for the FFT NFT core without and with CSO

are 1.2× and 1.1×, respectively. In both of these experiments, the DBSO algorithm performs at 99%

efficiency. The maximum speedups attained for FFT TMR core without and with CSO are 4.7×

and 4.6×, respectively, and the DBSO algorithm performs at 76% and 102% efficiency, respectively.

Finally, the maximum speedups attained for the FFT TMR core with PAFI without and with CSO

are 13.3× and 13.1×, respectively. The best speedups for experiments with CSO show a slight

performance drop due to additional computational overhead required during the batch selection

process. The maximum speedups for experiments without and with CSO are nearly identical,

however for the TMR core, the DBSO algorithm is more efficient when using CSO. Results of this

study show that using MBFI methodology with CSO and DBSO significantly decreases injection

time of the TMR cores that have verification time shorter than the PR time.

26



Table 2: Summary of experimental results for FFT study.

FI Options
Best

Speedup

Best Time

[s]

DBSO

Speedup

DBSO

Time [s]
Efficiency

NFT 1.2 5373.0 1.2 5402.6 99%

NFT & CSO 1.1 5534.5 1.1 5586.5 99%

TMR 4.7 962.1 3.6 1264.4 76%

TMR & CSO 4.6 1017.3 4.7 994.6 102%

TMR & PAFI 13.3 410.6 13.1 420.4 99%

TMR & PAFI & CSO 13.1 422.1 13.0 426.1 99%

B. MicroBlaze Case Study

The MicroBlaze is a flexible 32-bit soft-core processor optimized for embedded applications

commonly used on Xilinx FPGAs. The MicroBlaze is often used as a part of SoCs to manage the

control flow or to perform calculations that are difficult to efficiently implement on an FPGA, like the

LU decomposition algorithm that is primarily used to solve systems of simultaneous equations. The

MicroBlaze core is created using the Xilinx Platform Generator tool, which allows customization of

the MicroBlaze’s memory and IO components. We configure the MicroBlaze core with 24kB of RAM,

a serial IO port, a hardware-accelerated floating-point unit, and an optimized barrel shifter. The

LU decomposition algorithm [26, 27] uses single-precision floating point arithmetic and processes a

5×5 matrix A and outputs two 5×5 matrices L and U such that A = L ·U . In the MicroBlaze study,

depicted in Figure 9, we choose the system-level testing methodology (Figure 3b) as the MicroBlaze

core created is suitable for stand-alone use and interfaces directly with the TI. The MicroBlaze

TMR core has a small wrapper with a voter to compare the MicroBlaze’s three serial port outputs.

The TG sends 100 test vectors each containing an input matrix A and receives and compares the

results of the computation against the golden standard (matrices L and U). The MicroBlaze study

has the longest verification time as the entire TG executes on the Linux-based host computer, does

not offload any functionality to the wrapper, and the test vectors need to be transferred over the

TI. Additionally, the serial LU decomposition implementation on MicroBlaze consumes longer time

27



to calculate results than standalone cores in FFT and MM studies.

ML−501

TG

ME

TI − USB

Host PC (Linux)

PI − JTAG
Virtex−5 LX50

MicroBlaze
or TMR MicroBlaze

Fig. 9: Experimental setup of the MicroBlaze study.

0 5 10 15 20 25 30 35 40

0

5

10

15

20

25

30

MB TMR & PAFI
MB TMR
MB NFT

Batch Size

S
pe

ed
up

Fig. 10: Injection speedup for MicroBlaze study.

Figure 10 depicts injection speedups attained by SPFI-FPGA using MBFI methodology versus

increasing batch size for the MicroBlaze NFT core, TMR, and the TMR with PAFI cores while

executing the LU decomposition algorithm. These results show similar trends but higher speedups

as compared to the FFT cores. MBFI methodology yields a small but better than the NFT FFT

speedups for the MicroBlaze NFT core. The MicroBlaze TMR and TMR with PAFI cores yield

significant speedups over SBFI methodology. The MicroBlaze study’s speedups are higher than the

FFT study because of decreased susceptibility and increased verification time.

Table 3 summarizes the MicroBlaze study results (the table layout is similar to the FFT study

results in Table 2). The maximum speedups attained for the MicroBlaze NFT core without and

with CSO are 1.6× and 1.7×, respectively, and the DBSO algorithm performs at 99% and 96%

efficiency, respectively. The maximum speedups for the MicroBlaze TMR core without and with

28



Table 3: Summary of experimental results for MicroBlaze study.

FI Options
Best

Speedup

Best Time

[s]

DBSO

Speedup

DBSO

Time [s]
Efficiency

NFT 1.6 19821.7 1.6 20083.9 99%

NFT & CSO 1.7 18697.3 1.7 19416.5 96%

TMR 7.4 3474.0 6.5 3955.9 88%

TMR & CSO 8.2 3122.0 7.1 3613.9 86%

TMR & PAFI 23.9 886.1 22.7 1031.5 86%

TMR & PAFI & CSO 23.8 982.6 23.4 1001.9 98%

CSO are 7.4× and 8.2×, respectively, and the DBSO algorithm performs at 88% and 86% efficiency,

respectively. Finally, maximum speedups for the MicroBlaze TMR core with PAFI and without and

with CSO are 23.9× and 23.8×, respectively, and the DBSO algorithm performs at 86% and 98%

efficiency, respectively. In this study, CSO improves the speedup obtained by the DBSO algorithm’s

in all experiments, and maintains efficiency of DBSO of more than 86%.

C. Matrix Multiply Case Study

The MM core performs a 16-bit fixed-point matrix multiplication on two randomly generated

25 × 25 matrices. MM is a common kernel in signal and image processing applications, such as

beamforming [28] and hyper-spectral imaging (HSI) [29, 30]. Although FPGA area constraints

limit the size of a single matrix multiplication, larger matrices can be dividing into smaller blocks,

which are processed individually and then coalesced into the final results matrix. The MM algorithm

is parallelized over n processing units, which allows for the calculation of the dot product in a single

clock cycle, thereby reducing the computational time from O(n3) to O(n2) clock cycles. The core

uses embedded BlockRAM and DSP resources available on the Virtex-4 FX60 FPGA. We use a

hybrid testing methodology in the MM study, depicted in Figure 11, as the core created requires a

wrapper to interface with external logic; however there is not enough resources left on the FPGA

to store the test vectors. The verification time of MM experiments is longer than the FFT study as

29



the test vectors need to be transferred over the TI, but it is shorter than MicroBlaze study as the

MM core has much higher throughput due to MM core’s parallel nature.

Space Cube

TG

ME

TI − USB

Host PC (Linux)

PI − JTAG
Virtex−4 FX60

TG/
Wrap.

MM or 
TMR MM

Data

Ctrl.

Fig. 11: Experimental setup of the MM study.

0 10 20 30 40 50 60 70 80 90 100 110 120 130

0

5

10

15

20

25

30

35

40

45

50

MM TMR & PAFI
MM TMR
MM NFT

Batch Size

S
pe

ed
up

Fig. 12: Injection speedup for MM study.

Figure 12 depicts injection speedups attained by SPFI-FPGA using MBFI methodology versus

increasing batch size for the MM NFT core, TMR, and the TMR with PAFI cores. As compared

to the FFT and MicroBlaze studies, the MM study reveals the best speedups for the MM NFT and

TMR cores due to their low susceptibility and midrange verification time.

Table 4 summarizes the MM study results (the table layout is similar to the FFT study results

in Table 2). The maximum speedup for the MM NFT core without and with CSO is 2.3×, and the

DBSO algorithm performs at 96% and 97% efficiency, respectively. The maximum speedups for the

MM TMR core without and with CSO are 16.1× and 18.3×, respectively, and the DBSO algorithm

performs at 81% and 83% efficiency, respectively. The maximum speedups for the MM TMR core

with PAFI and without and with CSO are 48.6× and 49.7×, respectively, and the DBSO algorithm

30



performs at 96% and 93% efficiency, respectively. This study shows that experiments with CSO

improve the DBSO algorithm’s achievable speedup with the exception of the MM TMR core with

PAFI where it is marginally lower, while maintain efficiency of more than 83%.

Table 4: Summary of experimental results for MM study.

FI Options
Best

Speedup

Best Time

[s]

DBSO

Speedup

DBSO

Time [s]
Efficiency

NFT 2.3 3025.9 2.2 3126.6 96%

NFT & CSO 2.3 3152.0 2.3 3073.3 97%

TMR 16.1 623.9 13.0 772.0 81%

TMR & CSO 18.3 551.5 15.0 656.7 83%

TMR & PAFI 48.6 289.7 46.7 302.4 96%

TMR & PAFI & CSO 49.7 297.3 46.1 305.1 93%

VI. Conclusions

SRAM-based FPGA devices are an attractive option for on-board data processing on space

systems. However, FPGAs present unique reliability verification challenges because SEUs can trigger

configuration memory errors. In this work, we have presented SPFI-FPGA, a new fault-injection

platform that uses a mix of PR and FR to test the behavior of designs subject to configuration

memory faults. We have shown that the SPFI-FPGA platform can be effectively used on a variety

of modern Xilinx FPGAs and that the testing methodologies we have developed allow testing on a

variety of designs. Furthermore, the ideas presented in this paper are not limited to Xilinx FPGAs

but are applicable to a wide range of devices.

In addition to SPFI-FPGA, we presented a novel MBFI methodology for FPGAs that modifies

multiple configuration memory bits during each test. We have shown multiple optimization tech-

niques (CSO, DBSO, and PAFI) which coupled with MBFI methodology allow for very effective

testing of FPGA designs. During the course of our experiments, we were able to achieve maximum

injection speedup of up to 49.7× for MM TMR core employing PAFI. The investigated DBSO al-

31



gorithm in conjunction with CSO enabled efficient selection of optimal batch size, and allowed for

effective use of MBFI methodology. We achieved over 90% efficiency in most of our studies while

using the combination of DBSO algorithm and CSO. Use of FPGAs on space-based platforms is

highly effective for increasing computational power of the system per unit energy, but appropriate

measures must be taken to determine reliability of the design. High testing speedups demonstrated

together with efficient dynamic batch selection can dramatically decrease the time required to test

designs in preparation for space deployment.

Future work in this direction may explore further optimizations to the proposed methodology. In

particular, an alternative campaign optimization strategy would involve separating bits belonging to

the switchboxes from bits belonging to other components in the FPGA fabric. Campaigns optimized

with this information in mind could yield even better results than the statistical approach based on

transitions used in the paper. Unfortunately, such an approach would require in-depth knowledge

of bitstream structure, which is vendor-proprietary and thus not publicly available.

Acknowledgments

This work was supported in part by the I/UCRC Program of the National Science Foundation

under Grant No. EEC-0642422. The authors gratefully acknowledge vendor equipment and/or tools

provided by Xilinx, and Aldec.

References

[1] Johnson, E., Caffrey, M., Graham, P., Rollins, N., and Wirthlin, M., “Accelerator validation of an

FPGA SEU simulator,” Nuclear Science, IEEE Transactions on, Vol. 50, No. 6, 2003, pp. 2147 – 2157.

[2] Xilinx, Inc, Virtex-4 Family Overview, 2010. Product Specification, DS112 (v3.1).

[3] Xilinx, Inc, Virtex-5 Family Overview, 2009. Product Specification, DS100 (v5.0).

[4] Xilinx, Inc, Virtex-4 FPGA Configuration User Guide, 2009. User Guide, UG071 (v1.11).

[5] Xilinx, Inc, Virtex-5 FPGA Configuration User Guide, 2010. User Guide, UG191 (v3.9.1).

[6] Allen, G., Swift, G., and Carmichael, C., “Virtex-4VQ static SEU characterization summary,” Tech.

rep., Xilinx Radiation Test Consortium, 2008.

[7] Bridgford, B., Carmichael, C., and Tseng, C., Single-Event Upset Mitigation Selection Guide, Xilinx,

Inc, 2008. Application Note, XAPP987 (v1.0).

32



[8] Laprie, J.-C., Arlat, J., Beounes, C., and Kanoun, K., “Definition and analysis of hardware- and

software-fault-tolerant architectures,” Computer, Vol. 23, No. 7, 1990, pp. 39 –51.

[9] Huang, K.-H. and Abraham, J., “Algorithm-Based Fault Tolerance for Matrix Operations,” Computers,

IEEE Transactions on, Vol. C-33, No. 6, 1984, pp. 518 –528.

[10] Wang, S.-J. and Jha, N., “Algorithm-based fault tolerance for FFT networks,” Computers, IEEE Trans-

actions on, Vol. 43, No. 7, 1994, pp. 849 –854.

[11] Johnson, E., Caffrey, M., and Wirthlin, M., “Single-Event Upset Simulation on an FPGA,” in “Proceed-

ings of the Engineering of Reconfigurable Systems and Algorithms (ERSA) Conference,” , 2002.

[12] Petrick, D., Powell, W., Howard Jr., J., and K., L., “Virtex-II Pro PowerPC SEE Characterization Test

Methods and Results,” in “Proceedings of the Military and Aerospace Programmable Logic Devices

(MAPLD) Conference,” , 2005.

[13] Violante, M., Sterpone, L., Ceschia, M., Bortolato, D., Bernardi, P., Reorda, M., and Paccagnella, A.,

“Simulation-based analysis of SEU effects in SRAM-based FPGAs,” Nuclear Science, IEEE Transactions

on, Vol. 51, No. 6, 2004, pp. 3354 – 3359.

[14] French, M., Graham, P., Wirthlin, M., Wang, L., and Larchev, G., “Radiation Mitigation and Power

Optimization Design Tools for Reconfigurable Hardware in Orbit,” in “Proceedings of Earth-Sun System

Technology Conference,” , 2005.

[15] Cieslewski, G. and George, A. D., “SPFFI - Simple Protable FPGA Fault Injector,” in “Proceedings of

the Military and Aerospace Programmable Logic Devices (MAPLD) Conference,” , 2009.

[16] Wulf, N., Cieslewski, G., Gordon-Ross, A., and George, A., “SCIPS: An emulation methodology for

fault injection in processor caches,” in “Aerospace Conference, 2011 IEEE,” , 2011, pp. 1 –9.

[17] Xilinx, Inc, Command Line Tools User Guide, 2010. User Guide, UG628 (v12.2).

[18] Sterpone, L. and Violante, M., “A New Partial Reconfiguration-Based Fault-Injection System to Eval-

uate SEU Effects in SRAM-Based FPGAs,” Nuclear Science, IEEE Transactions on, Vol. 54, No. 4,

2007, pp. 965 –970.

[19] Quinn, H., Graham, P., Krone, J., Caffrey, M., and Rezgui, S., “Radiation-induced multi-bit upsets in

SRAM-based FPGAs,” Nuclear Science, IEEE Transactions on, Vol. 52, No. 6, 2005, pp. 2455 – 2461.

[20] Poole, D. L. and Mackworth, A. K., Artificial Intelligence: Foundations of Computational Agents,

Cambridge University Press, New York, 2010. Also full text online at http://artint.info.

[21] Xilinx, Inc, XTMR Tool User Guide, 2004. User Guide, UG156.

[22] Pratt, B., Caffrey, M., Graham, P., Morgan, K., and Wirthlin, M., “Improving FPGA Design Robust-

ness with Partial TMR,” in “Reliability Physics Symposium Proceedings, 2006. 44th Annual., IEEE

33



International,” , 2006, pp. 226 –232.

[23] Flatley, T., “Advanced hybrid on-board science data processor - SpaceCube 2.0,” , 2010. Earth Science

Technology Forum.

[24] Jacobs, A., Cieslewski, G., Reardon, C., and George, A. D., “Multiparadigm Computing for Space-Based

Synthetic Aperture Radar,” in “ERSA,” , 2008, pp. 146–152.

[25] Coulton, P. and Carline, D., “An SDR inspired design for the FPGA implementation of 802.11a baseband

system,” in “Consumer Electronics, 2004 IEEE International Symposium on,” , 2004, pp. 470 – 475.

[26] Golub, G. H. and Loan, C. F. V., Matrix Computations, The Johns Hopkins University Press, 3rd ed.,

1996.

[27] Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., Numerical recipes in C (2nd

ed.): the art of scientific computing, Cambridge University Press, New York, NY, USA, 1992.

[28] Amira, A., Bouridane, A., and Milligan, P., “Accelerating Matrix Product on Reconfigurable Hardware

for Signal Processing,” in “Proceedings of the 11th International Conference on Field-Programmable

Logic and Applications,” Springer-Verlag, London, UK, FPL ’01, 2001, pp. 101–111.

[29] Jacobs, A., Conger, C., and George, A., “Multiparadigm Space Processing for Hyperspectral Imaging,”

in “Aerospace Conference, 2008 IEEE,” , 2008, pp. 1 –11.

[30] Chang, C.-I., Ren, H., and Chiang, S.-S., “Real-time processing algorithms for target detection and clas-

sification in hyperspectral imagery,” Geoscience and Remote Sensing, IEEE Transactions on, Vol. 39,

No. 4, 2001, pp. 760 –768.

34


