

Memory Consumption Modeling of Deep Learning
Workloads
January 2023

H19433

White Paper

Abstract

In this white paper, we present a multi-parameter modeling approach to
generate analytical models that accurately predict the peak memory
consumption of a Deep Learning workload.

Dell Technologies

Copyright

2 Memory Consumption Modeling of Deep Learning Workloads

The information in this publication is provided as is. Dell Inc. makes no representations or warranties of any kind with respect
to the information in this publication, and specifically disclaims implied warranties of merchantability or fitness for a particular
purpose.

Use, copying, and distribution of any software described in this publication requires an applicable software license.

Copyright © 2023 Dell Inc. or its subsidiaries. All Rights Reserved. Dell Technologies, Dell, EMC, Dell EMC and other
trademarks are trademarks of Dell Inc. or its subsidiaries. Intel, the Intel logo, the Intel Inside logo and Xeon are trademarks
of Intel Corporation in the U.S. and/or other countries. Other trademarks may be trademarks of their respective owners.
Published in the USA January 2023 H19433.

Dell Inc. believes the information in this document is accurate as of its publication date. The information is subject to change
without notice.

 Contents

3 Memory Consumption Modeling of Deep Learning Workloads

Contents

Executive summary .. 4

Introduction ... 5

Case-study application: 3D U-Net .. 7

Modeling methodology ... 9

Model evaluation ... 13

Conclusions ... 16

References ... 17

Appendix: Reproducibility .. 19

Executive summary

4 Memory Consumption Modeling of Deep Learning Workloads

Executive summary

Deep Learning (DL) applications have become pervasive in almost every field, including

application domains in science and technology. Large-scale, memory-intensive DL

applications that require training of complex DL models on high-resolution data and large

batch sizes result in a high amount of memory consumption during the model training

phase. In such cases, often the memory being consumed exceeds the available system

resources. Reliably predicting the memory consumption of a DL model being trained prior

to runtime is valuable to minimize OutOfMemory errors and save limited system resources

and/or computation budget (for example, when running on cloud).

In this paper, we adopt a modeling approach based on symbolic regression principles to

generate an accurate memory consumption model for a DL application to predict the peak

memory consumption during training. We evaluated our modeling approach using 3D U-

net as an application case-study, because it exhibits high memory consumption during the

training phase (close to 1TB of data for large image sizes). Based on our approach, the

memory consumption model generated was able to predict the peak memory consumed

during the training phase for different input size and batch sizes with less than 5% Mean

Absolute Percentage Error (MAPE). We subsequently compared our model approach

against models generated from other machine-learning based regression methods,

demonstrating the superior accuracy of our modeling approach.

Date Description

January 2023 Initial release

Dell Technologies and the authors of this document welcome your feedback on this

document. Contact the Dell Technologies team by email.

Authors:

Sai P. Chenna, SHREC Center1, University of Florida

Bhavesh Patel, Dell Technologies

Herman Lam, SHREC Center1, University of Florida

Note: For links to other documentation for this topic, see the Artificial Intelligence Info Hub.

1 SHREC: NSF Center for Space, High-Performance, and Resilient Computing

Overview

Revisions

We value your

feedback

mailto:tech.doc.feedback@dell.com?subject=Document:%20%3cTitle%3e%20%3cPart%20Number%3e
https://infohub.delltechnologies.com/t/artificial-intelligence-12/

 Introduction

5 Memory Consumption Modeling of Deep Learning Workloads

Introduction

Deep Learning (DL) applications have become pervasive in application domains in

various fields of science and technology [1], which have been increasingly dependent on

DL methods for regression and classification tasks. Furthermore, recent advances in the

computer architecture, especially with the advent of custom accelerators for Machine

Learning (ML) based computations, have significantly accelerated model training and

inference times. Higher model training and inference performance has led the application

developers to train more complex models, and/or train on much larger training datasets in

order to create better DL models. However, one common limitation in training such

complex models is the high memory consumption. Depending on the network hyper-

parameters such as number of layers, batch size, input data dimensions, floating point

precision, and underlying framework implementation (such Tensorflow, PyTorch, and so

on), memory consumption can quickly escalate beyond the capacity limitation provided by

the underlying hardware. Figure 1 shows the peak memory consumed by a DL network

called 3D U-net, trained to perform semantic segmentation on high resolution 3D brain

MRI scans for brain tumor detection. As shown in the figure, with the increase of the input

image dimensions and batch size, the peak memory consumption can quickly escalate

toward and beyond 1TB, making it unfeasible to run on a single accelerator (for example,

GPU) on most compute nodes.

Figure 1. 3D U-net memory consumption behavior for various input size and batch sizes
during the model training phase

As mentioned previously, in memory-intensive DL workloads such as 3D U-net, the

memory being consumed often exceeds the available system resources. Therefore,

running the model training task without the proper knowledge on its memory requirement

would result in poor utilization of the computing resources due to frequent OutOfMemory

errors. In fact, a recent empirical study [2] performed to analyze the common DL workload

job failures that occurred on a Microsoft Cloud platform revealed that close to 9% of the

job failures are caused by OutOfMemory errors, where the jobs consume more than the

available amount of memory. Due to the nature of these applications, these errors occur

during the runtime, resulting in loss of valuable compute hours and a need to rerun the

Introduction

6 Memory Consumption Modeling of Deep Learning Workloads

application with additional memory resources. Accurately estimating memory needs of

memory-intensive DL workloads is therefore crucial in order to make efficient use of the

underlying compute resources.

To successfully train a Deep Learning workload on a given computing resource without

exceeding the memory capacity limitation, it is valuable to develop a model to estimate

the peak memory consumption for a given DL network configuration. Generating a reliable

memory consumption model for DL workloads has multiple advantages. Firstly, by reliably

capturing the memory consumption prior to execution we can run the largest possible

application configuration on the given system resources. Secondly, while scaling the

model training onto multiple nodes, a common phenomenon while training large-scale DL

workloads, identifying the peak memory consumption prior to runtime can help distribute

the workload in an optimal manner, thereby achieving peak throughput. However, reliably

predicting the memory consumption prior to runtime is a non-trivial task for application

developers. As mentioned before, memory consumed during the model training phase

depends on various parameters such as the network architecture, batch size, input

dimension of the training data, data precision, and so on.

In this paper, we present a multi-parameter modeling approach to generate analytical

models that accurately predicts the peak memory consumption of a Deep Learning

workload. In the next section, we present a DL application, 3D U-net as our case study.

First, we perform a memory characterization of 3D U-net, identifying key parameters that

contribute to its high memory consumption. As a baseline, we then generate a basic

analytical model by studying the network architecture to estimate memory requirements.

We will show how a model generated by studying the network architecture falls short of

accurately predicting the runtime memory consumption, thereby highlighting a need for a

better modeling approach for generating a memory consumption model.

In the section Modeling methodology we present our modeling approach, which leverages

symbolic regression principles [5] to generate a multi-parameter model capturing the

impact of key application parameters on memory consumption. As shown in Model

evaluation, using a small number of training samples from the 3D U-net case study, our

modeling approach was able to generate memory consumption models that produced

predictions that are less than 5% Mean Absolute Percentage Error (MAPE) when

validated against untrained data points. We also compared our model approach against

models generated from other machine-learning based regression methods, demonstrating

the superior accuracy of our modeling approach.

 Case-study application: 3D U-Net

7 Memory Consumption Modeling of Deep Learning Workloads

Case-study application: 3D U-Net

Figure 2. 3D U-Net architecture.

3D U-nets are typically used in medical imaging for processing three-dimensional

volumetric data [3]. 3D U-net has a typical encoder-decoder structure where the encoder

structure analyses the input image and performs dimensionality reduction. The decoder

path performs up-convolution to produce full image segmentation. Both encoder and

decoder paths involve 3D convolutions, max pooling layers, and batch normalizations.

Figure 2 shows our 3D U-net architecture. By design, 3D U-net is a symmetric network,

meaning the model can be trained and inferred with different image sizes. Due to the

high-resolution, three-dimensional images being used for training, and the network hyper-

parameters being specified (such as batch size, filter dimensions, and number of layers),

memory consumption can quickly escalate beyond the capacity of the underlying

hardware, as shown in Figure 1.

To understand the memory consumption behavior of, and develop a baseline memory

consumption model for, 3D-net, we first identified the key contributors that dominate most

of the memory consumption. The two main memory objects that dominate most of the

memory consumption during the model training phase are (i) intermediate tensors

(activation maps), and (ii) model weights. Activation maps are the tensors generated after

the subsequent convolution and max pooling layers. The size of these tensors depends

on four key parameters:

• input image dimension

• batch size

• number of filters

• number of layers

During the forward pass operation in the model training phase, we generate multiple

activation maps for each image specified in the batch size. As a result, memory

consumption by activation maps scales linearly with the batch size. Equation 1 specifies

the memory consumed in bytes due to activation maps:

• H,W,D define height, width, and depth of the input training images, respectively

Case-study application: 3D U-Net

8 Memory Consumption Modeling of Deep Learning Workloads

• Cin and Cout denotes the number of input and output channels

• Fk denotes the number of filters in the first layer

• bz specifies the training batch size

Figure 3. Equation 1

Another key contributor for memory consumption is model parameters. Unlike activation

maps, memory consumed by model parameters is fixed for a given network and does not

depend on the input image dimensions and batch sizes. The total number of model

parameters that include both model weights and biases depend on (i) number of filters, (ii)

filter dimensions of convolution and concatenation layers, and (iii) number of layers.

Equation 2 specifies the memory consumed in bytes by the model weights for the 3D U-

net architecture specified in Figure 1:

• Kh* Kw * Kd denotes the filter dimensions of the convolution layers

• Kh1* Kw1 * Kd1 denotes the filter dimensions of the concatenation layers

• Kh11* Kw11 * Kd11 denotes the filter dimension of the output layer

Figure 4. Equation 2

Figure 5. Evaluation of memory consumption model for 3D U-net developed by studying
the intermediate tensors and model parameters.

 Modeling methodology

9 Memory Consumption Modeling of Deep Learning Workloads

Figure 5 shows the memory consumption predictions made from the baseline analytical

models specified in Equations 1 and 2 and the corresponding measured data acquired

through memory profiling. The analytical model combines the memory consumed by the

activation maps and model weights to predict the peak memory consumption. As shown in

the figure, while the analytical model was able to capture the trend in terms of the memory

consumption with regard to input image dimension and batch size, the model was not able

to predict the peak memory consumption accurately during the training phase.

Specifically, for larger input image sizes, where the memory consumption escalates to

hundreds of gigabytes, the analytical model (which was generated by studying the

intermediate tensors and model parameters) falls significantly short in predicting the

actual peak runtime memory performance. This example demonstrates a practical

disadvantage of the pure analytical modeling approach, which requires detailed

knowledge of the application and the targeted architecture being modeled. Even with

expert knowledge, the resulting model often deviates from actual execution due to

machine and tool specific behaviors that are difficult to predict or understand.

In the next section, we present an empirical multi-parameter modeling approach to

generate accurate memory consumption models by leveraging symbolic regression

principles [4].

Modeling methodology

Symbolic regression is an approach that searches the space of all possible mathematical

equations to find an equation that minimizes some error metric for a given set of training

data. Like other machine-learning regression approaches, the goal of symbolic regression

is to leverage training data to build a model that generalizes well to test data. Although

studied for several decades [5-7], symbolic regression has limited usage due to numerous

challenges compared to other regression techniques. Most significantly, symbolic

regression has an infinitely large search space due to the existence of infinite equations.

In fact, not only is the search space infinite, but there are an infinite number of equations

that coincide with any set of training data. As a result, the goal of symbolic regression is

often not merely to find the equation with the least error, but also the simplest equation

that minimizes the error, because a simpler equation tends to generalize better by

minimizing overtraining.

Modeling methodology

10 Memory Consumption Modeling of Deep Learning Workloads

Figure 6. Multi-parameter modeling workflow using symbolic regression

Figure 6 shows our modeling workflow. To generate the performance models, we begin

by collecting the performance samples by instrumenting the application under

consideration and benchmarking the application for various performance parameters to

collect the performance samples (Step 1 in Figure 6). The performance metric under

consideration could be execution time, total number of FLOPs, or in this case, peak

memory consumption during execution. Upon collecting the performance samples, the

data is classified into training data and test data through sampling (Step 2). The training

data is used during model generation process. For the model generation in our study, we

use Pandora [8], a symbolic regression based tool built in Python. The tool leverages

several data structures and algorithms from the DEAP evolutionary algorithm library [9],

which were extended with numerous optimizations for symbolic regression. While the

original developers developed Pandora for the approximate computing applications [8],

we leveraged the framework for performance and peak memory consumption modeling. In

a previous work, we performed extensive evaluation on Pandora for performance

modeling by building accurate coarse-grained multi-parameter models for various HPC

applications [4]. More details about the Pandora tool are given in Pandora – symbolic

regression based modeling tool. When the performance model has been generated, the

next step in the workflow is to use the test/validation data to evaluate the accuracy of our

model (Step 4). In Model evaluation, we demonstrate the accuracy of our modeling

approach by generating a memory consumption model of 3D U-net to predict the peak

memory consumption during the training phase.

The Pandora tool [8] was developed initially for the purposing of approximate computing –

to provide inexpensive solutions for complex computing tasks within a reasonable amount

of error tolerance. By combing through various mathematical possibilities to arrive at the

same solution through empirical modeling, the tool can be used for many

regression/curve-fitting tasks. Previous work involved using Pandora for compiler

optimization – exploring different approximations for sequential code containing loop

carried dependencies [8].

Modeling

workflow

Pandora –

symbolic

regression

based modeling

tool

 Modeling methodology

11 Memory Consumption Modeling of Deep Learning Workloads

In addition to approximation computing, Pandora has been customized for application and

architecture performance modelling [4]. In particular, Pandora provides the three desirable

characteristics that are crucial for performance modeling of large-scale systems:

• domain-agnostic

• true multi-parameter modeling

• feasible model generation time

Domain-agnostic is a desirable property so the approach can be applicable to a wider

range of applications and systems. Detailed knowledge of the application and target

system being modeled is not required. Also, in most cases, the performance of an

application or system sub-component to be modeled can have multiple parameters that

affect its performance. Hence, the modeling approach should not be restricted to a limited

number of parameters to generate an accurate performance model. Finally, the model

generation times should be fast enough for iterative refinement if necessary.

In our previous work [4], we performed a systematic study to evaluate the accuracy of the

performance models generated using Pandora for various High-Performance Computing

(HPC) applications. In that study, it was shown that multi-parameter modeling using

symbolic regression (Pandora) was able to generate accurate models with less than 8%

MAPE, while using relatively fewer training samples as compared to other machine-

learning based regression methods. In this paper, we use Pandora to generate a memory

consumption model for 3D U-net application. We validate our model by comparing the

predicted results against the measured peak memory performance (test data) of the

application. Subsequently, we perform a comparative evaluation of the symbolic

regression approach with other prominent ML based regression methods for memory

consumption modeling.

Model generation process

In this sub-section, we briefly describe how Pandora generates an analytical model by

leveraging symbolic regression principles. While there are multiple strategies to perform

symbolic regression, Pandora makes use of genetic programming [5,10,11], not to be

confused with more general genetic algorithms. Genetic programming imitates the

processes of evolution to develop a solution to a problem. For the purposes of symbolic

regression, genetic programming defines genes consisting of mathematical primitives.

These primitives are generally basic, low-level operations (such as add, multiply, and so

on) but can potentially be arbitrarily complex operations. Figure 7 shows the steps

involved in the model generation process. Genetic programming initially creates a

population of individuals, which for symbolic regression consists of random equations built

from the defined primitives. Genetic programming then evolves different solutions over a

number of generations, where each generation involves crossover/reproduction and

mutation [5, 12]. Before the end of each generation, a selection process (analogous to

natural selection) removes a percentage of individuals from the population based on a

pre-defined fitness function. This process generally iterates for either a pre-defined

number of generations, or until there is a lack of improvements for a number of

generations.

Modeling methodology

12 Memory Consumption Modeling of Deep Learning Workloads

Figure 7. Model generation process in Pandora

Genetic programming is guided by a provided fitness function that specifies desirable

characteristics of an individual. For symbolic regression, the most basic fitness function is

an error metric. For situations where simple equations are preferable, the function can

also include the size, computational complexity, and so on, of the equation. Although any

error metric can be used for symbolic regression, common examples include root mean-

squared error (RMSE), mean-squared error (MSE), and mean absolute-percentage error

(MAPE). Because we are using symbolic regression to generate peak memory

consumption models, we will use MAPE, which is useful for showing how closely a set of

test/training data fits the regression model.

To perform symbolic regression, we provide Pandora with a configuration file that

specifies a number of genetic-programming parameters: training data, test data,

primitives/genes, mutation probability, crossover probability, fitness function, population

size, and number of generations. Although domain knowledge can be used to fine-tune

the configuration file, in our experiments we used the same configuration for all

experiments to provide a lower bound on the quality of the results, and to demonstrate

that symbolic regression can perform well even without any deep knowledge of the

application or architecture being modeled. Our memory consumption model was built

using primitives consisting of addition and multiplication. We also included square and

cube as primitives, because we expected these to be common in our memory

consumption model. Although symbolic regression can generally discover square and

cube operations with multiply primitives, inclusion of the square and cube primitive can

reduce training times. We have eliminated other basic arithmetic primitives such as

 Model evaluation

13 Memory Consumption Modeling of Deep Learning Workloads

subtraction and division because it is not natural for them to be in the memory

consumption model.

For all experiments, we used a plus-selection evolutionary algorithm [12], which considers

both the parents and offspring during selection. The selection algorithm used a double

tournament method [13], with a parsimony size of 1.1 and a fitness size of 3. We used five

different mutation operators [9] that the tool selected randomly for each mutation. We

used a one-point crossover operator. The mutation probability for each individual was

50%. Crossover probability was 100%. For all examples, we used a population size of 300

with 150 total generations. We empirically determined these values to work well for most

symbolic-regression problems we have evaluated. A complete tradeoff exploration of all

genetic-programming parameters is outside the scope of this study, but has been studied

extensively in evolutionary-algorithm studies [14]. To optimize constants, we used the

Levenberg–Marquardt non-linear least squares algorithm [15]. Upon completion, the tool

outputs the resulting equation and then tests that equation against the provided test data

to determine the resulting generalization error.

Model evaluation

In this section, we evaluate our modeling approach on the 3D U-net case study to

generate an analytical peak memory consumption model. In Experimental setup, the

experimental setup, data collection, and sampling processing employed to generate the

training and test data are described. In Model validation, the evaluation of the model

generated by Pandora is presented, comparing the result against the validation data.

Finally in Comparative evaluation with ML regression methods, we compare our modeling

approach with other machine-learning based approaches that have proven to be

promising candidates for performance modeling [16].

To generate the memory consumption model for 3D U-net, we first begin by collecting

performance samples by running the 3D U-net model training for various image

dimensions and batch sizes. The memory profiler mprof was used to profile the memory

consumption during the training phase, and the peak memory consumed was extracted

during execution (Step 1 in Figure 6). Intel’s optimized Tensorflow version 2.4 was used,

and the application was written in Keras (version 2.2.3). More details about the software

stack and the hardware utilized to collect the performance samples are described in the

reproducibility section in the Appendix.

To facilitate the data collection for various input dimensions and batch sizes, we have

generated scripts that create random input data for the desired image dimensions. The

synthetic input data is used for the model training. The memory consumption was

sampled throughout execution using the mprof profiler (Step 2 in Figure 6). Mprof polls the

program to collect the memory consumption details at a sampling interval (default is 0.1

seconds). When the training is complete, we extract the peak memory consumed as our

performance sample for that run. Table 1 shows the parameter space used for collecting

performance samples.

Experimental

setup

Model evaluation

14 Memory Consumption Modeling of Deep Learning Workloads

Table 1. Parameter design space used for memory consumption modeling for 3D U-net

Parameter Range

Image dimension (along each
dimension)

32,64,128,144,200,244

Batch size 1,2,4,8,16,32,64

When all the performance samples have been collected, we randomly classify the data

into training data and test data (Step 2). 70% of the total collected samples was used for

training and the remaining 30% for test/validation data. Random sampling is used to

eliminate any bias in training data and to help generate a model that can generalize well

to the test data.

The training data was inputted into the Pandora symbolic regression tool to generate the

memory consumption model (Step 3 in Figure 6). The performance metric under

consideration is the peak memory consumption during execution, and the input

parameters are the image dimension and batch size of the 3D U-net. The configuration

parameters used for model generation are those discussed in Model generation process.

Figure 8 shows the accuracy of our generated model compared to the validation data (that

is, the 30% test data from benchmarking). We use Mean Absolute Percentage Error

(MAPE) as our evaluation metric. As you can see, the predicted memory consumption

results (from the Pandora symbolic regression tool) for the various image dimension/batch

sizes match closely to the measured data. On average, the model had a MAPE of 4.15%.

Compared to results generated by the base analytical model in Case-study application:

3D U-Net and Figure 5, the performance model generated through symbolic regression

performed significantly better.

Figure 8. 3D U-net memory consumption model (symbolic regression) evaluation

Over the last decade, machine-learning based regression methods have been widely

deployed in multiple fields for regression and classification tasks. Recent advances in

computer architecture have made it possible to train complex machine learning regression

models on large datasets. While these regression models have been actively used for

Model validation

Comparative

evaluation with

ML regression

methods

 Model evaluation

15 Memory Consumption Modeling of Deep Learning Workloads

fields such as weather forecasting, e-commerce, and finance, not much progress has

been made in the performance modeling domain. Malakar et al. [16] performed a detailed

study on the efficiency of the machine learning regression methods for performance

modeling of scientific applications. They evaluated multiple machine learning regression

methods, ranging from simple multi-variate linear regression to instance-based methods

such as nearest-neighbor regression [17], kernel-based methods [18], decision tree based

methods [19] such as random forests, and, deep learning neural networks. Based on their

evaluation on multiple Mantevo [20] HPC benchmarks, they determined that complex ML

methods such as bagging, boosting, and Deep Neural Network models performed well

while generating accurate performance models for HPC applications.

In this paper, we perform a comparative evaluation of our symbolic regression based

approach with these ML regression methods. Based on the work described by Malakar et.

al [16], we have selected XGBoost (xgb), random forest (rfr), extremely randomized trees

(ert), and Deep Neural Networks (dnn) for memory consumption modeling. For this study,

the Python Scikit library package was used to build the ML regression models. Using the

MinMaxScaler transformation, normalization on the training data was performed as a part

of the data pre-processing. For all the decision tree methods, the default values were

used, and the number of trees set to 1000. As with symbolic regression, configuration

parameters play a significant role in the model generation process, but a detailed study on

the impact of configuration parameters on the model performance is out of scope for this

paper. However, for consistency, the configuration parameters were set to default for all

the ML regression methods. For Deep Neural Networks, the Keras library was used to

build the network that runs on top of Tensorflow. We used a three-layer feed forward

network with dropout layers in between. Finally, an Adam optimizer was used and the

models were trained for 100 epochs.

Figure 9 compares the accuracy of the model generated by symbolic regression with the

selected ML regression methods. As shown in the figure, the symbolic regression model

performed significantly better than the other ML methods using the same performance

samples. The symbolic regression model has a MAPE of 4.15%, whereas ert, rfr, xgb, and

dnn have a MAPE of 22.35%, 92.75%, 52.56%, and 75.91%, respectively.

Again, the results shown in Figure 9 is based on using the same performance samples for

all the modeling methods. If we vary the size and other characteristics of the sampled

data, the results may not be the same. Detailed study on the impact of varying different

sampling and model parameters on the model performance is outside the scope of this

paper. Interested readers are referred to such extensive comparison in our earlier study,

the results of which are consistent with the results shown in Figure 9. In that earlier study,

we applied the symbolic regression modeling approach to develop performance models

for a petascale HPC application called CMT-nek [24] and two HPC mini-apps (Cloverleaf

[22] and LULESH [23]) which capture the key computation patterns in many real-world

scientific applications. We also showcase the ability of our modeling approach to

determine the true function accurately by using a set of synthetic test functions. In our

findings, we observed that, in general, symbolic regression performed significantly better

than other ML regression techniques for a given number of performance samples. We

also varied the size of the performance samples and observed that on average,

increasing the performance samples for training improved the model accuracy for the

other ML regression methods, but at the cost of longer training time. And, at some point,

some of the ML based regression methods may equal or outperform symbolic regression.

However, as we stated in Pandora – symbolic regression based modeling tool, one of the

Conclusions

16 Memory Consumption Modeling of Deep Learning Workloads

three desirable characteristics that are crucial for performance modeling of large-scale

systems is feasible model generation time. In general, we observed that with a limited

number of performance samples, our symbolic regression-based modeling approach was

able to generate the most accurate models.

Figure 9. Comparison of accuracies of various memory consumption models generated
using symbolic regression and other ML based regression methods

Conclusions

Deep Learning applications have been growing in scale and complexity over the last few

years due to significant breakthroughs in algorithms and system architecture. As a result,

there has been a growing demand for using high resolution data on complex Deep

Learning networks for model training. This has resulted in high memory consumption

during the model training phase, often beyond the system limitation.It has therefore

become important for application users to reliably predict the memory consumption

requirements before starting the model training process.

In this paper, we present a multi-parameter modeling approach to accurately generate a

memory consumption model. By reliably predicting the memory requirements of a model

prior to runtime, we would be able to optimize the workload distribution without exceeding

the system memory requirements. Also, while scaling the model training onto multiple

nodes, identifying the peak memory consumption prior to runtime can help distribute the

workload in an optimal manner, and achieve peak throughput. We evaluated our modeling

approach on a 3D U-net deep learning application and generated a memory consumption

model for the network. We subsequently validated the accuracy of our model by predicting

the peak memory consumption on some untrained data points and achieved a Mean

Absolute Percentage Error of 4.15%. Finally, a comparative evaluation was performed

with other machine-learning based regression techniques and confirmed that the symbolic

regression approach does a better job at generating accurate models for the 3D U-net

peak memory consumption, in the presence of a limited set of performance samples.

Going forward, we would like to extend our modeling approach to predict the runtime

performance of other large-scale DL workloads.

 References

17 Memory Consumption Modeling of Deep Learning Workloads

References

[1] Y. LeCun, Y. Bengio, and G. Hinton. 2015. Deep learning. Nature 521, 7553 (2015),

436–444

[2] Ru Zhang, Wencong Xiao, Hongyu Zhang, Yu Liu, Haoxiang Lin, and Mao Yang. 2020.

An Empirical Study on Program Failures of Deep Learning Jobs. In Proceedings of the

42nd International Conference on Software Engineering (Seoul, Republic of Korea) (ICSE

’20). Association for Computing Machinery, NY, USA, 1159–1170.

[3] Çiçek, Özgün, et al. "3D U-Net: learning dense volumetric segmentation from sparse

annotation." International conference on medical image computing and computer-assisted

intervention. Springer, Cham, 2016.

[4] Chenna, Sai P., Greg Stitt, and Herman Lam. "Multi-parameter performance modeling

using symbolic regression." 2019 International Conference on High Performance

Computing & Simulation (HPCS). IEEE, 2019.

[5] J. R. Koza, Genetic Programming II: Automatic Discovery of Reusable Programs.

Cambridge, MA, USA: MIT Press, 1994.

[6] J. McDermott, D. R. White, S. Luke, L. Manzoni, M. Castelli, L. Vanneschi, W.

Jaskowski, K. Krawiec, R. Harper, K. De Jong, and U.-M. O’Reilly, “Genetic programming

needs better benchmarks,” in Proceedings of the 14th Annual Conference on Genetic and

Evolutionary Computation, ser. GECCO ’12. New York, NY, USA: ACM, 2012, pp. 791–

798. [Online]. Available: http://doi.acm.org/10.1145/2330163.2330273.

[7] M. Schmidt and H. Lipson, “Distilling free-form natural laws from experimental data,”

Science, vol. 324, no. 5923, pp. 81–85, 2009. [Online]. Available:

http://science.sciencemag.org/content/324/5923/81.

[8] Stitt, Greg, and David Campbell. "PANDORA: An Architecture-Independent

Parallelizing Approximation-Discovery Framework." ACM Transactions on Embedded

Computing Systems (TECS) 19.5 (2020): 1-17.

[9] F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner, M. Parizeau, and C. Gagné, “DEAP:

Evolutionary algorithms made easy,” Journal of Machine Learning Research, vol. 13, pp.

2171–2175, jul 2012.

[10] D. P. Searson, D. E. Leahy, and M. J. Willis, “Gptips: An open source genetic

programming toolbox for multigene symbolic regression.”

[11] G. S. Hornby, “ALPS: The age-layered population structure for reducing the problem

of premature convergence,” in Proceedings of the 8th Annual Conference on Genetic and

Evolutionary Computation, ser. GECCO ’06. New York, NY, USA: ACM, 2006, pp. 815–

822. [Online]. Available: http://doi.acm.org/10.1145/1143997.1144142.

[12] H.-G. Beyer and H.-P. Schwefel, “Evolution strategies – a comprehensive

introduction,” Natural Computing, vol. 1, no. 1, pp. 3–52, Mar 2002. [Online]. Available:

https://doi.org/10.1023/A:1015059928466.

[13] S. Luke and L. Panait, “Fighting bloat with nonparametric parsimony pressure,” in

Parallel Problem Solving from Nature — PPSN VII, J. J. M. Guervós, P. Adamidis, H.-G.

http://doi.acm.org/10.1145/2330163.2330273
http://science.sciencemag.org/content/324/5923/81
http://doi.acm.org/10.1145/1143997.1144142
https://doi.org/10.1023/A:1015059928466

References

18 Memory Consumption Modeling of Deep Learning Workloads

Beyer, H.-P. Schwefel, and J.-L. Fernández-Villacañas, Eds. Berlin, Heidelberg: Springer

Berlin Heidelberg, 2002, pp. 411–421.

[14] F. G. Lobo, C. F. Lima, and Z. Michalewicz, Parameter Setting in Evolutionary

Algorithms, 1st ed. Springer Publishing Company, Incorporated, 2007.

[15] M. Kommenda, G. Kronberger, S. Winkler, M. Affenzeller, and S. Wagner, “Effects of

constant optimization by nonlinear least squares minimization in symbolic regression,” in

Proceedings of the 15th Annual Conference Companion on Genetic and Evolutionary

Computation, ser. GECCO ’13 Companion. New York, NY, USA: ACM, 2013, pp. 1121–

1128. [Online]. Available: http://doi.acm.org/10.1145/2464576.2482691.

[16] Malakar, Preeti, et al. "Benchmarking machine learning methods for performance

modeling of scientific applications." 2018 IEEE/ACM Performance Modeling,

Benchmarking and Simulation of High Performance Computer Systems (PMBS). IEEE,

2018.

[17] C. M. Bishop and N. M. Nasrabadi, Pattern recognition and machine learning.

Springer, 2006, vol. 4, no. 4.

[18] A. J. Smola and B. Schölkopf, “A tutorial on support vector regression,” Statistics and

computing, vol. 14, no. 3, pp. 199–222, 2004.

[19] W.-Y. Loh, “Classification and regression trees,” Wiley interdisciplinary reviews: data

mining and knowledge discovery, vol. 1, no. 1, pp. 14–23, 2011.

[20] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willenbring, H. C. Edwards, A.

Williams, M. Rajan, E. R. Keiter, H. K. Thornquist, and R. W. Numrich, “Improving

Performance via Mini-applications,” Sandia National Laboratories, Tech. Rep. SAND2009-

5574, 2009.

[21] Chenna, Sai P., et al. "Scalable Performance Prediction of Irregular Workloads in

Multi-Phase Particle-in-Cell Applications." 2021 IEEE International Parallel and Distributed

Processing Symposium Workshops (IPDPSW). IEEE, 2021.

[22] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M. Willenbring, H. C. Edwards, A.

Williams, M. Rajan, E. R. Keiter, H. K. Thornquist, and R. W. Numrich, “Improving

Performance via Mini-applications,” Sandia National Laboratories, Tech. Rep. SAND2009-

5574, 2009.

[23] I. Karlin, J. Keasler, and R. Neely, “Lulesh 2.0 updates and changes,” Tech. Rep.

LLNL-TR-641973, August 2013.

[24] Banerjee, Tania, et al. "Cmt-bone—a proxy application for compressible multiphase

turbulent flows." 2016 IEEE 23rd International Conference on High Performance

Computing (HiPC). IEEE, 2016.

http://doi.acm.org/10.1145/2464576.2482691

 Appendix: Reproducibility

19 Memory Consumption Modeling of Deep Learning Workloads

Appendix: Reproducibility

Software

• Keras: 2.2.4

• Tensorflow: 2.4

• Intel DNNL

• Python 3.6.9

• Ubuntu 18.04

Data

Dataset name: BRATS

Tensor image size: 4D

Train, validation, test images: 406,32,46

Release: 2.0 04/05/2018

https://www.med.upenn.edu/sbia/brats2017.html

Model

Architecture: 3D U-Net

Input format: Channels last

Params: 5,650,801

Trainable params: 5,647,857

Non-trainable params: 2,944

Code repository:

https://github.com/IntelAI/unet

https://www.med.upenn.edu/sbia/brats2017.html
https://github.com/IntelAI/unet

Appendix: Reproducibility

20 Memory Consumption Modeling of Deep Learning Workloads

Hardware - Intel® Xeon® Gold 6248 CPU @2.5Ghz

• Architecture: x86_64

• CPU op-mode(s): 32-bit, 64-bit

• Byte Order: Little Endian

• CPU(s): 80

• On-line CPU(s) list: 0-79

• Thread(s) per core: 1

• Core(s) per socket: 20

• Socket(s): 4

• NUMA node(s): 4

• Vendor ID: GenuineIntel

• CPU family: 6

• Model: 85

• Model name: Intel® Xeon® Gold 6248 CPU @ 2.50GHz

• Stepping: 6

• CPU MHz: 2494.155

• BogoMIPS: 4989.86

• Virtualization: VT-x

• L1d cache: 32K

• L1i cache: 32K

• L2 cache: 1024K

• L3 cache: 28160K

• NUMA node0 CPU(s): 0,4,8,12,16,20,24,28,32,36,40,44,48,52,56,60,64,68,72,76

• NUMA node1 CPU(s): 1,5,9,13,17,21,25,29,33,37,41,45,49,53,57,61,65,69,73,77

• NUMA node2 CPU(s): 2,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62,66,70,74,78

• NUMA node3 CPU(s): 3,7,11,15,19,23,27,31,35,39,43,47,51,55,59,63,67,71,75,79

Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse
sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology
nonstop_tsc aperfmperf eagerfpu pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr
pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm
3dnowprefetch epb intel_pt tpr_shadow vnmi flexpriority ept vpid fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms
invpcid rtm cqm mpx avx512f rdseed adx smap clflushopt clwb avx512cd xsaveopt xsavec xgetbv1 cqm_llc
cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts

