
Maverick: A Stand-alone CAD Flow for Partially
Reconfigurable FPGA Modules

Dallon Glick, Jesse Grigg, Brent Nelson, Michael Wirthlin
NSF Center for Space, High-Performance, and Resilient Computing (SHREC)

Department of Electrical and Computer Engineering
Brigham Young University
Provo, UT, 84602, USA

{dallon.glick, grigg.jesse, brent nelson, wirthlin}@byu.edu

Abstract—This paper presents Maverick, a proof-of-concept
computer-aided design (CAD) flow for generating reconfigurable
modules (RMs) which target partial reconfiguration (PR) regions
in field-programmable gate array (FPGA) designs. After an initial
static design and PR region are created with Xilinx’s Vivado PR
flow, the Maverick flow can then compile and configure RMs
onto that PR region—without the use of vendor tools. Maverick
builds upon existing open source tools (Yosys, RapidSmith2, and
Project X-Ray) to form an end-to-end compilation flow. This
paper describes the Maverick flow and shows the results of it
running on a PYNQ-Z1’s ARM processor to compile a set of
HDL designs to partial bitstreams. The resulting bitstreams were
configured onto the PYNQ-Z1’s FPGA fabric, demonstrating the
feasibility of a single-chip embedded system which can both
compile HDL designs to bitstreams and then configure them onto
its own programmable fabric.

Index Terms—Field-programmable gate arrays; Partial re-
configuration; Electronic design automation and methodology;
RapidSmith

I. INTRODUCTION

Partial Reconfiguration (PR) is a technique which allows
portions of a field-programmable gate array (FPGA) to be
dynamically reconfigured after the complete device has been
initially configured. This allows the circuit’s functionality to
be customized on the fly, such as in response to changing
operating conditions or user directives. In the most common
form, a PR design includes a static region and one or more PR
regions into which pre-compiled circuits can be configured at
run-time. The static region contains common and unchanging
functionality such as external I/O interfaces, clocking, and
other base system functionality. The PR regions reserve logic
for functions which can change dynamically, such as acceler-
ator cores. As FPGA sizes continue to grow we believe the
use of PR will become increasingly important.

Xilinx provides a PR design flow for their FPGA devices
[1]. In a basic form of this flow, a base static design is created
by the user and a specific module is identified to be partially
reconfigurable; this module is known as a reconfigurable
module (RM). For this RM, a physical PR region (known as
a reconfigurable partition in Vivado’s PR flow) is identified,

This work was supported in part by the I/UCRC Program of the National
Science Foundation within the NSF center for Space, High-performance, and
Resilient Computing (SHREC) under Grant No. 1738550.

into which the RM’s circuitry will be placed and routed.
The subsequent tool flow steps then implement the entire
design while limiting the RM’s circuitry to its defined region.
The result is a full-chip bitstream which can be configured
onto the device. Later, other RMs can be compiled into the
same PR region, resulting in partial bitstreams which can be
dynamically reconfigured onto the PR region.

To compile these RMs requires the availability of the
original PR project files as well as the full Vivado design
suite, no matter how small the RM. A full Xilinx Vivado
2018.2 installation requires over 50 GB of disk space to
support the design of Xilinx FPGAs from several families.
A minimum of 48 GB of RAM is also required to compile
designs to bitstreams for the largest devices [2]. Additionally,
Vivado can only be run on x86 or x86-64 machines [3]. These
requirements limit the sizes and types of machines that PR
designs can be developed on.

This work introduces a different model for creating PR
designs in which the original design is created using Vivados
PR flow, and subsequent RMs can then be created on-the-fly
using lightweight tools, independent of Vivado. By separating
out the initial static design creation from later RM creation,
a smaller portion of the FPGA fabric is targeted by the CAD
tools, allowing them to run on systems with lower memory,
storage, and compute requirements. This paper describes Mav-
erick, a Vivado-independent RM tool flow, which can be run
on a variety of systems, including embedded systems.

The independent and lightweight nature of Maverick opens
up a number of new usage models, not readily supported by
the current vendor tools. For example, this enables the creation
of fully autonomous systems which are untethered from other
compute resources. In this model, adaptation algorithms run-
ning on an autonomous platform could create new HDL design
code for an RM (or modify existing RM HDL code) which
would then be compiled by the Maverick flow and configured
onto the platform’s FPGA fabric. Such autonomous systems
could use this model to provide domain specific functionality
or to improve fault tolerance. Another potential usage model is
a customized system tailored for education, which could mix
instructional materials, sample designs, HDL code, and CAD
tools into a lightweight stand-alone hardware platform. This

9

2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM)

2576-2621/19/$31.00 ©2019 IEEE
DOI 10.1109/FCCM.2019.00012

Authorized licensed use limited to: Brigham Young University. Downloaded on May 12,2022 at 16:29:10 UTC from IEEE Xplore. Restrictions apply.

would enable the creation of a set of specialized visualization
and analysis tools for learning on top of that system.

This paper demonstrates the Maverick flow executing on the
embedded PYNQ-Z1 board, which contains a Zynq 7020 sys-
tem on chip (SoC). The Maverick CAD tools run on an ARM
processor embedded within the processing system (PS) of the
Zynq device. This flow generates partial bitstreams which are
configured onto a PR region within the programmable logic
(PL) fabric of the same Zynq device.

Additionally, this paper reports on the results of several
simple benchmark designs compiled on the PYNQ-Z1. The
execution time and memory requirements of the Maverick
flow are measured for each design run. The quality of results
of the generated designs within Maverick is also compared
against results from the same set of circuits generated by the
commercial Vivado tools. Although the Maverick design flow
does not produce circuits with the same level of quality as
the commercial tool flow, this paper demonstrates that it is
possible to generate usable, operating circuit bitstreams within
FPGA PR regions without the need of any commercial tools.

II. RELATED WORK

The Maverick flow is a 3rd party CAD tool flow which
targets commercial FPGA devices. A number of other research
projects have also produced tools in this same category, each
of which addresses a different subset of the overall FPGA
implementation flow. The tools most similar to the Maverick
flow are described in this section.

Several tools have been introduced which allow for the
manipulation of Xilinx designs in various ways. Torc [4],
RapidSmith [5], RapidSmith2 [6], and RapidWright [7] all fit
into this category—their principal use has been to enable users
to perform CAD tasks for Xilinx FPGAs that are not readily
possible using vendor tools [8] [9]. Additionally, the VTR-to-
Bitstream [10] project demonstrated a 3rd party flow which
implemented several steps of the flow for Xilinx devices. All
of these tools must return their designs to the Xilinx flow for
the bitstream generation step.

In contrast, a number of other projects have been created
that can generate bitstreams for commercial FPGAs. The work
in [11] describes a proof-of-concept autonomous computing
system running on the PowerPC of an embedded Virtex-II Pro
device. This system could place, route, and generate partial
bitstreams for technology mapped (tech-mapped) designs. For
bitstream generation, it used an unreleased version of Xilinx’s
JBits.

Another toolchain, the IceStorm flow [12], is a full FPGA
CAD flow for the commercially available iCE40 family of
FPGAs from Lattice Semiconductor. It uses Yosys [13] for
synthesis, Arachne-pnr [14] for placement and routing, and
the Project IceStorm tools for bitstream generation. This flow
has enabled Trenz Electronic’s icoBoard [15], a Raspberry Pi
accessory containing an iCE40 FPGA. Using the icoBoard
and a Raspberry Pi board, the IceStorm flow can compile
designs to bitstreams on the Raspberry Pi’s ARM CPU. These
bitstreams can then be programmed onto the iCE40 FPGA.

Reserved

Resources

Partial

Device

Vivado

Static Design

Creation

RapidSmith2

Partial Device

Generation

Project X-Ray

Database

Generation

Bitstream

Database

Static Design

(Verilog)

Initial

Bitstreams

Fig. 1. Static Design Phase

We believe that the Maverick work is interesting and novel
because it combines the following characteristics. First, it is a
new PR flow which provides a new model for system devel-
opment by enabling the independent creation of multiple RM
designs once a static design has been created. Furthermore, it
is a lightweight CAD flow and can thus run on a single-chip
embedded system in minimal memory (our demonstrations
show it running in under 250 MB of RAM). Also, being based
on the RapidSmith/RapidSmith2 tool framework, it already
supports Xilinx 7-Series devices and is readily extensible to
future Xilinx devices such as UltraScale and UltraScale+.

III. STATIC DESIGN PHASE

The system described in this paper operates in two phases.
The first phase relies on Vivado to create an initial static
design and the second phase, the Maverick flow, allows the
creation of subsequent RMs, independent of Vivado. This
section describes that first phase, the static design phase.

As shown in Fig. 1, this phase is made up of three steps
to create the full static design. The full static design consists
of a Vivado-generated static design, containing a static region
and a PR region, and some associated metadata. This metadata
describes the PR region and its interface with the static region.

A. Static Design Creation: Vivado

In the first step of the static design phase, a base static
design is created and compiled using Vivado’s PR flow. First,
the static design HDL, which contains static logic and a black
box RM, is synthesized with Vivado’s PR flow. An initial RM
HDL design is then separately synthesized with Vivado’s PR
flow.

Next, a floorplan is created to define the PR region into
which RMs will be physically implemented. This PR region
must be chosen to adhere to certain horizontal and vertical
alignment requirements imposed by the device architecture [1].
The initial synthesized RM design is then assigned to this PR
region, creating an initial full-device design.

Vivado’s PR flow is then used to place and route this full-
device design. All static logic is constrained to be within the

10

Authorized licensed use limited to: Brigham Young University. Downloaded on May 12,2022 at 16:29:10 UTC from IEEE Xplore. Restrictions apply.

FPGA Static Region

PR

Region
Static

Circuitry

Static

Circuitry

Static

Circuitry

Static

Circuitry

Static

Circuitry

Static

Circuitry

Partition Pin Reserved Static Resource

Fig. 2. A Static Design with Partition Pins and Reserved Resources

static region of the FPGA, while RM logic is constrained to
be within the PR region. However, some routing resources
within the PR region may be used to route static circuitry;
these resources are reserved by the static design and cannot
be used by RMs. Fig. 2 shows a static design and represents
these reserved routing resources as dashed lines.

Placement and routing also results in the creation of parti-
tion pins, which are the logical and physical points at which
the static logic and RMs interface. These partition pins act
as top-level ports for the RM designs implemented within the
PR region, giving the RM designs access to I/O and other
global resources located in the static region. Partition pins are
physically implemented as wire segments within PR regions
[1]. Vivado’s PR flow creates routes that connect the static
logic and the partition pins, as seen in Fig. 2. These partition
pins and routes are also reserved by the static design and must
be consistent across all RMs.

After Vivado’s PR flow finishes creating the static design, a
bitstream corresponding to the static (base) part of the design
is generated; this can be used to pre-configure the FPGA prior
to any partial bitstreams being configured onto it. Next, an
initial partial bitstream corresponding to the empty PR region,
containing no RM circuitry, is created. Custom Tcl scripts
are then executed within Vivado to generate a list of routing
resources that are reserved by the static design and which
lie within the PR region. The Maverick flow needs this list
to prevent these resources from being used during the RM
implementation stages. These two pieces of data (bitstreams
and reserved resources) are shown in the upper right portion
of Fig. 1.

B. Partial Device Model: RapidSmith2

RapidSmith2 [6] is an open-source FPGA CAD tool frame-
work which provides a design representation and a circuit
manipulation API upon which CAD tools can be written.
The next step in the static design phase is the creation of a
partial device model, which is used by the RapidSmith2-based
tools of the Maverick flow. RapidSmith2 normally creates full
device models for its own use by parsing XDLRC files, which
describe Xilinx device data in great detail. For modern Xilinx

devices, these XDLRC files are generated using Tincr [16]
and the Vivado Design Interface (VDI) [17], which together
contain a library of Tcl and Java routines to enable the export
and import of device and design data.

To create partial device models, a new RapidSmith2-based
partial device generator is used. This partial device model
describes only the resources within a specified PR region of
a device that are available to the Maverick flow for imple-
menting RM designs. This includes all the logic slices, clock-
ing resources, interconnect, and other configurable resources
within the PR region. Additionally, this model describes all
interconnect resources that can be used to enter or leave the
PR region. Because this partial device model describes only
a particular subset of the full FPGA (i.e., the PR region), the
memory required to represent the design is greatly reduced.

C. Bitstream Database Generation: Project X-Ray

The last set of static design metadata that needs to be
generated is a Project X-Ray [18] bitstream database. Project
X-Ray is an open-source project that aims to document the
Xilinx 7-Series bitstream format. Project X-Ray does this by
using Vivado’s Tcl API to generate bitstreams for several small
designs with specific properties. Several tools are then used to
analyze these bitstreams and to map specific device features to
specific bits in the bitstream, resulting in a bitstream database.

At the time of the writing of this paper, Project X-Ray
generates a bitstream database for a subset of 7-Series device
features within a specific region of interest in an Artix7
FPGA. As a part of our work, we modified several of the
Project X-Ray Tcl scripts to support Zynq FPGAs. This
bitstream database in conjunction with the initial partial bit-
stream (created with Vivado’s PR flow) provides the necessary
information for the Maverick flow to generate new partial
bitstreams for placed and routed designs within the PR region.
At this point, the static design phase is complete and Vivado
is no longer needed.

IV. MAVERICK FLOW PHASE

The second phase is the stand-alone Maverick flow, which
compiles RM designs to the PR region, independently of any
vendor tools. The Maverick flow is shown in Fig. 3 and
consists of six major steps: synthesis, packing, placement,
routing, FASM (FPGA Assembly) file generation, and bit-
stream generation. This section describes each of these steps
in turn.

A. Synthesis and Tech-Mapping: Yosys

The first step of the Maverick flow is synthesis and tech-
mapping. Maverick performs this using Yosys [13], a pow-
erful open source framework for register-transfer level (RTL)
synthesis that is capable of tech-mapping to Xilinx 7-Series
devices. Fig. 4 shows how Yosys is used in the Maverick flow.

Maverick executes Yosys using a synthesis script that com-
bines several standard Yosys subsystems to optimize and tech-
map the RM Verilog design to the Xilinx 7-Series architecture.
At the time of this work, both Yosys and Project X-Ray

11

Authorized licensed use limited to: Brigham Young University. Downloaded on May 12,2022 at 16:29:10 UTC from IEEE Xplore. Restrictions apply.

RM Design

(Verilog)

Synthesis & Tech-Mapping:

Yosys

.bit

Packing: RapidSmith2

Placement: RapidSmith2

Routing: RapidSmith2

FASM Generation:

RapidSmith2

From

Static

Design

Bitgen: Project X-Ray

Reserved

Resources

Initial

.bit

Partial

Device

Bitstream

Database

Fig. 3. Maverick Flow Phase

RSCP

Netlist
(EDIF)

RM Design
(Verilog)

Reserved
Resources

From Static Design

RSCP Creation

Yosys

Fig. 4. The Synthesis and Tech-Mapping Step in Maverick

support only a subset of 7-Series device features. Because
of this, the synthesis script limits Yosys to mapping designs
to slice structures (containing lookup tables [LUTs] and flip-
flops) only.

Yosys produces a tech-mapped design in the form of a
flattened EDIF netlist. This netlist is made up of logical
Xilinx 7-Series cells (e.g., LUTs and flip-flops) that are all
interconnected by logical nets. The Maverick flow packages
the EDIF netlist and the reserved resource list (from the
static design) into a RapidSmith Checkpoint (RSCP), which
is suitable for processing by RapidSmith2.

B. RapidSmith2 Design Import

As shown in Fig. 5, a set of RapidSmith2-based programs
are next used to physically implement the tech-mapped design.
The next step in the Maverick flow is thus to import the tech-
mapped design from Yosys into RapidSmith2.

To do so, the partial device model (from the static design) is
first imported, providing RapidSmith2 with necessary details
about the resources available in the PR region. The RSCP
generated from the previous synthesis and tech-mapping step

FASM

Partial
Device

From Static DesignFrom Synthesis Step

RSCP

Design Import

Pack: RSVPack

Place: RSVPlace

Route: RSVRoute

FPGA Assembly (FASM) Generation

Fig. 5. The RapidSmith2-based Steps in Maverick

is also imported. The EDIF netlist contained in the RSCP
is translated for use within RapidSmith2 and the reserved
resource list is then parsed to create internal data structures
that mark the resources reserved by the static design.

C. Packing: RSVPack

The Maverick flow next packs the design, grouping related
cells from the netlist into relatively placed clusters. The created
clusters correspond to sites in the Xilinx architecture, most
of which are slices. These sites are composed of internal
site wires and Basic Elements of Logic (BELs). These BELs
include logic BELs, such as LUTs and flip-flops, and also
routing BELs, which are programmable routing muxes.

The Maverick flow packs designs using the RSVPack algo-
rithm [19]. RSVPack specifically targets Xilinx architectures,
allowing it to produce results that take advantage of unique ar-
chitectural features. The version of RSVPack used in this work
has been modified to work within PR regions—specifically to
recognize partition pins.

The RSVPack algorithm repeatedly packs the site clusters
with cells. To ensure that the clusters are valid for the target
architecture, a series of tests is run each time a cell is added to
a cluster. Each time a cell is added to a cluster, a series of tests
is run to verify that the cluster is valid for the architecture.
After all the cells in the design have been packed, RSVPack
performs the intra-site routing of the nets; i.e., it routes all the
portions of the nets that are inside the site clusters. It does
this by configuring the site clusters’ internal routing BELs.

D. Placement: RSVPlace

Once packing completes, the Maverick flow places the
design using a modified version of RSVPlace [19], also built
on top of RapidSmith2. It first performs a quick random
placement of the clusters created in the packing step. This
is followed by the execution of a simulated annealing placer
using a wire-length based cost function. The cost function

12

Authorized licensed use limited to: Brigham Young University. Downloaded on May 12,2022 at 16:29:10 UTC from IEEE Xplore. Restrictions apply.

and annealing schedule used by this placer are both based
on VPR’s placer [20]. Furthermore, the placer uses the partial
device model (created in the static design phase), preventing
the placer from using any resources outside the PR region.

As mentioned previously and shown in Fig. 2, some re-
sources within the PR region may be used by the static region
and are marked as reserved. RSVPlace was modified to not
utilize any of these resources. This is necessary for a PR-
aware placer because in some initial static designs produced
by Vivado the static logic may use a site within a PR region as
a “route-through”. When a site is used as a route-through, the
entire site is used to route a net from one of the site’s input
pins to one of its output pins. Sites used by the static design
as route-throughs are thus unavailable for use by the placer.

Once RSVPlace completes, all logical cells of the design
have been assigned to specific locations in the PR region.
These assignments are saved internally within RapidSmith2,
giving a global router the information it needs to complete the
routing of the design.

E. Routing: RSVRoute

The Maverick flow then uses a new router called RSVRoute,
also built upon the RapidSmith2 framework, to route the nets
of the design. RSVRoute is primarily based on Pathfinder
[21] and is the first full router created using RapidSmith2. To
construct routes, it turns on programmable interconnect points
(PIPs) contained within the FPGA interconnect.

RSVRoute iteratively routes the unrouted and congested
nets in the design until all nets are routed and uncongested.
Like VPR [20], the cost for a net to use a congested routing
resource is the product of the base cost, present congestion
penalty, and historical congestion penalty of that routing
resource. Also like VPR, the present congestion penalty of
a routing resource is updated every time a net is routed and
the historical congestion penalty is updated between routing
iterations. During every routing iteration, RSVRoute uses the
A* shortest path algorithm [22] to quickly identify a shortest
path, based on wire-length, for each congested net.

RSVRoute has two unique characteristics to support PR.
First, it must create routes while avoiding PIPs that are
reserved by the static design. Second, in an RM design, nets
connect to not only logic block pins but also to partition pins,
which are physically implemented as wire segments within
the PR region. RSVRoute interconnects logic block pins with
these partition pins; this feature is essential for completing the
routing of RM designs contained within PR regions.

F. FASM Generation: RapidSmith2

The next step in the Maverick flow is to generate an FPGA
Assembly (FASM) file [18]. This is a human-readable text
file that contains a list of low-level instructions to config-
ure the FPGA’s resources. Specifically, FASM files contain
instructions to perform functions such as enabling PIPs in
interconnect tiles, configuring LUTs, and configuring other
BEL and site-level properties. The FASM format contains
enough information so that in conjunction with the bitstream

database and initial partial bitstream, a new valid partial
bitstream can be generated for an RM design.

As shown in Fig. 5, data structures created by each of the
preceding RapidSmith2-based programs are used to generate
the FASM file. Many of the FASM instructions are straight-
forward to generate due to the detailed partial device model
imported into RapidSmith2. For instance, to determine the
interconnect PIPs to turn on, the FASM generator iterates
through route tree data structures (created by RSVRoute).
Each time an enabled PIP is encountered, the FASM generator
writes a corresponding instruction to the output FASM file. An
example of such an instruction is shown below:

INT_L_X38Y16.SE2BEG1 LOGIC_OUTS_L1

In this example, the starting point for the connection to be
turned on is the wire “LOGIC OUTS L1”, located in the in-
terconnect tile “INT L X38Y16”, and the PIP to be turned on
is the one which connects that wire to the wire “SEG2BEG1”.
It is similarly straightforward to configure routing BELs.

Writing the instructions to configure sites and their logic
BELs is more challenging, mainly because EDIF netlists
represent only the logical properties associated with the cells
in the netlist and not the physical site-wide and BEL prop-
erties. This necessitates the translation of logical properties
associated with cells to physical properties associated with
sites and BELs. One example of a property that requires
such translation is whether all the flip-flops in a slice use
a synchronous or an asynchronous reset. Another example
has to do with LUT programming. Routing may reorder a
LUT’s input pin connections to help with routing congestion;
this requires the LUT equation be reformulated. Additional
handling is also necessary for fracturable 6-input LUTs and
LUT RAM initialization. All of this handling must be done in
order to produce correct FASM instructions.

An important final step for the FASM generator is to process
the resources that were reserved by the static design, as shown
in Fig. 2. This includes turning on any PIPs used to connect
the static design to the PR design at partition pins as well
as any other PIPs that may have been reserved by the static
design.

G. Bitstream Generation: Project X-Ray

Finally, the Maverick flow generates the partial bitstream
for the RM design. To do so, it uses the generated FASM file
as well as the Project X-Ray bitstream database and initial
partial bitstream (both from the static design). Fig. 6 shows
how Project X-Ray is used to perform this step.

First, Project X-Ray’s FASM2FRM Python script uses the
bitstream database to convert the FASM file to a FRM file,
which contains the configuration data for every individual
bitstream frame within the PR region. Then, to generate the
partial bitstream, the FRM file and the initial partial bitstream
are used as inputs to the xc7PartialPatch C++ program, created
as a part of this work1. The xc7PartialPatch program patches

1This program is based on the original Project X-Ray xc7Patch program,
but with significant modifications to support partial bitstreams.

13

Authorized licensed use limited to: Brigham Young University. Downloaded on May 12,2022 at 16:29:10 UTC from IEEE Xplore. Restrictions apply.

New Partial
Bitstream

FASM2FRM

xc7PartialPatch

FASM

From
RapidSmith2

From
Static Design

Bitstream
Database

FRM

Initial Partial
Bitstream

From Static Design

Fig. 6. The Partial Bitstream Generation Step in Maverick

the initial partial bitstream with the contents of the FRM file,
producing a new partial bitstream for the fully implemented
RM described by the FRM file. This resulting partial bitstream
can then be configured onto the FPGA once it has first been
programmed with the full-device static bitstream.

V. EMBEDDED PLATFORM DEMONSTRATION

To demonstrate the complete Maverick flow, we targeted
Digilent’s embedded PYNQ-Z1 board, which contains a Xilinx
Zynq xc7z020 SoC, 512 MB of RAM, and a microSD card
slot. The Zynq device tightly couples a dual-core ARM
Cortex-A9 processor to an FPGA fabric.

The PYNQ-Z1 board is designed as a hardware platform for
Xilinx’s open-source Python Productivity for Zynq (PYNQ)
system. Its ARM CPU runs Ubuntu Linux, the open-source
Jupyter notebook infrastructure, and a web server. The PYNQ
system can be accessed from any computing platform and
operating system via a web interface.

We believe PYNQ is an ideal candidate for a stand-alone
system using Maverick. In our demonstration, the Maverick
RM CAD flow runs on the Zynq’s ARM processing system
(PS) to compile HDL designs to partial bitstreams for the
Zynq’s programmable logic (PL). The PYNQ Python interface
running on the ARM processor then programs those bitstreams
onto the PL.

A. PYNQ-Z1 Setup

To prepare our demonstration, we first created a static
design, as described in Section III. As shown in Fig. 7, the
static region included the Processing System 7 (PS7) IP core,
which acts as a logical connection between the Zynq’s PS and
PL [23]. In addition, the static region contained clocking and
various I/O interfaces (for buttons, a seven segment display,
RS232 signals, etc.) which the PR region connects to. The PR
region was made up of 8 columns by 50 rows of configurable
logic block (CLB) and interconnect tiles, following the vertical
and horizontal alignment rules required by the Xilinx 7-Series
architecture [1].

We next created a Jupyter notebook, as shown in Fig. 8. This
notebook makes it possible to create a new design, execute

Timer
Pattern
Stopwatch

RS232 Tx
Tx.Reg. File

FPGA Static Region

PR
Region

6-LUT FF

6-LUT FF

. . .

Processing System 7 (PS7)
IP Block

Buttons
4

Switches
10

CLK

RXD

LEDs
10

DP

segments
7

anodes
3

TXD
6-LUT FF

. . .

Fig. 7. The Static Design Used in the PYNQ-Z1 Demonstration

each step of the Maverick design flow on that design, and
then program the resulting bitstream onto the FPGA fabric,
all within a web interface. Verilog designs already saved
on the PYNQ-Z1’s microSD card can also be used in this
notebook. Alternatively, the Maverick tools could be run using
the Ubuntu command line instead.

We then installed all the required software onto the PYNQ
SD card. This included Yosys, our modified version of Rapid-
Smith2, Project X-Ray, Python 3.5.1, and Oracle’s JRE 1.8.
Yosys required 22 MB of storage, RapidSmith2 took 6 MB,
and the Project X-Ray tools required 2 MB. Additionally, we
copied the static design metadata (the partial device model,
reserved resource list, bitstream database, and initial partial
bitstream) to the PYNQ system. Furthermore, we replaced the
PYNQ-Z1’s default Zynq boot image so the FPGA is imme-
diately programmed with our initial full bitstream on boot
up. Once the PYNQ-Z1 finishes its complete boot process,
a user can immediately code, implement, and program new
RM designs onto the PR region of the FPGA.

B. Benchmark Design Results

To test the Maverick flow, we created a set of five bench-
mark Verilog designs that might be designed as part of an
introductory digital systems course, including: (1) an 8x6-bit
register file, (2) an RS232 transmitter, (3) a 7 segment display
stopwatch, (4) an input pattern game, and (5) a response
timer game. Furthermore, these designs could be used in an
educational setting on PYNQ in which a Jupyter notebook
could mix instructional materials, sample designs, HDL code,
and CAD tools into an interactive learning environment. The
designs all use physical I/O such as buttons, switches, and
LEDs to enable students to interact with and verify the proper
operation of the designs. Not all device features are supported
by Maverick and so these designs only require slices to
implement.

We used the Maverick Jupyter notebook to run each of our
benchmark designs through the full Maverick flow, all on the
Zynq device’s ARM CPU. Following the bitstream generation
of each design, an API added to the PYNQ system [24] was
used to partially reconfigure each design onto the Zynq’s
PL. Then, we functionally tested each design and verified

14

Authorized licensed use limited to: Brigham Young University. Downloaded on May 12,2022 at 16:29:10 UTC from IEEE Xplore. Restrictions apply.

Fig. 8. Jupyter Notebook for the Maverick Flow

Fig. 9. The PYNQ-Z1 Board Configured with a Stopwatch Partial Bitstream
Generated by Maverick

their correct operation in hardware. Fig. 9 shows the PYNQ-
Z1 board after it was partially reconfigured with a partial
bitstream for the stopwatch design, which was generated by
the Maverick flow.

Additionally, we measured the run time for each benchmark
design as it ran through each major step of the Maverick flow.
Fig. 10 presents the run time results for each step running
on the PYNQ-Z1’s ARM CPU, which runs at 650 MHz. We
also measured the run times for each step of the Maverick
flow on a desktop computer with an Intel i7 860 CPU, which
runs at 2.80 GHz. For our benchmark designs, the Maverick
flow executed from 6x to 11x slower on the PYNQ-Z1’s ARM
CPU. Given the difference in CPU speeds and architectures,
we found this to be unsurprising.

Furthermore, we measured the peak memory usage for each
major step of the Maverick flow as it executed on the PYNQ-
Z1’s ARM CPU. The iPython kernel and web server require
roughly 120 MB of RAM, leaving 392 MB for the Maverick
flow. For the largest design we tested, Maverick required a
maximum of 230 MB of RAM. Specifically, Yosys required
24 MB, the RapidSmith2-based programs 230 MB, and the
Project X-Ray tools 14 MB of RAM.

0

20

40

60

80

100

120

140

160

180

Register File RS232 Tx. Stopwatch Pattern Game Timer Game

R
u

n
 T

im
e

(s
)

Yosys Import RSVPack RSVPlace RSVRoute FASM Export X-Ray

Fig. 10. Run Times on the PYNQ-Z1

To measure the resource utilization for the benchmarks
compiled by the Maverick flow, we used the Vivado Design
Interface (VDI) [17] (which was modified to support RM
designs) to import each completed RM design into Vivado;
we then measured the FPGA resource utilization for each. Ad-
ditionally, we compiled each RM design using only Vivado’s
PR flow and measured the resulting resource utilization for
each design. Table I compares the resulting FPGA resource
utilization from the Maverick flow and from Vivado’s PR flow.
Note that the number of used LUTs in this table includes the
LUTs in the netlist, LUTs used as route-throughs, and LUTs
used as VCC or GND sources.

While Vivado was clearly able to produce better results, we
still find these results to be promising and acceptable for use
in a small embedded system. The run times to fully compile
the designs on the PYNQ-Z1’s ARM processor were all on
the order of a few minutes at most. Additionally, the amount
of RAM available for use by Maverick, roughly 392 MB, was
almost double the RAM required for the designs we tested.
These results demonstrate the feasibility of running a stand-
alone FPGA CAD tool flow on a resource-constrained platform
such as the PYNQ-Z1, on which RMs can both be compiled
and then programmed onto its own programmable fabric.

15

Authorized licensed use limited to: Brigham Young University. Downloaded on May 12,2022 at 16:29:10 UTC from IEEE Xplore. Restrictions apply.

TABLE I
BENCHMARK DESIGN FPGA RESOURCE UTILIZATION

Slices LUTs Flip-Flops
Mav. Viv. Mav. Viv. Mav. Viv.

Register File 28 21 47 26 9 9
RS232 Tx. 53 42 174 114 55 48
Stopwatch 57 46 232 136 67 65
Pattern Game 79 58 319 187 117 109
Timer Game 105 73 589 233 128 127

PR Region 400 3200 3200
xc7z020clg400-1 13300 106400 106400

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented the Maverick flow—a
stand-alone CAD flow for RMs. We demonstrated this by
executing it on the PYNQ-Z1’s ARM processor to compile
a collection of Verilog designs to partial bitstreams. These re-
sulting bitstreams were all configured and verified in hardware
on the PYNQ-Z1’s FPGA fabric, demonstrating the feasibility
of a single-chip system that can both compile HDL designs to
bitstreams and then configure them onto its own programmable
fabric.

Maverick uses a number of existing open source tools
including Yosys, RapidSmith2, and Project X-Ray. We sig-
nificantly modified some of these tools. In particular, the
existing RapidSmith2 import, packer, placer, and device model
generation tools were all heavily modified to support PR, as
was VDI. Additionally, the Project X-Ray xc7Patch program
was modified to create xc7PartialPatch, which functions with
partial bitstreams. New tools were also created as a part
of this work, including a RapidSmith2-based router and a
RapidSmith2 FASM file generator. Other software was also
created to interface the various pieces of Maverick to one
another, creating a turnkey system.

We see several potential future opportunities for Maverick.
Firstly, we are preparing it for open source distribution so
it can be used and extended by others in the community.
Maverick could also be enhanced to work with other Xilinx
architectures beyond 7-Series, such as the Zynq UltraScale+.
There is nothing in the tools comprising Maverick which
would prevent them from doing so. In fact, several of these
already have support for devices beyond 7-Series. Another
extension to Maverick would be to support multiple PR regions
within the same device, a modest change to the existing
system. Maverick could also be updated to support additional
primitives in 7-Series devices as Yosys and Project X-Ray
expand their supported set. Furthermore, we plan on exploring
the use of Maverick in an educational setting to teach digital
design, providing instructional materials, CAD tools, analysis
and visualization tools, and a hardware platform in one PYNQ
system.

REFERENCES

[1] Xilinx. Vivado Design Suite User Guide: Partial Reconfiguration -
UG909 (v2017.1).

[2] ——. Memory Recommendations. [Online]. Available: https://www.
xilinx.com/products/design-tools/vivado/memory.html

[3] ——. Vivado Design Suite User Guide: Release Notes, Installation, and
Licensing - UG973 (v2018.2).

[4] N. Steiner, A. Wood, H. Shojaei, J. Couch, P. Athanas, and M. French,
“Torc: Towards an Open-source Tool Flow,” in Proceedings of the 19th
ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, ser. FPGA ’11. New York, NY, USA: ACM, 2011, pp. 41–44.
[Online]. Available: http://doi.acm.org/10.1145/1950413.1950425

[5] C. Lavin, M. Padilla, J. Lamprecht, P. Lundrigan, B. Nelson, and
B. Hutchings, “RapidSmith: Do-It-Yourself CAD Tools for Xilinx FP-
GAs,” in 2011 21st International Conference on Field Programmable
Logic and Applications, Sept 2011, pp. 349–355.

[6] T. Haroldsen, B. Nelson, and B. Hutchings, “RapidSmith 2: A
Framework for BEL-level CAD Exploration on Xilinx FPGAs,”
in Proceedings of the 2015 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, ser. FPGA ’15. New York,
NY, USA: ACM, 2015, pp. 66–69. [Online]. Available: http:
//doi.acm.org/10.1145/2684746.2689085

[7] C. Lavin and A. Kaviani, “RapidWright: Enabling Custom Crafted Im-
plementations for FPGAs,” in Field-Programmable Custom Computing
Machines (FCCM), 2018 IEEE 26th Annual International Symposium
on, May 2018.

[8] O. Petelin and V. Betz, “The Speed of Diversity: Exploring Complex
FPGA Routing Topologies for the Global Metal Layer,” in 2016 26th In-
ternational Conference on Field Programmable Logic and Applications
(FPL), Aug 2016, pp. 1–10.

[9] M. Cannon, A. Keller, and M. Wirthlin, “Improving the Effective-
ness of TMR Designs on FPGAs with SEU-Aware Incremental Place-
ment,” in 2018 IEEE 26th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), April 2018, pp.
141–148.

[10] E. Hung, “Mind the (Synthesis) Gap: Examining Where Academic
FPGA Tools Lag Behind Industry,” in 2015 25th International Confer-
ence on Field Programmable Logic and Applications (FPL), Sept 2015,
pp. 1–4.

[11] N. J. Steiner, “Autonomous Computing Systems,” Ph.D. dissertation,
Virginia Tech, March 2008.

[12] Project IceStorm. [Online]. Available: http://www.clifford.at/icestorm/
[13] C. Wolf and J. Glaser, “Yosys - A Free Verilog Synthesis Suite,” in

Proceedings of Austrochip 2013, Oct 2013.
[14] Arachne-pnr. [Online]. Available: https://github.com/YosysHQ/arachne-

pnr/
[15] Trenz Electronic. icoBoard. [Online]. Available: http://icoboard.org/
[16] B. White and B. Nelson, “Tincr — A Custom CAD Tool Framework

for Vivado,” in 2014 International Conference on ReConFigurable
Computing and FPGAs (ReConFig14), Dec 2014, pp. 1–6.

[17] T. Townsend and B. Nelson, “Vivado Design Interface: An Ex-
port/Import Capability for Vivado FPGA Designs,” in 2017 27th In-
ternational Conference on Field Programmable Logic and Applications
(FPL), Sept 2017, pp. 1–7.

[18] Project X-Ray. [Online]. Available: https://github.com/SymbiFlow/
prjxray/

[19] T. Haroldsen, B. Nelson, and B. Hutchings, “Packing a Modern Xilinx
FPGA Using RapidSmith,” in 2016 International Conference on ReCon-
Figurable Computing and FPGAs (ReConFig), Nov 2016, pp. 1–6.

[20] V. Betz and J. Rose, “VPR: A New Packing, Placement and Routing Tool
for FPGA Research,” in Field-Programmable Logic and Applications,
W. Luk, P. Y. K. Cheung, and M. Glesner, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1997, pp. 213–222.

[21] C. Ebeling, L. McMurchie, S. A. Hauck, and S. Burns, “Placement and
Routing Tools for the Triptych FPGA,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 3, no. 4, pp. 473–482, Dec 1995.

[22] P. E. Hart, N. J. Nilsson, and B. Raphael, “A Formal Basis for the
Heuristic Determination of Minimum Cost Paths,” IEEE Transactions
on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, July
1968.

[23] Xilinx. Processing System 7 v5.5: LogiCore IP Product Guide - PG082.
[24] J. Goeders, T. Gaskin, and B. Hutchings, “Demand Driven Assembly of

FPGA Configurations Using Partial Reconfiguration, Ubuntu Linux, and
PYNQ,” in 2018 IEEE 26th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), April 2018, pp.
149–156.

16

Authorized licensed use limited to: Brigham Young University. Downloaded on May 12,2022 at 16:29:10 UTC from IEEE Xplore. Restrictions apply.

