Fault-Tolerant Softcore Processors <u>Part I</u>: Fault-Tolerant Instruction Memory

Nathaniel Rollins Brigham Young Universit

Overview

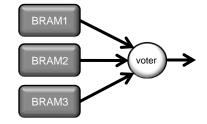
- Strong interest in FT softcore processors in space
 - LEON processor used by European space program
 - □ Microblaze, PicoBlaze, 8051, ERC32, etc.
- Rad-hard processors are expensive, big, and slow
- Softcore processors are <u>flexible</u>, <u>fast</u>, and <u>cheap</u>

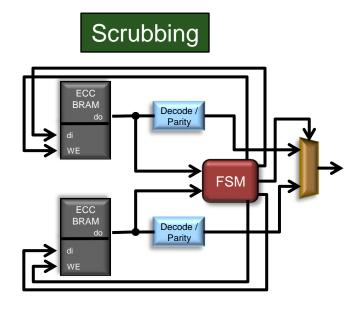
- <u>Overall Goal</u>: identify low cost SEU mitigation techniques for softcore processors
 - Goal of Part I study: Identify low cost SEU mitigation techniques for softcore processor instruction memories

Approach

ECC

Decode &


Correct


Study Approach

TMR is the most common mitigation technique

BRAM1

- Expensive and slow
- Other hardware techniques
 - Detection isn't good enough must correct
 - DWC alone isn't good enough
 - EDC alone isn't good enough

- Compare different softcore processor instruction memory fault-tolerant techniques in terms of:
 - Area, speed, power, reliability
- Remaining processor protection: plain TMR

ECC

BRAM

EDC with DWC

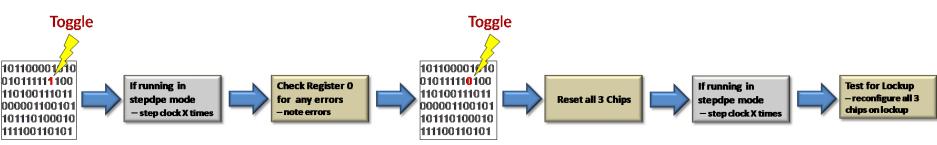
Decode /

Parity

Compare

Fault Model

 BYU/LANL SLAAC1V fault injection tool used to insert single bit upsets into Virtex FPGAs


FPGA 1

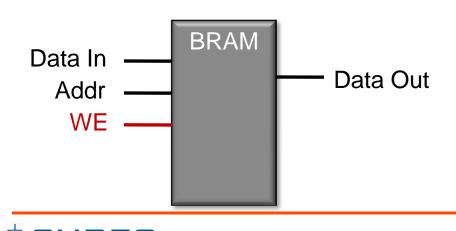
- BRAM bits in Virtex bitstream are treated differently
- <u>Task</u>: upgrade fault injection tool to support:
 - Upsets in BRAM

VSF Center for High-Performance

Reconfigurable Computing

- Readback of BRAM bits
- Next studies use SEAKR XRTC board with Virtex4 FPGA
 - SEAKR board borrowed from LANL
 - Fault injection tool also upgraded to upset BRAMs and detect critical failures

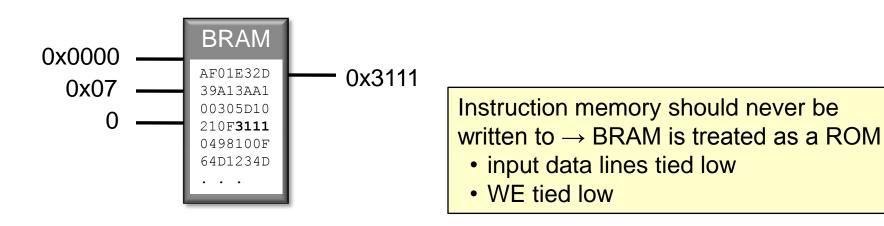
FPGA 2


Comparator

- <u>Critical Failures</u>: upsets that cannot be fixed with a reset (lead to a SEFI)
 - Different memory structures are susceptible to critical failures:
 - BRAMs
 - LUTRAMs
 - SRLs

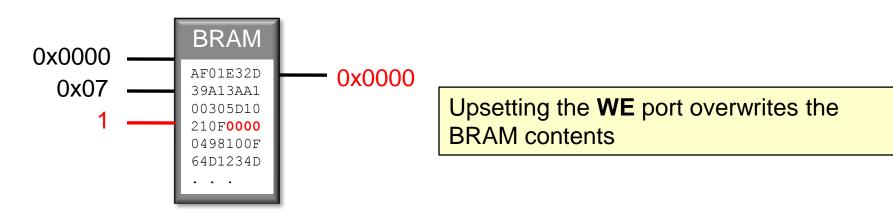
ISF Center for H

Reconfigurable Computing


- Registers that are not tied to a global reset
- Example: WE port on a BRAM

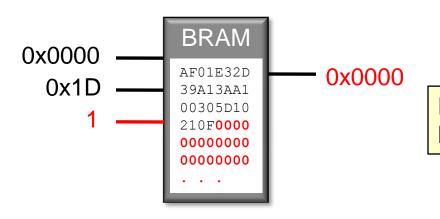
Critical Failures: upsets that cannot be fixed with a reset (lead to a SEFI)

Example: WE port on a BRAM



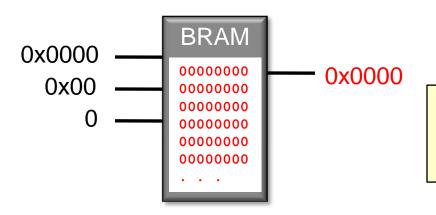
Critical Failures: upsets that cannot be fixed with a reset (lead to a SEFI)

Example: WE port on a BRAM



Critical Failures: upsets that cannot be fixed with a reset (lead to a SEFI)

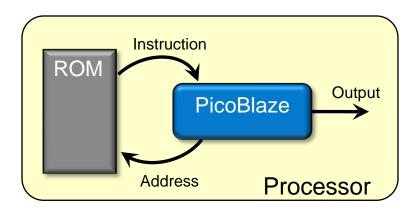
Example: WE port on a BRAM


Especially bad for processors since BRAM address continually increments

Critical Failures: upsets that cannot be fixed with a reset (lead to a SEFI)

Example: WE port on a BRAM

Resetting the device will restart the processor, but will not restore the BRAM contents (program is lost)!


Mitigation techniques need to eliminate critical failures

Fault-Tolerant Techniques

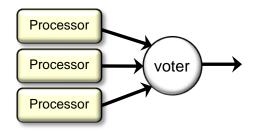
Original processor design: Xilinx PicoBlaze

Fault-tolerance determined by examining the **PC** and current **instruction** as faults are injected

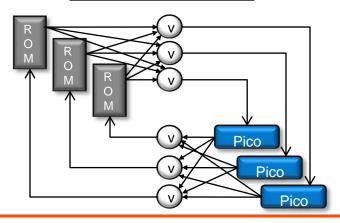
- Instruction memory fault-tolerant techniques:
 - TMR:
 - Single voter
 - Triple voter
 - Feedback
 - BLTMR
 - Scrubber

• ECC:

- SEC/DED
- SEC/DED with DWC
- SEC/DED with DWC and scrubbing

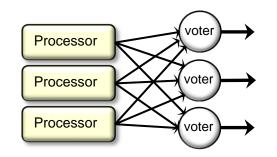

EDC & DWC:

- CD with DWC
- CD with DWC and scrubbing

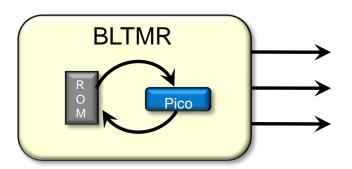


Fault-Tolerant Techniques: TMR

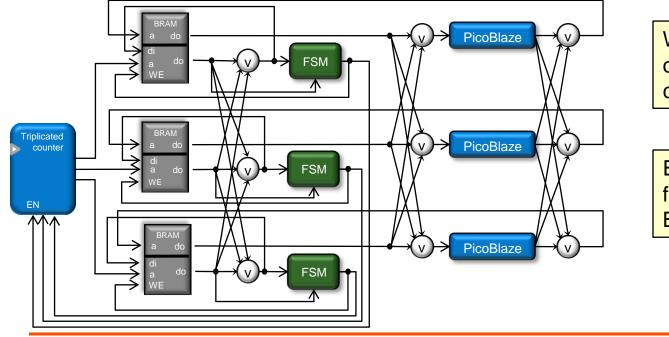
Top-Level TMR – 1 voter



Feedback TMR



Top-Level TMR – 3 voters

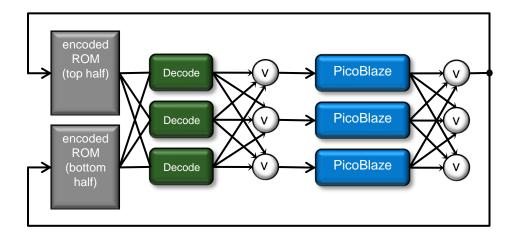


FT Techniques: TMR with Scrubbing

- BYU/Sandia BRAM scrubber with TMR
 - Each BRAM scrubbing WE must be independent of other BRAM WEs
 - Scrubbing address counters MUST be kept in sync
 - Scrubbing counter must be 2x slower than BRAM clock
 - Must prevent read/write address conflicts

ISF Center for High-Performance

Reconfigurable Computing

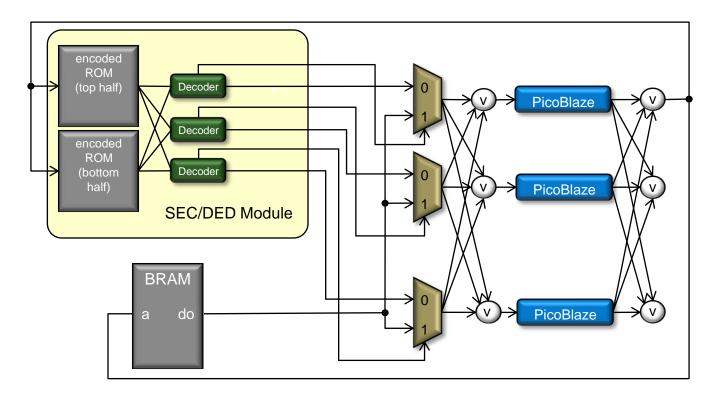

Without scrubbing overlapping errors will cause TMR to fail

Eliminating critical failures is difficult when BRAM WEs are upset

FT Techniques: SEC/DED

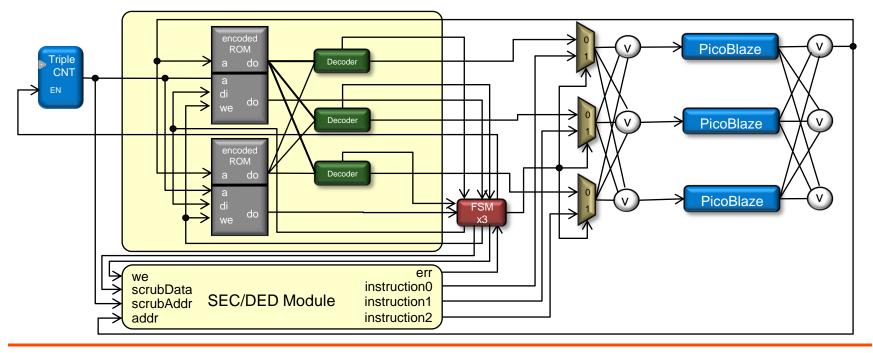
- SEC/DED on 16-bit word:
 - Use (22, 6) code on 16-bit word
 - Use 2 BRAMS:
 - 1 for top half encoded word (11 bits)
 - 1 for bottom half encoded word (11 bits)
- Complete fault tolerance difficult when crossing from triplicated to non-triplicated
 - Logic and routing coming into and out of BRAMs are single point of failure

• SEC/DED:


- Detects and corrects any single-bit upset
- Detects any double-bit upset
- Triple+ upsets may or may not be detected

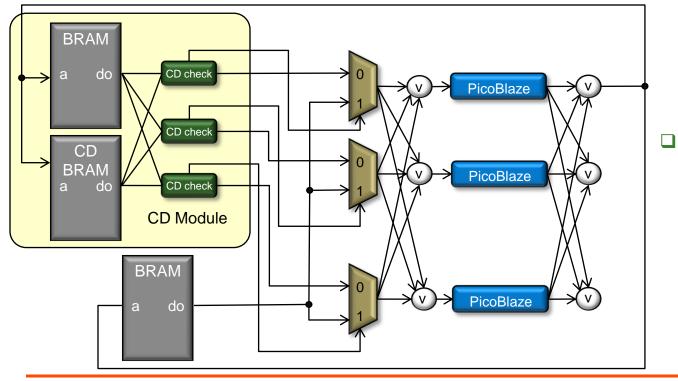
FT Techniques: SEC/DED with DWC

- Improve SEC/DED reliability with DWC
- Still susceptible to critical failures when BRAM WE is upset



FT Techniques: SEC/DED DWC Scrub

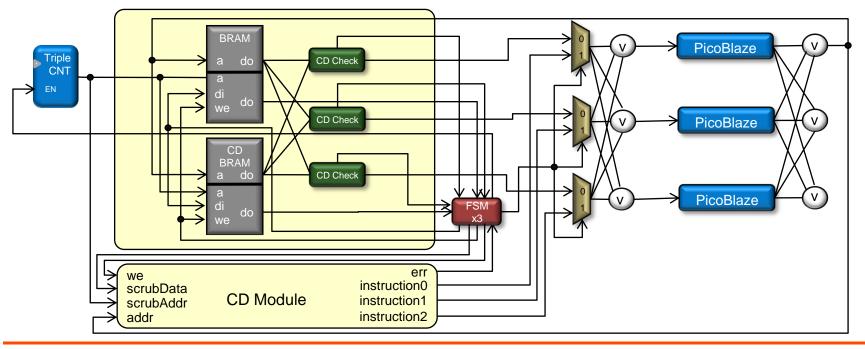
- Scrubbing uses dual ported BRAMs
 - Scrub address counter runs ½ speed of BRAM clock
- Scrubbing cannot fix all errors (only single-bit/double-bit guaranteed)
 - <u>Scrub trigger</u>: single error correction(SEC) or double error detection (DED) on current instruction


 more than 2 errors may or may not be caught
 - When triggered, a scrub copies entire BRAM contents of good BRAM into bad BRAM

FT Techniques: CD with DWC

- Complement Duplicate (CD) duplicates and inverts (complements) the original BRAM contents
 - Detects errors by comparing the original with the complemented CD
- CD only *detects* upsets so DWC is used to *correct* upsets

Reconfigurable Computing


CD detects:

- Any single-bit upset
- 66% double-bit upsets
- Any multiple adjacent unidirectional upset

FT Techniques: CD DWC Scrub

- Scrubbing uses dual ported BRAMs
 - Scrub address counter runs ½ speed of BRAM clock
- Scrubbing will fix critical failures
 - Scrubbing trigger: inverse of current instruction doesn't match CD contents
 - When triggered, a scrub copies entire BRAM contents of good BRAM into bad BRAM
 - There are other scrubbing design strategies with CD but this one removes all critical failures

FT Techniques: Results

Design	Slices		BRAM Bits		Clock Rate (MHz)		Power (mW)		Sensitive Bits		Critical Failures
Original	70		560		65.5		49		2881		3
1 voter	227	3.2x	1680	3x	67.5	1.03x	66	1.35x	847	3.4x	3
3 voters	252	3.6x	1680	3x	71.4	1.09x	75	1.53x	36	80.0x	3
Feedback	250	3.6x	1680	3x	66.1	1.01x	73	1.49x	68	42.4x	3
BLTMR	297	4.2x	1680	3x	63.9	1.03x	76	1.55x	52	55.4x	3
TMR Scrub	348	5.0x	1680	3x	58.4	1.12x	82	1.67x	28	102.9x	0
SEC/DED	340	4.9x	770	1.4x	43.4	1.51x	82	1.67x	711	4.1x	16
SEC/DED DWC	373	5.3x	1540	2.8x	42.7	1.53x	89	1.82x	473	6.1x	3
SEC/DED DWC Scrub	545	7.8x	1540	2.8x	32.4	2.02x	105	2.14x	326	8.8x	0
CD DWC	235	3.4x	2240	4x	47.9	1.37x	72	1.47x	1034	2.8x	2
CD DWC Scrub	395	5.6x	2240	4x	29.7	2.21x	90	1.84x	231	12.5x	0

Clock and reset lines are NOT triplicated

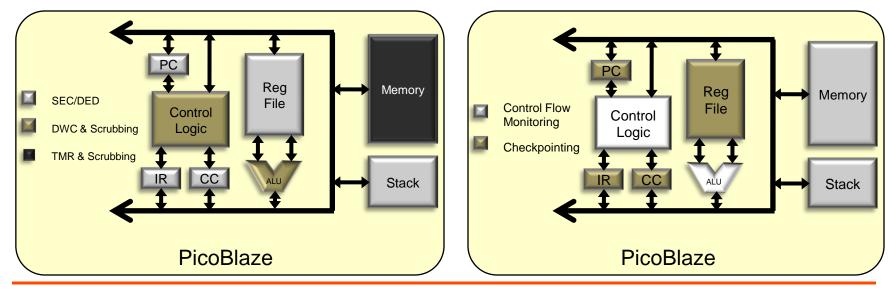
Conclusions

Reliability

- For instruction memories, TMR with scrubbing provides the best protection
 - Fewest sensitivities
 - Eliminates critical failures
- Scrubbing is required to eliminate critical failures

Costs

- TMR is more effective than SEC/DED and CD with DWC
 - Better protection
 - Lower area, speed, and power costs
- SEC/DED and CD with DWC scrubbers are very expensive


FT Softcore Processors: Moving Forward

- Next General Studies:
 - Memory Study: BRAMs & LUTRAMs
 - Software fault-tolerant techniques study
- Create different fault models for SEAKR board
 - Multi-bit upset model

ISF Center for High-Performance

Reconfigurable Computing

- Temporal fault-tolerant techniques model
- Combinations of different fault-tolerant techniques

