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Executive summary 

 

Deep Learning (DL) applications have become pervasive in almost every field, including 

application domains in science and technology. Large-scale, memory-intensive DL 

applications that require training of complex DL models on high-resolution data and large 

batch sizes result in a high amount of memory consumption during the model training 

phase. In such cases, often the memory being consumed exceeds the available system 

resources. Reliably predicting the memory consumption of a DL model being trained prior 

to runtime is valuable to minimize OutOfMemory errors and save limited system resources 

and/or computation budget (for example, when running on cloud).  

In this paper, we adopt a modeling approach based on symbolic regression principles to 

generate an accurate memory consumption model for a DL application to predict the peak 

memory consumption during training. We evaluated our modeling approach using 3D U-

net as an application case-study, because it exhibits high memory consumption during the 

training phase (close to 1TB of data for large image sizes). Based on our approach, the 

memory consumption model generated was able to predict the peak memory consumed 

during the training phase for different input size and batch sizes with less than 5% Mean 

Absolute Percentage Error (MAPE). We subsequently compared our model approach 

against models generated from other machine-learning based regression methods, 

demonstrating the superior accuracy of our modeling approach. 
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Introduction 

Deep Learning (DL) applications have become pervasive in application domains in 

various fields of science and technology [1], which have been increasingly dependent on 

DL methods for regression and classification tasks. Furthermore, recent advances in the 

computer architecture, especially with the advent of custom accelerators for Machine 

Learning (ML) based computations, have significantly accelerated model training and 

inference times. Higher model training and inference performance has led the application 

developers to train more complex models, and/or train on much larger training datasets in 

order to create better DL models. However, one common limitation in training such 

complex models is the high memory consumption. Depending on the network hyper-

parameters such as number of layers, batch size, input data dimensions, floating point 

precision, and underlying framework implementation (such Tensorflow, PyTorch, and so 

on), memory consumption can quickly escalate beyond the capacity limitation provided by 

the underlying hardware. Figure 1 shows the peak memory consumed by a DL network 

called 3D U-net, trained to perform semantic segmentation on high resolution 3D brain 

MRI scans for brain tumor detection. As shown in the figure, with the increase of the input 

image dimensions and batch size, the peak memory consumption can quickly escalate 

toward and beyond 1TB, making it unfeasible to run on a single accelerator (for example, 

GPU) on most compute nodes.  

 

Figure 1. 3D U-net memory consumption behavior for various input size and batch sizes 
during the model training phase  

As mentioned previously, in memory-intensive DL workloads such as 3D U-net, the 

memory being consumed often exceeds the available system resources. Therefore, 

running the model training task without the proper knowledge on its memory requirement 

would result in poor utilization of the computing resources due to frequent OutOfMemory 

errors. In fact, a recent empirical study [2] performed to analyze the common DL workload 

job failures that occurred on a Microsoft Cloud platform revealed that close to 9% of the 

job failures are caused by OutOfMemory errors, where the jobs consume more than the 

available amount of memory. Due to the nature of these applications, these errors occur 

during the runtime, resulting in loss of valuable compute hours and a need to rerun the 
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application with additional memory resources. Accurately estimating memory needs of 

memory-intensive DL workloads is therefore crucial in order to make efficient use of the 

underlying compute resources. 

To successfully train a Deep Learning workload on a given computing resource without 

exceeding the memory capacity limitation, it is valuable to develop a model to estimate 

the peak memory consumption for a given DL network configuration. Generating a reliable 

memory consumption model for DL workloads has multiple advantages. Firstly, by reliably 

capturing the memory consumption prior to execution we can run the largest possible 

application configuration on the given system resources. Secondly, while scaling the 

model training onto multiple nodes, a common phenomenon while training large-scale DL 

workloads, identifying the peak memory consumption prior to runtime can help distribute 

the workload in an optimal manner, thereby achieving peak throughput. However, reliably 

predicting the memory consumption prior to runtime is a non-trivial task for application 

developers. As mentioned before, memory consumed during the model training phase 

depends on various parameters such as the network architecture, batch size, input 

dimension of the training data, data precision, and so on. 

In this paper, we present a multi-parameter modeling approach to generate analytical 

models that accurately predicts the peak memory consumption of a Deep Learning 

workload. In the next section, we present a DL application, 3D U-net as our case study. 

First, we perform a memory characterization of 3D U-net, identifying key parameters that 

contribute to its high memory consumption. As a baseline, we then generate a basic 

analytical model by studying the network architecture to estimate memory requirements. 

We will show how a model generated by studying the network architecture falls short of 

accurately predicting the runtime memory consumption, thereby highlighting a need for a 

better modeling approach for generating a memory consumption model. 

In the section Modeling methodology we present our modeling approach, which leverages 

symbolic regression principles [5] to generate a multi-parameter model capturing the 

impact of key application parameters on memory consumption. As shown in Model 

evaluation, using a small number of training samples from the 3D U-net case study, our 

modeling approach was able to generate memory consumption models that produced 

predictions that are less than 5% Mean Absolute Percentage Error (MAPE) when 

validated against untrained data points. We also compared our model approach against 

models generated from other machine-learning based regression methods, demonstrating 

the superior accuracy of our modeling approach. 
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Case-study application: 3D U-Net 

 

  

Figure 2. 3D U-Net architecture. 

3D U-nets are typically used in medical imaging for processing three-dimensional 

volumetric data [3]. 3D U-net has a typical encoder-decoder structure where the encoder 

structure analyses the input image and performs dimensionality reduction. The decoder 

path performs up-convolution to produce full image segmentation. Both encoder and 

decoder paths involve 3D convolutions, max pooling layers, and batch normalizations. 

Figure 2 shows our 3D U-net architecture. By design, 3D U-net is a symmetric network, 

meaning the model can be trained and inferred with different image sizes. Due to the 

high-resolution, three-dimensional images being used for training, and the network hyper-

parameters being specified (such as batch size, filter dimensions, and number of layers), 

memory consumption can quickly escalate beyond the capacity of the underlying 

hardware, as shown in Figure 1. 

To understand the memory consumption behavior of, and develop a baseline memory 

consumption model for, 3D-net, we first identified the key contributors that dominate most 

of the memory consumption. The two main memory objects that dominate most of the 

memory consumption during the model training phase are (i) intermediate tensors 

(activation maps), and (ii) model weights. Activation maps are the tensors generated after 

the subsequent convolution and max pooling layers. The size of these tensors depends 

on four key parameters: 

• input image dimension 

• batch size 

• number of filters 

• number of layers 

During the forward pass operation in the model training phase, we generate multiple 

activation maps for each image specified in the batch size. As a result, memory 

consumption by activation maps scales linearly with the batch size. Equation 1 specifies 

the memory consumed in bytes due to activation maps: 

• H,W,D define height, width, and depth of the input training images, respectively 
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• Cin and Cout denotes the number of input and output channels 

• Fk denotes the number of filters in the first layer 

• bz specifies the training batch size 

 

Figure 3. Equation 1 

Another key contributor for memory consumption is model parameters. Unlike activation 

maps, memory consumed by model parameters is fixed for a given network and does not 

depend on the input image dimensions and batch sizes. The total number of model 

parameters that include both model weights and biases depend on (i) number of filters, (ii) 

filter dimensions of convolution and concatenation layers, and (iii) number of layers. 

Equation 2 specifies the memory consumed in bytes by the model weights for the 3D U-

net architecture specified in Figure 1: 

• Kh* Kw * Kd denotes the filter dimensions of the convolution layers 

• Kh1* Kw1 * Kd1 denotes the filter dimensions of the concatenation layers 

• Kh11* Kw11 * Kd11 denotes the filter dimension of the output layer 

 

Figure 4. Equation 2 

 

Figure 5. Evaluation of memory consumption model for 3D U-net developed by studying 
the intermediate tensors and model parameters. 
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Figure 5 shows the memory consumption predictions made from the baseline analytical 

models specified in Equations 1 and 2 and the corresponding measured data acquired 

through memory profiling. The analytical model combines the memory consumed by the 

activation maps and model weights to predict the peak memory consumption. As shown in 

the figure, while the analytical model was able to capture the trend in terms of the memory 

consumption with regard to input image dimension and batch size, the model was not able 

to predict the peak memory consumption accurately during the training phase. 

Specifically, for larger input image sizes, where the memory consumption escalates to 

hundreds of gigabytes, the analytical model (which was generated by studying the 

intermediate tensors and model parameters) falls significantly short in predicting the 

actual peak runtime memory performance. This example demonstrates a practical 

disadvantage of the pure analytical modeling approach, which requires detailed 

knowledge of the application and the targeted architecture being modeled. Even with 

expert knowledge, the resulting model often deviates from actual execution due to 

machine and tool specific behaviors that are difficult to predict or understand.  

In the next section, we present an empirical multi-parameter modeling approach to 

generate accurate memory consumption models by leveraging symbolic regression 

principles [4]. 

Modeling methodology 

Symbolic regression is an approach that searches the space of all possible mathematical 

equations to find an equation that minimizes some error metric for a given set of training 

data. Like other machine-learning regression approaches, the goal of symbolic regression 

is to leverage training data to build a model that generalizes well to test data. Although 

studied for several decades [5-7], symbolic regression has limited usage due to numerous 

challenges compared to other regression techniques. Most significantly, symbolic 

regression has an infinitely large search space due to the existence of infinite equations. 

In fact, not only is the search space infinite, but there are an infinite number of equations 

that coincide with any set of training data. As a result, the goal of symbolic regression is 

often not merely to find the equation with the least error, but also the simplest equation 

that minimizes the error, because a simpler equation tends to generalize better by 

minimizing overtraining. 



Modeling methodology  

 

10 Memory Consumption Modeling of Deep Learning Workloads 
 

 

Figure 6. Multi-parameter modeling workflow using symbolic regression 

 

Figure 6 shows our modeling workflow. To generate the performance models, we begin 

by collecting the performance samples by instrumenting the application under 

consideration and benchmarking the application for various performance parameters to 

collect the performance samples (Step 1 in Figure 6). The performance metric under 

consideration could be execution time, total number of FLOPs, or in this case, peak 

memory consumption during execution. Upon collecting the performance samples, the 

data is classified into training data and test data through sampling (Step 2). The training 

data is used during model generation process. For the model generation in our study, we 

use Pandora [8], a symbolic regression based tool built in Python. The tool leverages 

several data structures and algorithms from the DEAP evolutionary algorithm library [9], 

which were extended with numerous optimizations for symbolic regression. While the 

original developers developed Pandora for the approximate computing applications [8], 

we leveraged the framework for performance and peak memory consumption modeling. In 

a previous work, we performed extensive evaluation on Pandora for performance 

modeling by building accurate coarse-grained multi-parameter models for various HPC 

applications [4]. More details about the Pandora tool are given in Pandora – symbolic 

regression based modeling tool. When the performance model has been generated, the 

next step in the workflow is to use the test/validation data to evaluate the accuracy of our 

model (Step 4). In Model evaluation, we demonstrate the accuracy of our modeling 

approach by generating a memory consumption model of 3D U-net to predict the peak 

memory consumption during the training phase. 

 

The Pandora tool [8] was developed initially for the purposing of approximate computing – 

to provide inexpensive solutions for complex computing tasks within a reasonable amount 

of error tolerance. By combing through various mathematical possibilities to arrive at the 

same solution through empirical modeling, the tool can be used for many 

regression/curve-fitting tasks. Previous work involved using Pandora for compiler 

optimization – exploring different approximations for sequential code containing loop 

carried dependencies [8].  

Modeling 

workflow 

Pandora – 

symbolic 

regression 

based modeling 

tool 
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In addition to approximation computing, Pandora has been customized for application and 

architecture performance modelling [4]. In particular, Pandora provides the three desirable 

characteristics that are crucial for performance modeling of large-scale systems: 

• domain-agnostic 

• true multi-parameter modeling 

• feasible model generation time 

Domain-agnostic is a desirable property so the approach can be applicable to a wider 

range of applications and systems. Detailed knowledge of the application and target 

system being modeled is not required. Also, in most cases, the performance of an 

application or system sub-component to be modeled can have multiple parameters that 

affect its performance. Hence, the modeling approach should not be restricted to a limited 

number of parameters to generate an accurate performance model. Finally, the model 

generation times should be fast enough for iterative refinement if necessary.  

In our previous work [4], we performed a systematic study to evaluate the accuracy of the 

performance models generated using Pandora for various High-Performance Computing 

(HPC) applications. In that study, it was shown that multi-parameter modeling using 

symbolic regression (Pandora) was able to generate accurate models with less than 8% 

MAPE, while using relatively fewer training samples as compared to other machine-

learning based regression methods. In this paper, we use Pandora to generate a memory 

consumption model for 3D U-net application. We validate our model by comparing the 

predicted results against the measured peak memory performance (test data) of the 

application. Subsequently, we perform a comparative evaluation of the symbolic 

regression approach with other prominent ML based regression methods for memory 

consumption modeling.  

Model generation process 

In this sub-section, we briefly describe how Pandora generates an analytical model by 

leveraging symbolic regression principles. While there are multiple strategies to perform 

symbolic regression, Pandora makes use of genetic programming [5,10,11], not to be 

confused with more general genetic algorithms. Genetic programming imitates the 

processes of evolution to develop a solution to a problem. For the purposes of symbolic 

regression, genetic programming defines genes consisting of mathematical primitives. 

These primitives are generally basic, low-level operations (such as add, multiply, and so 

on) but can potentially be arbitrarily complex operations. Figure 7 shows the steps 

involved in the model generation process. Genetic programming initially creates a 

population of individuals, which for symbolic regression consists of random equations built 

from the defined primitives. Genetic programming then evolves different solutions over a 

number of generations, where each generation involves crossover/reproduction and 

mutation [5, 12]. Before the end of each generation, a selection process (analogous to 

natural selection) removes a percentage of individuals from the population based on a 

pre-defined fitness function. This process generally iterates for either a pre-defined 

number of generations, or until there is a lack of improvements for a number of 

generations. 
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Figure 7. Model generation process in Pandora 

Genetic programming is guided by a provided fitness function that specifies desirable 

characteristics of an individual. For symbolic regression, the most basic fitness function is 

an error metric. For situations where simple equations are preferable, the function can 

also include the size, computational complexity, and so on, of the equation. Although any 

error metric can be used for symbolic regression, common examples include root mean-

squared error (RMSE), mean-squared error (MSE), and mean absolute-percentage error 

(MAPE). Because we are using symbolic regression to generate peak memory 

consumption models, we will use MAPE, which is useful for showing how closely a set of 

test/training data fits the regression model. 

To perform symbolic regression, we provide Pandora with a configuration file that 

specifies a number of genetic-programming parameters: training data, test data, 

primitives/genes, mutation probability, crossover probability, fitness function, population 

size, and number of generations. Although domain knowledge can be used to fine-tune 

the configuration file, in our experiments we used the same configuration for all 

experiments to provide a lower bound on the quality of the results, and to demonstrate 

that symbolic regression can perform well even without any deep knowledge of the 

application or architecture being modeled. Our memory consumption model was built 

using primitives consisting of addition and multiplication. We also included square and 

cube as primitives, because we expected these to be common in our memory 

consumption model. Although symbolic regression can generally discover square and 

cube operations with multiply primitives, inclusion of the square and cube primitive can 

reduce training times. We have eliminated other basic arithmetic primitives such as 
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subtraction and division because it is not natural for them to be in the memory 

consumption model. 

For all experiments, we used a plus-selection evolutionary algorithm [12], which considers 

both the parents and offspring during selection. The selection algorithm used a double 

tournament method [13], with a parsimony size of 1.1 and a fitness size of 3. We used five 

different mutation operators [9] that the tool selected randomly for each mutation. We 

used a one-point crossover operator. The mutation probability for each individual was 

50%. Crossover probability was 100%. For all examples, we used a population size of 300 

with 150 total generations. We empirically determined these values to work well for most 

symbolic-regression problems we have evaluated. A complete tradeoff exploration of all 

genetic-programming parameters is outside the scope of this study, but has been studied 

extensively in evolutionary-algorithm studies [14]. To optimize constants, we used the 

Levenberg–Marquardt non-linear least squares algorithm [15]. Upon completion, the tool 

outputs the resulting equation and then tests that equation against the provided test data 

to determine the resulting generalization error. 

Model evaluation 

In this section, we evaluate our modeling approach on the 3D U-net case study to 

generate an analytical peak memory consumption model. In Experimental setup, the 

experimental setup, data collection, and sampling processing employed to generate the 

training and test data are described. In Model validation, the evaluation of the model 

generated by Pandora is presented, comparing the result against the validation data. 

Finally in Comparative evaluation with ML regression methods, we compare our modeling 

approach with other machine-learning based approaches that have proven to be 

promising candidates for performance modeling [16]. 

 

To generate the memory consumption model for 3D U-net, we first begin by collecting 

performance samples by running the 3D U-net model training for various image 

dimensions and batch sizes. The memory profiler mprof was used to profile the memory 

consumption during the training phase, and the peak memory consumed was extracted 

during execution (Step 1 in Figure 6). Intel’s optimized Tensorflow version 2.4 was used, 

and the application was written in Keras (version 2.2.3). More details about the software 

stack and the hardware utilized to collect the performance samples are described in the 

reproducibility section in the Appendix.  

To facilitate the data collection for various input dimensions and batch sizes, we have 

generated scripts that create random input data for the desired image dimensions. The 

synthetic input data is used for the model training. The memory consumption was 

sampled throughout execution using the mprof profiler (Step 2 in Figure 6). Mprof polls the 

program to collect the memory consumption details at a sampling interval (default is 0.1 

seconds). When the training is complete, we extract the peak memory consumed as our 

performance sample for that run. Table 1 shows the parameter space used for collecting 

performance samples. 

Experimental 

setup 
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Table 1. Parameter design space used for memory consumption modeling for 3D U-net 

Parameter  Range 

Image dimension (along each 
dimension) 

32,64,128,144,200,244 

Batch size 1,2,4,8,16,32,64 

 

When all the performance samples have been collected, we randomly classify the data 

into training data and test data (Step 2). 70% of the total collected samples was used for 

training and the remaining 30% for test/validation data. Random sampling is used to 

eliminate any bias in training data and to help generate a model that can generalize well 

to the test data.  

The training data was inputted into the Pandora symbolic regression tool to generate the 

memory consumption model (Step 3 in Figure 6). The performance metric under 

consideration is the peak memory consumption during execution, and the input 

parameters are the image dimension and batch size of the 3D U-net. The configuration 

parameters used for model generation are those discussed in Model generation process.  

 

Figure 8 shows the accuracy of our generated model compared to the validation data (that 

is, the 30% test data from benchmarking). We use Mean Absolute Percentage Error 

(MAPE) as our evaluation metric. As you can see, the predicted memory consumption 

results (from the Pandora symbolic regression tool) for the various image dimension/batch 

sizes match closely to the measured data. On average, the model had a MAPE of 4.15%. 

Compared to results generated by the base analytical model in Case-study application: 

3D U-Net and Figure 5, the performance model generated through symbolic regression 

performed significantly better. 

  

Figure 8. 3D U-net memory consumption model (symbolic regression) evaluation 

 

Over the last decade, machine-learning based regression methods have been widely 

deployed in multiple fields for regression and classification tasks. Recent advances in 

computer architecture have made it possible to train complex machine learning regression 

models on large datasets. While these regression models have been actively used for 

Model validation 

Comparative 

evaluation with 

ML regression 

methods 
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fields such as weather forecasting, e-commerce, and finance, not much progress has 

been made in the performance modeling domain. Malakar et al. [16] performed a detailed 

study on the efficiency of the machine learning regression methods for performance 

modeling of scientific applications. They evaluated multiple machine learning regression 

methods, ranging from simple multi-variate linear regression to instance-based methods 

such as nearest-neighbor regression [17], kernel-based methods [18], decision tree based 

methods [19] such as random forests, and, deep learning neural networks. Based on their 

evaluation on multiple Mantevo [20] HPC benchmarks, they determined that complex ML 

methods such as bagging, boosting, and Deep Neural Network models performed well 

while generating accurate performance models for HPC applications. 

In this paper, we perform a comparative evaluation of our symbolic regression based 

approach with these ML regression methods. Based on the work described by Malakar et. 

al [16], we have selected XGBoost (xgb), random forest (rfr), extremely randomized trees 

(ert), and Deep Neural Networks (dnn) for memory consumption modeling. For this study, 

the Python Scikit library package was used to build the ML regression models. Using the 

MinMaxScaler transformation, normalization on the training data was performed as a part 

of the data pre-processing. For all the decision tree methods, the default values were 

used, and the number of trees set to 1000. As with symbolic regression, configuration 

parameters play a significant role in the model generation process, but a detailed study on 

the impact of configuration parameters on the model performance is out of scope for this 

paper. However, for consistency, the configuration parameters were set to default for all 

the ML regression methods. For Deep Neural Networks, the Keras library was used to 

build the network that runs on top of Tensorflow. We used a three-layer feed forward 

network with dropout layers in between. Finally, an Adam optimizer was used and the 

models were trained for 100 epochs.  

Figure 9 compares the accuracy of the model generated by symbolic regression with the 

selected ML regression methods. As shown in the figure, the symbolic regression model 

performed significantly better than the other ML methods using the same performance 

samples. The symbolic regression model has a MAPE of 4.15%, whereas ert, rfr, xgb, and 

dnn have a MAPE of 22.35%, 92.75%, 52.56%, and 75.91%, respectively.  

Again, the results shown in Figure 9 is based on using the same performance samples for 

all the modeling methods. If we vary the size and other characteristics of the sampled 

data, the results may not be the same. Detailed study on the impact of varying different 

sampling and model parameters on the model performance is outside the scope of this 

paper. Interested readers are referred to such extensive comparison in our earlier study, 

the results of which are consistent with the results shown in Figure 9. In that earlier study, 

we applied the symbolic regression modeling approach to develop performance models 

for a petascale HPC application called CMT-nek [24] and two HPC mini-apps (Cloverleaf 

[22] and LULESH [23]) which capture the key computation patterns in many real-world 

scientific applications. We also showcase the ability of our modeling approach to 

determine the true function accurately by using a set of synthetic test functions. In our 

findings, we observed that, in general, symbolic regression performed significantly better 

than other ML regression techniques for a given number of performance samples. We 

also varied the size of the performance samples and observed that on average, 

increasing the performance samples for training improved the model accuracy for the 

other ML regression methods, but at the cost of longer training time. And, at some point, 

some of the ML based regression methods may equal or outperform symbolic regression. 

However, as we stated in Pandora – symbolic regression based modeling tool, one of the 
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three desirable characteristics that are crucial for performance modeling of large-scale 

systems is feasible model generation time. In general, we observed that with a limited 

number of performance samples, our symbolic regression-based modeling approach was 

able to generate the most accurate models. 

  

Figure 9. Comparison of accuracies of various memory consumption models generated 
using symbolic regression and other ML based regression methods 

Conclusions 

Deep Learning applications have been growing in scale and complexity over the last few 

years due to significant breakthroughs in algorithms and system architecture. As a result, 

there has been a growing demand for using high resolution data on complex Deep 

Learning networks for model training. This has resulted in high memory consumption 

during the model training phase, often beyond the system limitation.It has therefore 

become important for application users to reliably predict the memory consumption 

requirements before starting the model training process. 

In this paper, we present a multi-parameter modeling approach to accurately generate a 

memory consumption model. By reliably predicting the memory requirements of a model 

prior to runtime, we would be able to optimize the workload distribution without exceeding 

the system memory requirements. Also, while scaling the model training onto multiple 

nodes, identifying the peak memory consumption prior to runtime can help distribute the 

workload in an optimal manner, and achieve peak throughput. We evaluated our modeling 

approach on a 3D U-net deep learning application and generated a memory consumption 

model for the network. We subsequently validated the accuracy of our model by predicting 

the peak memory consumption on some untrained data points and achieved a Mean 

Absolute Percentage Error of 4.15%. Finally, a comparative evaluation was performed 

with other machine-learning based regression techniques and confirmed that the symbolic 

regression approach does a better job at generating accurate models for the 3D U-net 

peak memory consumption, in the presence of a limited set of performance samples. 

Going forward, we would like to extend our modeling approach to predict the runtime 

performance of other large-scale DL workloads. 
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Appendix: Reproducibility 

Software 

• Keras: 2.2.4 

• Tensorflow: 2.4 

• Intel DNNL 

• Python 3.6.9 

• Ubuntu 18.04 

Data 

Dataset name: BRATS 

Tensor image size: 4D 

Train, validation, test images: 406,32,46 

Release: 2.0 04/05/2018 

https://www.med.upenn.edu/sbia/brats2017.html  

Model 

Architecture: 3D U-Net 

Input format: Channels last 

Params: 5,650,801 

Trainable params: 5,647,857 

Non-trainable params: 2,944 

Code repository: 

https://github.com/IntelAI/unet  

 

https://www.med.upenn.edu/sbia/brats2017.html
https://github.com/IntelAI/unet
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Hardware - Intel® Xeon® Gold 6248 CPU @2.5Ghz 

• Architecture: x86_64  

• CPU op-mode(s): 32-bit, 64-bit  

• Byte Order: Little Endian  

• CPU(s): 80  

• On-line CPU(s) list: 0-79  

• Thread(s) per core: 1  

• Core(s) per socket: 20  

• Socket(s): 4  

• NUMA node(s): 4  

• Vendor ID: GenuineIntel  

• CPU family: 6  

• Model: 85  

• Model name: Intel® Xeon® Gold 6248 CPU @ 2.50GHz  

• Stepping: 6  

• CPU MHz: 2494.155  

• BogoMIPS: 4989.86  

• Virtualization: VT-x  

• L1d cache: 32K  

• L1i cache: 32K  

• L2 cache: 1024K  

• L3 cache: 28160K  

• NUMA node0 CPU(s): 0,4,8,12,16,20,24,28,32,36,40,44,48,52,56,60,64,68,72,76  

• NUMA node1 CPU(s): 1,5,9,13,17,21,25,29,33,37,41,45,49,53,57,61,65,69,73,77  

• NUMA node2 CPU(s): 2,6,10,14,18,22,26,30,34,38,42,46,50,54,58,62,66,70,74,78  

• NUMA node3 CPU(s): 3,7,11,15,19,23,27,31,35,39,43,47,51,55,59,63,67,71,75,79  

Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse 
sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology 
nonstop_tsc aperfmperf eagerfpu pni pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr 
pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 
3dnowprefetch epb intel_pt tpr_shadow vnmi flexpriority ept vpid fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms 
invpcid rtm cqm mpx avx512f rdseed adx smap clflushopt clwb avx512cd xsaveopt xsavec xgetbv1 cqm_llc 
cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm ida arat pln pts 

 

 


