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Microcontroller Compiler-Assisted Software
Fault Tolerance
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Abstract— Commercial off-the-shelf microcontrollers can be
useful for noncritical processing on spaceborne platforms. These
microprocessors can be inexpensive and consume small amounts
of power. However, the software running on these processors
is vulnerable to radiation upsets. In this paper, we present a
fully automated, configurable, software-based tool to increase
the reliability of microprocessors in high-radiation environments.
This tool consists of a set of open-source LLVM compiler
passes to automatically implement software-based mitigation
techniques. We duplicate or triplicate computations and insert
voting mechanisms into software during the compilation process,
allowing for runtime error correction. While the techniques
we implement are not novel, previous work has typically been
closed source, processor architecture dependent, not automated,
and not tested in real high-radiation environments. In contrast,
the compiler passes presented in this paper are publicly available,
highly customizable, and are platform independent and language
independent. We have tested our modified software using both
fault injection and through neutron beam radiation on a Texas
Instruments MSP430 microcontroller. When tested by a neutron
beam, we were able to decrease the cross section of programs by
17–29×, increasing mean-work-to-failure by 4–7×.

Index Terms— Silent data corruption (SDC), single-event upset
(SEU), soft errors, software fault tolerance.

I. INTRODUCTION

COMMERCIALLY produced microprocessors are
cheaper, smaller, faster, and more power efficient than

radiation-hardened microprocessors. Simple microcontrollers
are especially attractive for nonmission-critical processing
because of their low cost and power requirements. However,
they are vulnerable to radiation-induced single-event
upsets (SEUs) or soft errors. One of the most insidious
forms of an upset is silent data corruption (SDC) where data
are altered without warning, causing a cascade of incorrect
computations.

There are two general ways to mitigate the effects of
soft errors. Hardware-based mitigation aims to modify the
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architecture or fabrication technology of the processor. On the
other hand, software-based mitigation modifies the program
to detect or correct errors. Since this paper aims to use
commercial off-the-shelf (COTS) microcontrollers, we focus
entirely on the latter method, software mitigation of faults.

A common form of SEU mitigation is to modify the original
software code so that the computed operations are duplicated
or triplicated. Duplication with compare (DWC) allows for
detection when an SEU occurs [1], while triplication with
periodic voting allows for automatic correction of single-bit
data corruptions [2], [3].

Although these techniques typically slow down program
execution, they can be very effective at reducing the
error rate, resulting in an increased mean work-to-failure
(MWTF) [4]–[7]. For scenarios where latency is not critical,
these program replication techniques can provide much higher
reliability for COTS microcontrollers.

Although there is substantial previous work that has utilized
these software protection techniques [4]–[20], the work is not
easily accessible. Some past work has used hand-modified
assembly code rather than an automated process, other
works target only specific architectures, assembly languages,
or processor features, making them of limited use for future
research or commercial projects. Most of these techniques
have been tested only in simulation, and not in actual
high-radiation environments. In addition, from what we can
tell, none of these previous works are currently available as
public, open-source tool flows.

In this paper, we present compiler-assisted software fault
tolerance (COAST), a public tool suite containing several
configurable compiler passes that can be used to automatically
add runtime protection to a software program. The primary
contributions of this paper are as follows.

1) An open-source tool flow, built as passes for the LLVM
compiler framework [21]. Since the passes operate on
LLVM intermediate representation (IR), they are lan-
guage and target-architecture independent. The tool is
publicly available at https://github.com/byuccl/coast. The
tool is designed to be easily adopted by other researchers
and engineers. In-code directives can be used to control
which parts of a program are protected, and several
command-line options are provided to control how pro-
tection is implemented in the program. Furthermore,
we perform validation testing against a wide range of
programs to ensure that modified programs remain func-
tionally correct.

2) Experimental testing of this tool on MSP430 micro-
controller code, where hardened code was tested both
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with fault injection and in a neutron beam at the Los
Alamos Neutron Science Center (LANSCE). In neutron
beam testing, our triplicating protection pass provided
a 17–29× reduction in cross section and 4–7× increase
in MWTF.

This paper is organized as follows. Section II provides
the background information, describing established software
protection techniques, previous work, and a description of
the LLVM compiler infrastructure. Section III describes our
software protection tool, including a brief description of the
configuration options, major challenges we faced in automat-
ing the protection techniques, as well as how we verify that
our tool maintains functional correctness of the programs.
Section IV describes our experimental testing to verify the
effectiveness of our tool; this includes both fault injection and
neutron beam testing results. Section V provides conclusions.

II. BACKGROUND

A. Code Replication for Software Fault Mitigation

Software-based mitigation techniques exploit temporal and
spatial locality to improve radiation tolerance. Variables are
stored at separate locations and updated at different times,
reducing the probability that a radiation-induced upset will
cause SDC. These techniques can be applied to either the data
flow or control flow of the program.

Error detection by duplicated instructions [1] is a technique
designed to protect the data flow. It performs fine-grained
duplication of the program execution, duplicating each
data-processing instruction. The two instruction flows are
synchronized periodically, checking for data mismatch. Syn-
chronization is performed at least as often as every control
flow point or data store, allowing the program to execute
with duplicated data, but only a single control flow path. This
technique allows the software to detect errors, at a cost of code
size and execution time. This technique is also referred to as
DWC.

Chielle et al. [8] enumerate different combinations of pro-
gram protection. This includes options to indicate which
registers will be duplicated, which types of instructions will
be duplicated, and at what points in the program the data
duplication will be synchronized with the original data. These
rules are summarized in Table I. Since the introduction of
these rules, many subsequent works have followed the same
rules organization [6], [9], [10].

Duplication rules D1 and D2 dictate whether all instructions
will be duplicated, or if store operations should be excluded.
When store operations are included in the duplication, it effec-
tively results in complete duplication of all variables stored in
memory. This is useful when the system lacks memory protec-
tion, such as error correcting codes (ECCs), which may often
be the case with COTS microcontrollers. Chielle et al. [8]
determine that the combination of C3, C4, C5, and C6 provide
the most reliability for the lowest overhead.

Another form of fault tolerance is triplication of instructions
(rather than simply duplicating them), as in SWIFT-R [2].
By triplicating operations, synchronization points can be mod-
ified to not only detect errors but also to actually correct errors

TABLE I

RULES FOR DATA FLOW TECHNIQUES [8]

and continue execution through use of a voting mechanism.
This is analogous to triple modular redundancy (TMR) in
hardware. This, of course, introduces even larger overheads
in terms of program size, memory usage, and execution time.
In some cases, this overhead can be mitigated; for example,
Quinn et al. [5] present a way to execute subroutines a third
time only if necessary. However, this optimization technique
works exclusively for function-level coarse-grained triplica-
tion, and cannot be used for instruction-level duplication as
was done in previous works [2], [8].

There are also multiple methods available to monitor the
control flow of the program [9], [11]. For instance, control
flow checking by software signatures (CFCSS) [12] requires
each block to have a signature, which is constantly checked
and updated. The effectiveness of control flow methods is
debated. Shrivastava et al. [13] claim that control flow check-
ing via signatures introduces too much overhead for the cov-
erage it provides, lowering the effectiveness of the program.
However, control flow protection can be effective when paired
with the proper data flow protection technique [6]. Our tool
that we describe, in Section III, provides automated passes
for both data duplication and triplication; although we also
include the option to use CFCSS, we do not focus on it in
this paper.

B. Previous Works on Software Protection

There have been many previous works aimed at using
software modification techniques to protect against SEUs.
In 2002, Oh et al. [1] presented techniques that modified
GNU compiler collection (GCC) to perform automatic dupli-
cation of program instructions, targeted to a super scalar
processor. In the same year, Oh et al. [1] also introduced
compiler-aided control-flow protection techniques, aimed to
detect when faults affected the control flow the program.
Over the years, several improvements and modifications
to these original ideas have been introduced. In 2005,
Reis et al. [3], [20] introduced techniques that combined data
flow and control flow protections. In 2006, Chang et al. [2]
also used the GCC compiler to implement several data flow
protection techniques, in this case targeting, a POWERPC
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architecture. Vemu et al. [11] and Shrivastava et al. [13]
introduced enhancements to the original control-flow checking
techniques.

More recently, most research has elected to use LLVM [21],
a highly modularized, open-source compiler infrastructure
that allows for more straightforward implementation of inde-
pendent compiler passes. In 2009, Fetzer et al. [14] used
LLVM to automatically insert AN encoding into programs.
AN encoding is a form of redundancy where information is
multiplied by a fixed constant; if at any point the informa-
tion is not divisible by the constant, an error is reported.
In 2012, Khudia et al. [7] used LLVM to automatically profile
code, and insert data protection into the critical sections.
In 2016, Didehban and Shrivastava [15] introduced near zero
data corruption (nZDC), a technique that uses LLVM to
apply duplicate with compare logic. While the previously
mentioned techniques focus on fine-grained protection mech-
anisms, other techniques have taken a more coarse-grained
approach. For example, Reinhardt and Mukherjee [18] and
Wang et al. [17] introduced compiler techniques to automat-
ically create redundant threads, providing protection against
upsets by taking advantage of multicore architectures. Other
works, such as Nakka et al. [19], have proposed proces-
sor architectural changes that could be made to support
new data protection techniques. All of the above-mentioned
approaches [1]–[3], [7], [11]–[15], [17]–[20] have focused on
a serverlike environment, targeting high-performance, super-
scalar processors. In contrast, this paper focuses on techniques
for embedded systems, where the software may be used in a
high-radiation environment.

While some of these tools could be applied to embedded
systems with microcontrollers, many of them rely on more
advanced architectural features. For example, most tools make
the assumption that memory and caches are protected by a
method such as ECC [3], [15], only accounting for errors in
the CPU. nZDC obtains a higher performance by utilizing
pipeline forwarding and load/store queues. Oh et al. [1] also
relied on super scalar processors to reduce the overhead of
fault tolerance. These advanced microarchitectural features
are not available to all microcontrollers, so in this paper,
we have focused on basic duplication and triplication of
instructions to correct errors without relying on specific hard-
ware mechanisms.

There is another body of work that has focused more on sim-
ple duplication and triplication techniques for embedded sys-
tems, and evaluating them in high upset environments. In 2012,
Chielle et al. [16] introduced the CFT tool, an automated tool
designed for fine-grained assembly level replication, targeting
MIPS and ARM assemblies. The user provides an assembly
file and information about the target architecture. The CFT tool
then applies the specified mitigation techniques and generates
a hardened version of the assembly file. However, directly
modifying the assembly, instead of using a compiler-based
technique such as the works mentioned above, means that
only certain assembly formats and architectures will be sup-
ported. Using the CFT tool, Chielle et al. [6], [8]–[10] have
produced several works that have evaluated the different levels
of protection enumerated in Table I. Another tool focused

Fig. 1. LLVM compiler diagram.

on embedded applications is the Trikaya tool, introduced by
Quinn et al. [4], [5]. This is also an automated SEU mitigation
tool that uses LLVM; however, the initial iterations of the tool
operated at a coarse-grained level, only replicated functional
calls instead of individual operations, and was never fully
completed or released. Preliminary results did not make use of
the automated tool, and instead used hand-modified assembly
to test the benefits of duplication and triplication.

Of the above-described tools [1]–[20], none of the works
provided open source, publicly available tools. Furthermore,
only four of the papers ([4]–[6], [10]) present results tested in
an actual high-radiation environment, the rest only have the
simulated upsets with fault injection.

To the best of our knowledge, this paper, while not intro-
ducing novel theoretical techniques, provides the first open
source, publicly available software protection tool, which is
furthermore tested and validated in an actual high-radiation
environment. In addition, this paper is geared toward public
release and use, with validation on a wide set of software
programs—not just our benchmark programs.

C. LLVM

The LLVM compiler infrastructure is an extremely flexible
tool for code generation. The tool flow consists of three phases
as illustrated in Fig. 1.

1) Front End: The front end takes user source code and
transforms it to a language- and machine-independent IR.
Several front ends are provided for different languages
(C, C++, Swift, and Objective-C).

2) Optimizer: This stage refers to all compiler passes that
take IR as input and produce optimized IR as output. This
includes, for example, the -O3 passes.

3) Back End: The optimized IR is used to generate
architecture-specific assembly or binary files, targeting,
for example, ×86, ARM, MIPS, and MSP430.

LLVM has a number of desirable traits, the foremost of which
is that of the three-stage organization. The standard IR lan-
guage means that we can write one optimization pass and it can
be used on a variety of languages and architectures. Other past
work focused on a single architecture [3], [17]. In addition,
the IR is human readable, allowing manual inspection of the
replicated code.

III. IMPLEMENTED TECHNIQUES

This section describes COAST, our software protection tool
which uses LLVM compiler passes to automatically add data
flow protection to user provided programs.

Chielle et al. [16] find that the VAR3 protection scheme
(G1, D1, C3, C4, C5, and C6 from Table I), provides the
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Fig. 2. Code before and after mitigation pass. (a) Original code. (b) TMR
code.

greatest fault coverage for the lowest overhead when tar-
geting COTS microcontrollers. This consists of replicating
all registers, all data-processing operations, and all memory
loads/stores, while leaving a single set of control flow oper-
ations. Synchronization points are inserted at each control
flow point or data store. This approach replicates the program
data flow while keeping a single control flow. We follow this
approach for the default configuration of the tool, although we
describe in Section III-A how our tool can be configured to
select different protection rules.

Our protection passes operate on the LLVM IR, auto-
matically duplicating or triplicating instructions and inserting
synchronization points. This is done after all other compiler
optimizations to ensure that the redundant code is not opti-
mized out by other compiler passes.

The pass begins by first finding all functions that should be
protected. It then iterates through every IR instruction in these
functions, detecting what instructions to clone and adding them
to a list. Once this list is complete then COAST replicates
every instruction in the list. In addition, dependencies between
instructions are updated so each clone operates on its own
copy of the data. The function signatures are also modified
to include the clones of the original arguments. When all of
the clones have been inserted into the code, the pass sweeps
through the program and detects where synchronization logic
should be placed. It then inserts comparison statements and
error handlers for DWC, or voter code for TMR.

An example of the LLVM IR instructions before and after
triplication is provided in Fig. 2, with unmitigated code on the
left and our mitigated code on the right. The bold text indicates
changes made by our pass. In this example, the code fetches
a value from memory into a register, subtracts 1, and then
performs a branch based on whether the new value is 0. In the
TMR version, we fetch the three copies of the value from
memory, perform a subtraction on each register, then, because
the branch is a necessary synchronization point, we compare
the three values, vote on the correct value, and use that value
in the branch operation.

If the user chooses to use DWC instead of TMR, similar
code would be generated, except with only one copy of each
instruction instead of two. At the synchronization point, there
is no voting code, but rather the two data copies are compared,

TABLE II

SELECTED COAST COMMAND LINE CONFIGURATION OPTIONS

and a user-selectable function is called (abort by default) if
there is a discrepancy.

A. Configuration Options

A primary goal of our tool was to make it accessible to
a wide audience of engineers and researchers. Since different
applications have varying needs for protection mechanisms,
a central design principle of our tool is that the user has high
control over the protection passes through the use of several
options. Table II lists some of the available command-line
options; a full listing is available in the user manual.

1) Replication Scope: The most important configuration
is allowing the user to select which parts of the program
should be replicated. The sphere of replication (SOR) [18]
is a concept detailing what variables and instructions should
and should not be replicated. Although including the entire
program in the SOR should maximize the fault coverage,
the overhead can be prohibitively high. As has been shown
in [19], it is possible to exclude instructions from the SOR
without affecting fault coverage. To that end, our tool allows
users to explicitly include or exclude functions and variables
from the SOR using either the command line or in-code user
directives.

The user can specify any functions and global vari-
ables that should not be protected using -ignoreFn and
-ignoreGlbl. At minimum, these options should be used
to ensure that neither interrupt service routines nor any code
that interacts with hardware devices [general purpose input
output (GPIO), universal asynchronous receiver/transmitter]
are replicated. Replicating such code is likely to lead to errors.
It should be noted that by not replicating I/O code, a user
will likely introduce single points of failure into the program.
While it would be possible to introduce some mechanisms to
tolerate such upsets, such as repeatedly writing to a register
and reading back to verify the value, the approach would
be dependent on the individual hardware architecture, and so
would be up to the user to implement in their code. Since I/O
code may lead to single points of failure, users should seek to
minimize this code where possible.

In addition to the command line options, our tool allows
users to embed directive directly in their source code. When
a function, global variable, or local variable is marked in-line
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Fig. 3. Example user code employing in-code data protection directives.

with either __NO_TMR or __TMR, it is treated as if it were
passed in through the command line. Fig. 3 provides an
example of user code marked with these directives.

There are a number of challenges we encounter when only
parts of the program are selected for replication; these are
briefly described later in Section III-B.

2) Duplication and Synchronization Rules: While we chose
to implement the options D1, C3, C4, C5, and C6 by default
(Table I), the first three configuration options listed in Table II
allow the user to override these defaults. This controls whether
variables in memory are duplicated and when synchronization
points are inserted. For example, if the user’s system provided
ECC memory, it is likely that the user would want to add the
flag -noMemReplication. In the example code in Fig. 3,
this would mean that r0, r10, and r20 would all be
initialized from loading the same memory location, i.

Likewise, the frequency of synchronization between the data
replicas can be reduced by disabling rules C3, C4, or C5. This
would reduce the impact to program performance; however,
it may come at a cost of lower fault coverage, or longer
latencies to error detection.

C1 and C2 are not implemented by our pass as these
were shown in previous work to be an excessive amount of
synchronization [8]. G1 and C6 cannot be disabled as these
are necessary options for the protection to function correctly.

3) Other Configuration Options: COAST offers several
other options, which we mention briefly here. These include
as follows:

1) Error Counting: The TMR voting logic is modified
such that a global variable is maintained that counts the
number of times that the voter corrects an error. This
introduces greater overhead as the voter must now load
and store to the global variable at each synchronization
point (although we could update the variable only when
an error is detected, this would introduce control-flow
branching, and would incur an even greater overhead).
Despite this cost, it may still be desirable to collect this
data, as we chose to do so during our neutron radiation
testing.

Fig. 4. Problems with functions crossing SOR boundaries.

2) Input Initialization: The user can select to initialize
replicated input variables at compile time, or at runtime
via automatically inserted calls to memcpy.

3) Library Calls: For calls to unprotected library code,
the user can select whether the call should be replicated
(as would be appropriate for malloc), or whether a
single call should be made and the returned value be
passed to all replicas (as would be appropriate for rand).

4) CFCSS: The user can enable the CFCSS control flow
protection pass. This technique is described in [12].

B. Challenges With Automated Replication

Although many of the previous works have reported auto-
mated tools for program protection, these have typically been
internally used tools without any public release. As such, they
were likely designed to operate on a fixed program style or
structure. Since we have designed our tool for public release
and use, we have attempted to support arbitrary C code. In this
process, we have encountered a number of hurdles, such as
issues in passing replicated data between functions, crossing
the boundary between replicated and unreplicated code, calls
to system libraries, and so on. We have not come across any
previous work that has described how these cases are handled;
we suspect in many cases researchers have formatted their
benchmarks to avoid such complications.

Function calls crossing the SOR boundaries cause a series
of problems. Fig. 4 will be used to illustrate them. This
figure shows a series of functions. Functions A and B both
call function C in this example.

One challenge with code replication is how to treat function
calls. For example, suppose function C is called by functions A
and B. One might assume that we could just replicate the call
to function C; however, this will end up replicating control
flow, whereas we only want to replicate individual operations
and data. In addition, this could cause incorrect execution
if function C causes side effects. Instead, we modify the
signature of function C by replicating each argument. The
caller code passes in its data copies to different arguments.
Inside of the function, the replicated versions can then be used.
This maintains the original control flow while still providing
data replication. This has the downside of passing arguments
into the function via the stack if not enough argument registers
are available.

Another problem arises when functions are excluded from
the SOR. In some cases, a function might be simultaneously
included and excluded from the SOR. In Fig. 4, suppose
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functions A and C have TMR applied, but function B does not.
When function C is protected, the call signature is modified to
add the triplicated arguments. This would invalidate the call
to function C that unprotected function B makes. To solve this
conflict, we create a copy of function C with TMR applied,
denoted C’. The hardened version of functions A, A’, then
calls C’. Function B is then free to call the original version
of C. Although this has the negative effect of increasing
code size, it would be up to the designer to decide the final
configuration, taking into account program size, performance,
and fault coverage. Another problem arises when functions are
excluded from the SOR. In some cases, a function might be
simultaneously included and excluded from the SOR. In Fig. 4,
suppose functions A and C have TMR applied, but function B
does not. When function C is protected, the call signature
is modified to add the triplicated arguments. This would
invalidate the call to function C that unprotected function B
makes. To solve this conflict, we create a copy of function C
with TMR applied, denoted C’. The hardened version of
function A, A’, then calls C’. Function B is then free to call
the original version of C. Although this has the negative effect
of increasing code size, it would be up to the designer to
decide the final configuration, taking into account program
size, performance, and fault coverage.

One of the main points of vulnerability in code protected
by our tool is that our pass cannot currently protect library
calls because the libraries are precompiled. In order to have
protected libraries available, one would have to recompile the
libraries from the source code. The default behavior is to
replicate all calls to library functions except a few which cause
incorrect execution, such as printf() or rand(). The user
has an option to only perform the library call once instead,
then use the return value for the instruction clones. This can
be controlled via the configuration arguments.

Another limitation of the tool is that return values are not
replicated. Instead, a single value is returned by a function and
then replicated by the caller function. This, of course, creates
a single point of failure. In the future work, we plan to add a
configuration option to automatically modify function signa-
tures to include variables, passed-by-reference in arguments,
that could serve as multiple replicated return values.

C. Verifying Correctness

In order to prepare this tool for public release, we wanted to
ensure that: 1) the tool supported a wide range of software con-
structs and primitives and 2) that the modified code produced
by our tool remained functionally correct. To ensure this,
we test our repository nightly against a suite of self-verifying C
code benchmarks. Our benchmark suite contains the following
programs: matrix multiply, quicksort (QS), cyclic redundancy
check (CRC), advanced encryption standard, fast Fourier
transform (4 variants), llvm-stress, MiBench (6 programs),
CHStone (12 programs), and CoreMark (2 programs). We also
had a few custom unit tests designed to exercise very particular
use cases of the protection algorithms. Together these give us
over 30 benchmarks to test against, providing a good spread
of algorithm types and code sizes.

There are some particular code constructs that the tool does
not yet support. It does support single-level pointers (including
function pointers); however, multiple levels of indirection are
not supported (double pointers). This is because of issues
where the synchronization code expects variables to have the
same values; however, pointers to different replicas of the data
will naturally have different values. Although we can detect
this case and handle it for direct pointers, multiple levels of
pointers are more challenging and not yet supported. In addi-
tion, there are specific C library calls, such as fscanf(),
that cannot be protected. This is due to some complexities
surrounding the way the C library functions handle file I/O.

IV. EXPERIMENTAL RESULTS

This section describes our experimental results. These were
obtained by performing fault injection testing on a COTS
microcontroller, as well as testing the same chip in a neutron
beam at LANSCE. The objective of these tests was to verify
that our automated protection techniques are effective and
achieve comparable results to past work.

A. Methodology

For our testing (both fault injection and neutron
beam), we targeted the FeRAM-based MSP430FR5969
microcontroller [22], on the EXP430FR5969 development
board. This section contains 16 KB of FeRAM, which con-
tains the program executable, and 2 KB of SRAM, which
contains the program data. This section was chosen because
it has previously been tested in a radiation environment [5]
and because the MSP430 family is supported by an LLVM
back end, meaning we can compile LLVM IR code into
MSP430 assembly code.

For both the fault injection and neutron beam testing, we uti-
lized self-checking benchmarks. Each benchmark returned a
boolean indicating whether a checksum of the result matched
a known golden checksum. There were three possible results.

1) Correct checksum, indicating that execution occurred
without data corruption.

2) Incorrect checksum, showing that a fault was activated
and an SDC occurred.

3) The program could hang.
We used the following metrics to quantitatively evaluate the

increase in reliability and cost of replication. All results are
normalized against the unmitigated version of the benchmark.

1) Code Size: Change in executable size.
2) RAM Size: The increase in the RAM usage. Our bench-

marks do not use dynamic memory allocation, so this is
a fixed amount allocated at compile time.

3) Runtime: Execution time of benchmark.
4) MWTF [20]: The longer runtime of protected programs

results in them having a greater chance of encountering
a fault during execution. The MWTF metric captures the
relationship between reliability and performance in the
following equation:
MWTF = amount of work completed

number of errors encountered
= (raw error rate · AVF · execution time)−1. (1)
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TABLE III

FAULT INJECTION TESTING WITH TMR MITIGATION

5) Fault Coverage: The percentage of faults that are detected
and corrected. It is calculated as follows:

Fcoverage = Fdetected + Fmasked

Ftotal
= 1 − Fundetected

Ftotal
. (2)

B. Fault Injection

Fault injection is used to characterize the effects of upsets
on microprocessors without costly radiation testing [23]. It can
be done in simulation [24] or on hardware [6]. It is, however,
more limited in scope than radiation testing because faults can
only be injected where the tools allow. The radiation beam has
no such limitations.

The goal of our fault injection testing was to automatically
inject bit flips into programs executing on our device under
test (DUT), and measure how often a fault resulted in a hang,
SDC, or had no effect. We utilized Texas Instruments’ Debug
Server Scripting interface [25], which provides an API into the
debugging tools for the MSP430. This allowed us to create
an automatic fault injection tool where we could execute a
program on the hardware, pause it at a random point in time,
flip a bit of memory or in the register file, and then continue
execution. For this test, we targeted the SRAM exclusively.

In order to inject bits at random points in execution,
it was necessary to pause the program with a high degree
of precision. We found that issuing a pause command to the
TI Debug Server was too slow. Even if we issued a pause
command immediately after starting the program, most of
the program would have already executed before it halted.
Instead, we utilized a built-in hardware timer and triggered
an interrupt upon the timer expiring. By placing a breakpoint
on the interrupt service routine, and by configuring the timer
period register to random durations throughout the program
execution, we could halt the program and inject a fault at
random times throughout the entire program execution.

We tested three benchmarks, both with and without
automated data flow protection. We used a matrix multiply
benchmark (MxM), a CRC benchmark, and a QS benchmark.
These benchmarks were chosen to be comparable to previous
work [4]. The tests were completed with and without TMR
mitigation using the default configuration of COAST. Table III
contains the results observed after 5000 fault injection runs for
each TMR design, normalized to the results obtained without
TMR. Each run consisted of programing the executable into
the DUT, executing a random duration of time, flipping a
random bit of SRAM memory, and running the program to
completion.

Table III list the results of the fault injection testing. The
results show a MWTF increase ranging from 11.4 to 28.0×.

Fig. 5. Picture of LANSCE neutron test. The MSP430 boards are the red
boards in the foreground.

As expected, this comes at the price of 2.1–2.2× larger
code size, 2.8–3.0× more RAM usage, and 2.3–3.6× longer
runtime. There is more extensive fault injection data available
in [26]; however, it is not included in this paper due to space
considerations.

At this point in time, we have not yet explored specific
fault injection cases and why they escape detection using the
DWC/TMR techniques. However, we anticipate this will be
focused on in the future work to motivate future features added
to COAST.

C. Radiation Testing

We also tested the mitigation pass in a neutron beam at
LANSCE. The purpose of the radiation test was to validate
both the operation of the pass and understand how well fault
injection predicted real-world behavior in space. Each program
was run in the beam repeatedly and the results of each run
were logged. The MWTF was determined by dividing the total
number of correct executions by the total number of incorrect
executions.

The experiment was conducted using 15
MSP430FR5969 boards in the 30L flight path at LANSCE,
as shown in Fig. 5. Several boards were utilized since the
cross section of each individual MSP430 is quite low, and
utilizing multiple boards allowed us to induce a sufficient
number of faults to gather statistically significant data.
The 15 boards were spread over a distance of 24 cm, with
the closest board located 83 cm from the detector, and the
detector located 19.67 m from the tungsten core. Since
the flux reduction follows the ratio r2/(r + d)2, where r is
the distance to the detector, and d is the distance from the
detector to the DUT, the closest board in the beam experiences
a 7.9% attenuation in flux versus the measurements taken
at the detector, whereas the furthest board from the cap
experiences a 10.1% attenuation. This 2.2% range in flux
between the 15 boards is accounted for in the results, when
the data from all boards are aggregated.

Each set of five MSP430 boards were connected to a
Raspberry Pi 3 board, which provided control and monitor-
ing. The Raspberry Pi board would program each DUT via
universal serial bus, after which the DUT would repeatedly
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TABLE IV

RESULTS FROM NEUTRON BEAM TEST

execute the chosen benchmark in an infinite loop. At the
end of each execution iteration, the DUT used GPIO pins
to return a status to the Raspberry Pi indicating whether the
benchmark executed successfully, whether an SDC occurred
(through checking against the golden checksum), and whether
TMR had corrected any faults. The Raspberry Pi and DUT
would then perform a handshake via GPIO pins to indicate
that the Raspberry Pi had logged the status and that the DUT
could continue with the next iteration. If the DUT reported
an error status, or if it stopped responding, the Raspberry Pi
would power cycle the board, reprogram it, and continue the
testing process.

We tested the matrix multiply and CRC benchmarks in the
neutron beam. Each was tested with and without TMR miti-
gation, again using our default tool configuration. In addition,
the designs with TMR applied also had logic inserted which
reported if TMR corrected any faults, which accounts for the
additional overhead when compared to Table III. The results
are provided in Table IV, and the cross section is illustrated
in Fig. 6.

As shown in Fig. 5, the 15 test boards were located
downstream in the beam from three other circuit boards
from an unrelated experiment. It is possible that these three
boards, and the multiple boards used in the test, which were
spaced close together, introduced secondary interactions from
the neutron beam. However, our past experiences in such a
test environment suggest this effect would be very minimal,
and not significant given the moderate error bounds of the
data obtained. Fig. 7 provides the cross section and fault
distribution per board for TMR-detected faults in the matrix
multiplication benchmark (this configuration was chosen as it
contains the most detected events). As illustrated in the figure,
there is no clear indication that the cross section was dependent
on the board position in the experiment.

Triplicating the program operations leads to a 17.4× reduc-
tion in error cross section for the CRC benchmark, and a
28.7× reduction for the matrix multiplication benchmark.
However, this reduction comes at a performance cost, introduc-
ing a 3.7–4.1× slowdown in program execution. The MWTF
metric accounts for this slowdown, and results in a 4.3–7.1×
increase in mean work that can be accomplished between
failures. This means that if the designer is willing to accept
a higher program latency, as well as a ∼3× increase in code
size and RAM size, the TMR technique can offer much greater
levels of reliability.

Fig. 6. Design cross sections with 95% confidence interval.

D. Results Analysis

Overall, our automated TMR tool significantly increased the
MWTF in all of our benchmarks. The MWTF improvements
are noticeably lower for the radiation test compared to fault
injection. This is likely for two reasons. First, the runtime
penalty for TMR was greater in our radiation test data, as we
enabled the option that allowed for counting the number
of faults corrected by the TMR voter (see Section III-A3).
This was necessary in order to collect the TMR fault data
in Fig. 6. While a better comparison to the fault injection
could be made if the fault injection were configured with
the same fault-correction counter enabled, we had not yet
developed this feature at the time of our extensive fault
injection testing. Future experiments will collect further data to
make better comparisons between fault injection and radiation
test results. Second, our fault injection software limits the
processor features that can be accessed, whereas the radiation
beam has no such limitations.

Compared to work using the CFT tool [16], we see similar
results. COAST’s default set of checking rules is reported
to have 95% fault coverage, whereas in our fault injec-
tion experiments, we observed an average of 98.9% fault
coverage [8]. In addition, the same set of rules was combined
with a control flow technique and tested in a heavy ion beam,
which reportedly gave a MWTF increase of 1.66× [6]. When
tested with a neutron beam, we observed an average increase
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Fig. 7. Fault distribution per board for the TMR-detected faults, with the TMR configuration of the matrix multiplication benchmark. Board 1 represents the
board closest to the beam source (83 cm from detector), while board 15 is the furthest from the beam source (107 cm from detector). Note that the fluence
received by each board varied, as some boards were used for other benchmarks or configurations at different times of the experiment. (a) Cross sections with
95% confidence interval. (b) Fluence and faults.

of 5.7× in MWTF. This is just a rough comparison, as there
are considerable differences in methodology—for example,
the mentioned work does not duplicate variables in memory
and instead assumes ECC. Another past work [4] showed
that hand-coded coarse-grained TMR improved cross section
by approximately 8× on a matrix multiplication. Although
our methodology is fairly different from these past works,
we believe the results show that our automated protection is
at least as effective as previous work.

We observed that most of the program hangs during fault
injection occurred when the program stack was corrupted.
COAST adequately protects the data contained in the SRAM,
but it cannot protect copies of the system registers, such as the
program counter or stack pointer. When these values are upset,
the program goes into an indeterminate state. Control flow
mitigation (which our tool provides, but we did not have time
to test in the beam) would help protect against incorrect jumps
to other places in the program. However, very little of the
MSP430FR5969’s potential address space is occupied by the
actual program, so control flow protection is of questionable
benefit. Instead, it would be more helpful to have a watchdog
timer monitoring the current program counter. If the processor
jumped to an invalid address then the processor would reset
instead of halting entirely.

V. CONCLUSION

COTS microcontrollers are attractive for nonmission-critical
processing in high-radiation environments. However, they are
vulnerable to SDC. The COAST tool presented in this paper
takes existing software protection techniques and applies them
to microcontroller software in a fully automated manner. This
allows users to quickly apply fault tolerant techniques to their
software code, with a high degree of control. We are working
toward a public release of the tool. Test results done with both
fault injection and neutron beam testing show that COAST
provides coverage comparable to the state of the art, increasing

the MWTF by as much as seven times and decreasing the cross
section by as much as 28 times.

TMR provides a high increase in MWTF, but the runtime
and memory overhead may be prohibitively high. This paper
began an exploration into automated data flow protection
using replication. Future work can delve deeper into other
protection methods. One possibility is identifying sensitive
parts of the program and applying replication selectively to
these parts. We have made provision for the user to do
this with command line options and in-code directives, but
automatically identifying these sensitive regions may be more
desirable.
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