
1045-9219� 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

MACS: A Highly Customizable Low-latency
Communication Architecture
Rohit Kumar and Ann Gordon-Ross {kumar, ann}@chrec.org
NSF Center for High-Performance Reconfigurable Computing

University of Florida, Gainesville, FL 32611

Abstract—Networks-on-chips (NoCs) are an increasingly popular communication infrastructure in single chip VLSI design for
enhancing parallelism and system scalability. Processing elements (PEs) connect to a communication topology via NoC switches,
which are responsible for runtime establishment and management of inter-PE communication channels. Since NoC switch design
directly affects overall system performance and exploited communication parallelism, much previous work focuses on efficient NoC
switch design. In this paper we present MACS—a highly parametric NoC switch architecture that provides reduced data transfer latency,
increased designer flexibility, and scalability as compared to previous architectures by combining and enhancing several NoC design
strategies. MACS enhances inter-PE communication using a circuit switching technique with minimal adaptive routing and a simple
and fair path resolution algorithm to maximize bandwidth utilization. We evaluate area and performance of an FPGA implementation
of MACS, and, compared to previous work, MACS offers a 2x to 7x decrease in average channel setup latency, a 1.7x to 2x reduction
in area requirements, similar average packet latency, up to a 6x increase in the network saturation point, and up to a 1.4x increase
in bandwidth utilization. Additionally, we illustrate MACS’s low average channel setup latency using 6 network traffic patterns and 8
parallel JPEG decompression core trace simulations.

Index Terms—Network-on-chip, minimal adaptive, distributed round-robin, FPGA

�

1 INTRODUCTION

SYSTEM-ON-CHIPS (SoCs) are composed of multiple
processing elements (PEs) that are typically assem-

bled in an application domain-specific architecture with
an inter-PE communication network to enable the PEs
to carry out application tasks. The PEs and the commu-
nication network exploit inherent inter-task parallelism,
which typically increases as the number of PEs increases,
for efficient system performance. However, the key to
maximizing leveraged parallelism in modern and future
SoCs is an efficient and scalable inter-PE network and
communication methodology. To provide efficient and
scalable SoC inter-PE communication Dally et al. [9]
and Benini et al. [2] introduced a network-on-chip (NoC)
design paradigm. Benini et al. [2] showed that NoCs pro-
vided enhanced performance, bandwidth, and scalability
as compared to dedicated wires or buses [6] [19] [29] [11].

An NoC is composed of a set of switches and a point-
to-point interconnect to form a network topology (e.g.,
mesh/torus, tree/fat-tree, and ring). Switches connect to
neighboring switches and one or more PEs using ports.
PEs coordinate task execution over these ports using
control and data messages that are either broken into
packets or streamed over a communication channel.

Traditional switches are categorized based on the
switch’s structural and transmission parameters. Struc-
tural design parameters include arbitration policy (e.g.,
round robin, priority, bus-based, etc.), buffering strategy
(e.g., buffered, bufferless, etc.), and routing algorithm
(e.g., dimension order, minimal adaptive, etc.). Transmis-

sion design parameters include channel allocation (e.g.,
physical, virtual, etc.) and switching mode (e.g. packet
switching, circuit switching, etc.). An NoC’s topology
and the switch’s structural and transmission design pa-
rameters determine the NoC’s usability and application
performance [7]. Since exploring the combination of all
of these design parameters is impractical, we restrict our
analysis and evaluation to a mesh topology, but also
consider structural and transmission design parameters,
and compare our circuit switched NoC with packet
switching and mixed switching NoCs.

Packet switching(e.g., [26], DBAR [22], [23], [18],
MANGO [4], HERMES [25], Xpipes [1], and SoCIN [36])
is the most commonly used NoC switching mode [3]
because packet switching typically offers higher aggre-
gate bandwidth and more efficiently utilizes resources by
dynamically distributing simultaneous communication
channels through different switches. However, packet
switching disadvantages include: packet buffering and
processing requirements, which increase the NoC’s size
and complexity; the channel latency’s (time between
the source PE’s packet transmission and the destination
PE’s packet reception) dependence on the network load;
a potentially low network saturation point (i.e., the
point after which increasing the network load does not
increase the throughput but increases channel latency
exponentially); and the potential for blocked switches in
heavily loaded networks [7].

Circuit switching (e.g., [20], [8], [7], PNoC [14], Æthe-
real [13], SoCBUS [34], and Octagon [16]) provides
exclusive and static data communication channels be-

Digital Object Identifier no. 10.1109/TPDS.2015.2390631

KUMAR ET AL. 2

tween communicating PEs, thereby providing guaran-
teed throughput and channel latency bounds for indi-
vidual packets. Additionally, since packets in a circuit
switching network are pipelined along the channel (i.e.,
each router acts as a pipeline stage), circuit switch-
ing requires only a single register for packet buffering
(as opposed to packet switching’s FIFO buffer). Circuit
switching is most efficient for network traffic with long
packets, high transmission rates, and/or throughput and
latency requirements. However, circuit switching disad-
vantages include channel bandwidth under utilization
for lower data transmission rates and circuit setup la-
tency, which depends on the channel’s path’s current
network traffic load. Additionally, most circuit switching
NoCs have a fixed architecture and thus provide limited
flexibility for customizing the NoC architecture to a
particular application’s network traffic load, bandwidth,
and throughput requirements (aside from complete ar-
chitectural redesign).

To leverage the advantages of both circuit and packet
switching, several recent NoCs combined circuit and
packet switching into a mixed switching NoC [31], [21],
[23], [24]. [31] and [24] show a 37% and 45% reduction in
the average packet latency with a 12% and 10% increase
in the area overhead as compared to a conventional
packet switching 2D mesh-based NoC, respectively. [23]
shows a 19% reduction in average packet latency as com-
pared to a conventional packet switching NoC. Although
[31], [21], [23], and [24] do not provide bandwidth
utilization results, the high network saturation point in
[31], [23], and [24] suggest high bandwidth utilization.

To increase bandwidth utilization and reduce area
overhead, more than one PE can be connected to each
NoC switch, which reduces the number of switches
required and reduces the per-PE area overhead. How-
ever, increasing the number of PEs per switch increases
the number of communication requests, which increases
the number of communication paths required. Typical
NoC switches establish a communication path using
deterministic-XY routing, which may not take advantage
of all available paths in a mesh topology. Deterministic-
XY routing algorithms overuse the same routes, which
leads to inefficient communication resource utilization
and may fail to establish a communication path between
PEs even if a valid communication path does exist (i.e.,
the valid path cannot be discovered using deterministic-
XY routing). To increase the number of available commu-
nication paths and maximize the bandwidth utilization,
an adaptive routing algorithm with low path setup
latency and a fair path resolution mechanism can be
implemented.

In this work, we addressed these limitations with
MACS—a Minimal Adaptive routing Circuit Switching
based switch for a two-dimensional mesh topology NoC.
Since circuit switching NoCs are best suited for stream-
ing data traffic and streaming data typically exist be-
tween producer-consumer PE pairs, MACS leverages PE
clustering. MACS’s PE clustering connects two PEs to

each switch, which enables fast circuit establishment and
data transfers between producer-consumer pairs that are
placed in the same cluster because the data can be trans-
ferred directly between these PEs without traversing the
network topology. Additionally, PE clustering reduces
the total number of switches (which in turn reduces the
area requirements), increases bandwidth utilization, and
increases system design flexibility, enabling designers to
strategically place producer-consumer PE pairs on the
same switch. MACS provides efficient communication
between arbitrary PE pairs using three techniques: es-
tablishing communication channels through the switches
with the maximum number of available path choices,
which maximizes bandwidth utilization, using minimal
adaptive shortest path routing with fair path resolu-
tion; reducing communication channel setup latency
with lightweight, distributed round-robin arbitration;
and providing high communication operation frequency
with an efficient circuit-switched routing decision state
machine.

To increase design flexibility and system customiza-
tion, we implemented MACS as a highly paramet-
ric VHDL model with numerous tunable architectural
parameters. We developed FPGA implementations of
MACS for varying architectural parameters and evalu-
ated the impact of varying these architectural parameters
on area and operating frequency. Additionally, we ana-
lyzed the average channel setup latencies using several
synthetic network traffic patterns (uniform random, bit-
complement, tornado, transpose, and nearest neighbor)
for a 3x3 MACS-NoC (3x3 mesh topology NoC of MACS
switches). To further analyze average channel setup la-
tency, we also evaluate a trace-based simulation of eight
JPEG decompression cores [32] operating in parallel on
an 8x8 MACS-NoC. Finally, we compare an 8x8 MACS-
NoC’s average packet latency, network saturation point,
and average bandwidth utilization to previous works.

The remainder of this paper is organized as follows. In
Section 2, we discuss previous work in circuit switching
NoC architectures. Section 3 presents the MACS switch
architecture and switch operations. Section 4 discusses
MACS’s communication channel routing algorithm. In
Section 5, we present the MACS FPGA implementation
and simulation results and comparison with prior work.
Finally, Section 6 concludes our work and discusses
future work.

2 RELATED WORK

Efficient switch architecture design motivated much
early NoC research and in order to compare these switch
architectures, [11] [37] [34] [33] provided comparisons
based on different switching techniques and topologies.
Wiklund et al. [33] evaluated different topologies and
proved that the mesh topology was the most appropriate
for on-chip networks.

Wiklund et al. [33] and Zheng et al. [37] both pro-
vided strong arguments for the advantages of circuit

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2015.2390631

U.S. Government work not protected by U.S. copyright.

KUMAR ET AL. 3

switched NoCs over packet-switched NoCs. Wiklund
et al. [34] proposed a mesh topology NoC (SoCBUS)
using distributed arbitration and a new switching tech-
nique known as Packet Connected Circuits (PCCs). In
a PCC, packets traverse the network, locking circuits
by leveraging round-robin arbitration to select one of
the two paths during the packet’s progression. Due to
this round-robin path selection methodology, SoCBUS
explored only one shortest path (even though many
existed). In addition, due to selection of only one shortest
path, SoCBUS provided a fewer number of simultaneous
communication channels.

To increase the number of simultaneous channels,
Zheng et al. [37] proposed a Time Division Multiplexed
(TDM) scheme for communication channels on a 2D
mesh NoC. Due to time multiplexing of channels over
the same links in TDM, the NoC offered a higher num-
ber of simultaneous channels than SoCBUS. However,
one potential drawback of TDM was out-of-order data
arrival, but the authors provided a mechanism to en-
sure in-order data arrival. Moreover, due to the use of
centralized routing in [Zheng2004], [Zheng2004] could
suffer from communication bottlenecks.

In order to alleviate communication bottlenecks, Ah-
madinia et al. [5] proposed RMBoC (a circuit-switched
NoC) based on the Reconfigurable Multiple Bus (RMB)
[12]. RMBoC was implemented as both a 1D-array and a
2D-mesh topology. In the 2D RMBoC, each switch con-
tained per-row and per-column network controllers to
deterministically route channel establishment requests.
RMBoC had several drawbacks including deterministic
routing that did not maximize bandwidth utilization,
large area requirements, and low operating frequencies
due to a complex routing algorithm and the network
controllers.

In order to improve architectural customization,
Hilton et al. [14] presented the Programmable Network-
on-Chip (PNoC), a highly flexible circuit switched NoC
for field programmable gate array (FPGA) systems.
PNoC’s tunable parameters included the number of
switch ports and data and address bus widths. In ad-
dition, PNoC connected multiple PEs to each switch but
allowed only one PE to communicate at a time. Whereas
this technique appeared to be inflexible, the technique
was suitable for processor-farm systems. Furthermore,
PNoC could not efficiently utilize communication re-
source unless the operating system updated the routing
table during runtime.

To improve the flexibility of PNoC while keeping the
architectural flexibility and to improve real-time data
processing, Carara et al. [7] proposed a 4x4 NoC (which
we refer to as CararaNoC henceforth) that employed
mixed switching techniques with fixed sized packets. In
order to provide high throughput to support real-time
data processing, CararaNoC implemented two parallel
interfaces (i.e., lanes) in all switch ports and routing
resource multiplexing with the help of multi-phased
data transfer sessions. Due to implementation of multi-

phased data transfer sessions, session buffers, and cell-
based data transfer, CararaNoC provided better resource
utilization and run-time adaptation of NoC channel
bandwidth with application bandwidth requirements.
Additionally, CararaNoC provided two lanes in each
direction to increase the communication bandwidth and
reduce the switch’s area requirements. However, high
latency values in simulation (only a few PEs out of a
total of 16 PEs were active in simulation) suggested
that CararaNoC suffered from path contention due to
deterministic-XY routing. Furthermore, CararaNoC was
implemented as fixed 4x4 NoC architecture with no
customizable parameters.

In order to increase architectural customizability and
to reduce area overhead of earlier architectures we in-
troduced SCORES [15], a 1D circuit switched architec-
ture with stream-based data transfer. SCORES used a
1D-array topology and was implemented as a highly
parametric VHDL model with numerous tunable archi-
tectural parameters. Tunable architectural parameters in-
cluded number of port lanes and data width. Compared
to previous work, SCORES had a low area architecture
that reduced communication establishment bottlenecks,
increased architectural specialization, and provided high
communication operating frequencies. However, due to
the one dimensionality of SCORES, SCORES’s main
drawback was a lower number of available paths be-
tween PEs, and thus lower bandwidth, as compared to
previous works.

To increase NoC bandwidth, Lin et al. [20] pro-
posed express communication paths in a mesh-based
circuit switched NoC (referred to as LinNoC henceforth).
LinNoC implemented additional connections between
switches three hops apart, which served as express, low
latency communication paths. LinNoC showed up to a
19.43% reduction in packet latency, but suffered from a
low network saturation point.

To increase the network saturation point and thus
maximize bandwidth utilization, Lusala et al. [21]
proposed a switch architecture (which we refer to
as LusalaNoC henceforth) that combined spatial divi-
sion multiplexing(SDM) and time division multiplex-
ing(TDM). SDM and TDM allow the router to share
channels among multiple connections thereby increasing
the probability of establishing paths through the net-
work. However, due to LusalaNoC’s deterministic-XY
routing, LusalaNoC did not explore all paths between
two switches. Additionally, due to SDM and TDM,
LusalaNoC suffered from high packet latency and high
area overhead.

To reduce packet latency and improve bandwidth,
Qian et al. [26] (referred to as BiNoC* henceforth) com-
bined a bi-directional channel NoC [17], BiNoC, with
express channels, regional hub routers, and regional traf-
fic congestion information. Regional hub routers created
short-cut paths by bypassing fixed number of interme-
diate switches and thus reduced packet latency. Addi-
tionally, to reduce network congestion’s effect on latency,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2015.2390631

U.S. Government work not protected by U.S. copyright.

KUMAR ET AL. 4

each switch contained traffic congestion information of
fixed number of hops. Due to bi-directional channels,
express channels, traffic congestion information, and
regional hub routers, BiNoC* achieved up to 80% latency
improvement with 19% area overhead as compared to a
typical NoC.

To reduce area overhead, recent work by Teimouri
et al. [31] (referred to as TeimouriNoC henceforth) di-
vided a [10]-based n-bit network into two n/2-bit sub-
networks. One of the n/2-bit sub-networks directed the
packets according to the traditional packet switching
scheme and the other sub-network was used to build
partial communication paths to shorten the packet’s
path to the packet’s destination. [31] showed a 37%
reduction in latency, but a 12% increase in area overhead
as compared to a conventional packet switching NoC
[10]. Since [31] used deterministic-XY routing, [31] did
not utilize all available paths and thus did not maximize
bandwidth utilization.

In this work, MACS addresses SCORE’s, LinNoC’s,
LusalaNoC’s, and TeimouriNoC’s bandwidth and band-
width utilization limitations and introduces novel en-
hancements, such as exploration of additional paths
and fair path resolution. MACS significantly enhances
SCORES into a switch appropriate for a 2D mesh topol-
ogy NoC, which removes communication channel bottle-
necks using a minimal adaptive routing algorithm to en-
sure alternate path exploration in orthogonal directions.
A lightweight cost metric (local to each switch) evaluates
and selects the best available path to maximize num-
ber of possible paths through a switch and distributed
round-robin arbitration reduces channel setup latency.
We implemented MACS as a highly parametric VHDL
model to provide numerous architectural customizations
(e.g., number of lanes in each direction, number of lanes
on local PE ports, data width and network dimension).
In addition to a parametric design, the MACS’s RTL
model is a highly modular design (e.g., the routing algo-
rithm is implemented as an entity independent of other
components such as arbiter or path resolution module)
that provides low modification-verification cycle time
and high communication operating frequencies. Finally,
we present extensive simulation studies of 3x3-MACS
(NoC of MACS switches) for several synthetic network
traffic patterns and trace-based simulation studies of 8x8-
MACS for JPEG decoders.

3 MACS ARCHITECTURE

Figure 1 (left) depicts 3x3-MACS’s high-level architec-
tural layout. X and Y coordinates identify individual
switch addresses based on horizontal and vertical posi-
tions, respectively. Each switch’s two PEs are addressed
relative to their connected switch. MACS has four total
switch ports with one port connected to each neighboring
switch (left, right, up, and down) and two local ports
connected to the two PEs (Figure 1 (right)). A port
identification number (PID) uniquely identifies each port.

Each port contains multiple input and output commu-
nication lanes to support multiple simultaneous commu-
nication channels between different PE pairs (denoted
by the K tunable architectural parameter in Figure 1).
Furthermore, each lane contains input and output data
signals (denoted by the W tunable architectural param-
eter in Figure 1) to provide data transfer bandwidth
on a communication channel. MACS provides guaran-
teed throughput using a circuit-switched communication
methodology with distributed arbitration. In this section,
we provide an overview of switch operation followed by
switch architectural details.

3.1 Switch Operation
Switch operations include communication channel es-
tablishment for inter-PE data transfers (transactions),
waiting for transaction completion, and releasing commu-
nication channel resources (e.g., logic elements, registers,
etc.). Channel establishment connects an input lane to
an output lane and is the process of allocating channel
resources for routing incoming channel establishment
requests and data on this input-output lane connection,
thus establishing a dedicated communication channel.
After channel resource allocation, the switch waits until
transaction completion before releasing these resources.

Each port contains control logic for channel establish-
ment. The control logic consists of two types of control
logic blocks: an External Signal Forwarder (ExSIF) and an
Internal Signal Forwarder (InSIF) (collectively referred to
as signal forwarders). Signal forwarders are responsible
for controlling all communication operations such as
request servicing, channel establishment negotiations,
and channel release.

3.2 Switch Architecture
Figure 1 (right) depicts MACS’s detailed switch archi-
tecture including all switch/local ports and signals as-
sociated with each port’s input and output lanes. Switch
ports and local ports are similar in that they consist of
a set of lanes. A lane identification number (LID) uniquely
identifies each port’s lane. Lanes can be further classi-
fied as input and output lanes that carry request/data
signals into and out of a switch, respectively. Each input
lane consists of several control signals (req in, gnt out,
dny out, and ful out) and W input data signals (data in).
Similarly, each output lane consists of several control
signals (req out, gnt in, dny in, and ful in) and W output
data signals (data out). Control signals negotiate channel
establishment while data signals provide inter-PE com-
munication bandwidth (increasing W increases MACS’s
communication bandwidth).

MACS’s ports are highly parametric, providing fine-
grained per-direction communication bandwidth spe-
cialization. Each switch/local port can be specialized
with different numbers of input or output lanes. K
denotes a port’s lane count, and to distinguish between
distinct switch/local ports, K is appended with the PID.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2015.2390631

U.S. Government work not protected by U.S. copyright.

KUMAR ET AL. 5

S

PEPE

S

PEPE

S

PEPE

S

PEPE

S

PEPE

S

PEPE

S

PEPE

S

PEPE

S

PEPE

InSIFExSIF

do
w

n_
da

ta
_i

n

do
w

n_
da

ta
_o

ut

do
w

n_
re

q_
in

do
w

n_
re

q_
ou

t

do
w

n_
gn

t_
in

do
w

n_
dn

y_
in

do
w

n_
fu

l_
in

do
w

n_
gn

t_
ou

t
do

w
n_

dn
y_

ou
t

do
w

n_
fu

l_
ou

t

right_data_in

right_data_out

right_req_in

right_req_out

right_gnt_in
right_dny_in
right_ful_in

right_gnt_out
right_dny_out
right_ful_outInSIF

ExSIF

up
_d

at
a_

in

up
_d

at
a_

ou
t

up
_r

eq
_i

n

up
_r

eq
_o

ut

up
_g

nt
_i

n
up

_d
ny

_i
n

up
_f

ul
_i

n

up
_g

nt
_o

ut
up

_d
ny

_o
ut

up
_f

ul
_o

ut

InSIFExSIF
kr*w

left_data_in

kl*w
left_data_out

left_req_in

left_req_out

left_gnt_in
left_dny_in
left_ful_in

left_gnt_out
left_dny_out
left_ful_out InSIF

ExSIF

kl
kr
kr
kr

kl
kl
kl

kr

kl*w

kr*w

kr
kl
kl
kl

kr
kr
kr

kl

ku*wkukd*w kdkdkdkukukukd

kd*wkdku*w kukukukdkdkdku

kr*w

Left Switch Port

right data inkl*wkl*

Right Switch Port

k *

Up Switch Port

Right Local PortLeft Local Port

Down Switch Port

Control
Logic Blocks

Control Logic

Control
Logic
Blocks

Figure 1: 3x3-MACS’s architectural layout (left) and detailed MACS switch’s architecture (right). The switch architecture shows
all switch ports, local ports, and control logic blocks (ExSIF and InSIF) with associated port input/output signals. Each port
shows all port signals. Architectural parameters include number of lanes per port (K) and number of data signals per lane (W).

Thus, a switch has six total K parameters for communica-
tion bandwidth specialization (the number of simultane-
ous different per-port inter-PE communication channels,
and thus the bandwidth, monotonically increases with
K).

In order to control communication channels and en-
sure correct communication, switches record channel
routing information in status registers. Channel routing
information specifies lane availability and input-output
port lane connections. Section 3.2.1 discusses signal for-
warders and status registers. Signal forwarders populate
status registers during channel establishment to subse-
quently maintain fixed communication channels. Section
3.2.2 discusses the distributed round-robin arbitration
implemented in the InSIFs to arbitrate incoming requests
to output lanes.

3.2.1 Signal Forwarders and Status Registers

Figure 2 depicts the internal connections between two
arbitrary switch port lanes (connections with remaining
switch port lanes are labeled but not shown) and the
status register placement. The signal forwarders, ExSIF
and InSIF, establish internal connections between input
and output lanes, respectively. For readability, Figure
2 has been subsetted to show components and signals
for a sample input-output lane connection. In the actual
architecture, every lane contains all shaded components.

gn
t_

ou
t

ExSIF

re
q_

in

da
ta

_i
n

req_out

data_out

gnt_in

dny_in

ful_in
fu

l_
ou

t

Up Switch Portppp

Right Sw
itch Port

To left port

To
 le

ft
 lo

ca
l p

or
t

To
 d

ow
n

po
rt To

 ri
gh

t l
oc

al
 p

or
t

From left port

From left local port
From down port

From right local port

To left port
To left local port

To down port
To right local port

Fr
om

 le
ft

 p
or

t

Fr
om

 ri
gh

t p
or

t

Fr
om

 ri
gh

t
lo

ca
l p

or
t

Fr
om

 le
ft

lo
ca

l p
or

t
dn

y_
ou

t

From up port

To
 ri

gh
t p

or
t

In
SIF

Availability
register

Connectivity
register

Request
register InSIF

Ex
SIF

Figure 2: A subset of internal connections between the signal
forwarders (ExSIF and InSIF) and status table placement of
two arbitrary lanes (up and right) (additional connections
with remaining switch ports are labeled). The figure has been
subsetted for readability. In the actual architecture, every lane
contains all of the shaded components.

ExSIF and InSIF use the request register to forward,
maintain, and release incoming requests from the neigh-
boring switches and the request’s grant/deny to neigh-
boring switches, respectively. InSIF polls internal re-
quests forwarded by ExSIF in a distributed round robin

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2015.2390631

U.S. Government work not protected by U.S. copyright.

KUMAR ET AL. 6

fashion (Section 3.2.2 and assigns an output to a neigh-
boring switch based on the communication channel
routing algorithm (Section 4) and the availability register.
The availability register contains information about the
number of output lanes not serving an output to a
neighboring switch. InSIF and ExSIF use the connectivity
register to forward, maintain, and release internal re-
quests forwarded by ExSIF and the request’s grant/deny
coming from the neighboring switch, respectively.

MACS’s routing algorithm evaluates multiple routing
paths and allows each port to store the port’s unavail-
able communication resources (i.e., number of the port’s
output lanes that are reserved for established channels)
in the availability register. As the number of unavail-
able communication resources decreases, the likelihood
of a new channel establishment assigned to this port
increases and thereby maximizes bandwidth utilization.

3.2.2 Distributed Round-Robin Arbitration
As shown in Figure 2, an InSIF receives incoming re-
quests from all ExSIFs, except InSIF’s own port’s ExSIF.
Selecting and maintaining a set of incoming requests
for a set of outputs requires a complex round-robin
arbiter, which could increase area and channel setup
latency of the switch and reduce the switch’s maxi-
mum attainable operating frequency. A typical round-
robin arbiter (referred to as a typical arbiter henceforth)
identifies an incoming request from a set of incoming
requests in a round-robin fashion, identifies an available
output lane(s) in a round-robin fashion, and connects
the incoming request to the output lane. Identification
and connection of multiple incoming requests to mul-
tiple output requests simultaneously greatly increases
the typical arbiter’s complexity. In order to reduce the
arbiter’s complexity, the InSIF uses distributed round-
robin arbitration with cyclic distribution of incoming
requests over output lanes. This distribution causes dis-
joint sets of incoming requests to map to different output
lanes. Additionally, if the K architectural parameter for
all ports are equal, cyclic distribution ensures one-to-one
correspondence between the LID of incoming requests’
input lane and the LID of the output lane (e.g., all
requests arriving on LID=n are always mapped to the
output lane with LID=n). One-to-one correspondence of
LIDs provides improved controllability of the NoC due
to constraint on routing traceability.

In order to realize arbitration of cyclically distributed
incoming requests, the InSIF implements a per-output
lane distributed round robin arbiter (referred to as dis-
tributed arbiter henceforth) to choose a single request
from multiple incoming requests for connection to an
output lane. Figure 3a shows the distributed arbiter for
an output lane. Each distributed arbiter consists of two
components: a multiplexer and a counter. To select an
incoming request, the counter’s output is attached to
the MUX’s select lines and to control the counter, the
MUX’s output is attached to the counter’s active low
enable signal. To exemplify the distributed round robin

arbitration process, we consider the initial state where
the MUX’s inputs/output and counter’s output are de-
asserted. As the MUX’s output is de-asserted in the ini-
tial state, the counter is enabled and starts selecting one
incoming request per clock cycle (shown as clk in Figure
3a). As soon as the counter selects an asserted incoming
request, the MUX’s output is also asserted which, in turn,
disables the counter. Disabling the counter holds the
current counter value and MUX’s select lines persistent
thereby keeping a persistent connection between the
incoming request and the output lane. De-assertion of
the currently selected incoming request de-asserts the
MUX’s output and enables the counter for selection of
subsequent incoming requests.

To decrease the channel setup latency and to reduce
the area and frequency overhead of the distributed
arbiters, the distributed arbiters’ MUX’s size and the
counter threshold depend on the ratio of the total
number of incoming requests and the total number of
output lanes (e.g., for a distributed arbiter in the right
switch port’s InSIF, the counter threshold is ceil((Kll +
Krl +Kd +Kr +Ku)/Kr))). Limiting the counter size
limits the service latency (the number of clock cycles
before selection of an asserted incoming request signal
by the MUX) experienced by an incoming request. As
service latency accrues over the channel path, which in
turn increases the channel setup latency, the distributed
arbiters ensure lower channel setup latency as compared
to typical arbiters. Finally, due to a small (only two
components) and simple design, distributed arbiters do
not adversely affect the switch’s area requirements or
maximum attainable frequency.

3.2.3 Distributed Versus Typical Round-Robin
In order to estimate a distributed arbiter’s advantages
over a typical arbiter, we compared and evaluated these
arbiters using FPGA implementation and simulation.

Fig. 3b compares the distributed and typical arbiters
for a varying number of input and output lanes based
on the efficiency (i.e., percentage of incoming requests
that are granted an output) difference. The efficiency
difference was calculated by subtracting the distributed
arbiter’s efficiency from the typical arbiter’s efficiency.
Since the minimum number of input or output lanes on a
MACS port is 1, and 1 output lane receives requests from
at least 5 input lanes, the graphs vary the total number
of arbiter inputs from 5 to 25 and the total number of
arbiter outputs from 1 to 5.

To evaluate the arbiters’ efficiency, we created a C
simulation for both arbitrations. The data transfer and
idle (no request or data transfer) periods are simulated
by generating/maintaining and destroying the input
requests at uniformly distributed random intervals for
each input. Figure 3b shows that the distributed arbiter’s
efficiency increases (i.e., arbiters’ efficiency difference
decreases) as the number of input lanes increases or
number of output lanes decreases. Since the distributed
arbiter’s efficiency is calculated from smaller typical

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2015.2390631

U.S. Government work not protected by U.S. copyright.

KUMAR ET AL. 7

M
U
X

Counterr

enable

clk

A set of incoming
requests from ExSIFs

req_out on
output lane

Select
lines

(a) (b)

Figure 3: (a) Distributed round robin arbiter architecture for one output lane. Selection of an asserted incoming request asserts
the output lane signal, disables the counter, and retains a persistent input-output connection. De-assertion of a selected input
lane will de-assert the output lane and enable the counter for further selection. (b) The percentage efficiency difference, based
on results gathered from C-based simulation, between the typical and distributed round robin arbiter. The percentage efficiency
difference was calculated for a varying number of input (x-axis) and output lanes (#Output) in the typical and distributed round
robin arbiters

arbiters’ efficiencies, the distributed arbiter’s efficiency
change is not monotonic (particularly when the number -
of inputs are nearly equal to an integer multiple of num-
ber of outputs) and causes local maximas in the efficiency
difference between the typical and distributed arbiters.
Although the maximum efficiency difference is 16% for
five output lanes, a typical NoC switch implements at
most two output lanes and for a MACS switch imple-
mentation, the efficiency difference between the typical
and distributed arbiters is negligible. To compare area
and frequency overhead of the distributed and typical
arbiters, we implemented these arbiters in VHDL and
compare the arbiters’ FPGA implementations’ area and
frequency results. The results reveal that a distributed
arbiter requires 1x-12.6x less area and provides a 1x-5.4x
increase in maximum operating frequency as compared
to a typical arbiter. Since the distributed arbiter is im-
plemented with a smaller one-output typical arbiter, the
distributed arbiter and the typical arbiter show the same
area, frequency, and efficiency when number of output is
equal to 1.

4 COMMUNICATION CHANNEL ROUTING

Establishing an arbitrary inter-PE communication chan-
nel on a 2D mesh is a straightforward process, how-
ever, selecting the best communication channel given
all potential routes is challenging. For example, minimal
adaptive routing chooses the shortest path between two
points in a 2D mesh, thus defining the best route as sim-
ply the shortest path. However, between two points in a
2D mesh, there are (ΔX + ΔY)!/((ΔX)! ∗ (ΔY)!) equal
length shortest path routes where ΔX and ΔY are the
differences between the X and Y coordinates of the two
points, respectively. Routing algorithms that arbitrarily

and/or deterministically choose a particular path can
lead to communication bottlenecks and communication
resource starvation (all port’s lanes are occupied). Our
implementation of minimal adaptive routing and the
distributed arbiter to resolve the best routing path are
unique and minimalistic, and thus afford low area over-
head and small latency. We, define the best routing path
as both a shortest path (with available communication
lanes) and one that best distributes communication chan-
nels to avoid communication bottlenecks and communi-
cation resource starvation. MACS achieves these routing
goals using a minimal adaptive routing state machine,
as discussed in Section 4.1.

4.1 Routing State Diagram

Our communication channel routing algorithm is based
on minimal adaptive routing to establish, maintain,
use (transfer data), and release inter-PE communication
channels. These processes correspond to four channel
phases: the request service phase, the grant/deny phase,
the data transfer phase, and the resource release phase.
Each switch can maintain multiple channels, each of
which may be in any one of these phases (regardless
of the other channel’s phases).

In the request service phase, a switch identifies desti-
nations for all incoming requests, forwards the incoming
requests to neighboring switches towards the destina-
tion, and waits for grants/denies. In the grant/deny
phase, a switch port receives all grants/denies, resolves
between contending grants, if any, based on the number
of busy channels and forwards the grants/denies. A
communication channel is established at the end of the
grant/deny phase if the grant/deny phase received at
least one grant from the neighboring switch(es). In the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2015.2390631

U.S. Government work not protected by U.S. copyright.

KUMAR ET AL. 8

Idle P0 and/or P1
are available

Request

All
denies

None
available

Grant on P0/P1,
deny on P1/P0

Grants on
P0 and P1

No more
data

S1 Try route in all shortest
path directions (along at

most 2 ports: P0, P1)
S2

Reserve resources
for available

directions
S3

Forward
request

S4

Wait for all
grants/denies

S5
Release

all
S6

Send grant on P0/P1
to requesting switch,
release resources for

P1/P0S7

Port P0/P1 has
lower no. of busy
lanes, or if no. of
lanes are same,
port P0/P1 has

lower PID
S8

Data
transfer

S9

Send deny to
requesting switch

S10

Release
all

S11
Wait for

data
Path

resolved

Resources
released

Resources
reserved

Request(s)
forwarded

Deny
sent

Resources
released

Figure 4: State diagram for a switch’s channel phase actions and transitions.

data transfer phase, the switch maintains the channel
based on several status registers, populated by the re-
quest service phase and the grant/deny phase, and
transfers data through the communication channel. The
end of data transfer triggers the resource release phase.
In the resource release phase, the communication chan-
nel is destroyed and all resource, such as the status
registers related to the communication channel, are reset.
Figure 4 depicts a state diagram of channel phase actions
and transitions.

The switch begins operation in the idle state (S1).
If the switch receives a channel establishment request
and associated channel establishment information on the
req in and data in signals, the switch transitions to S2
and begins the request service phase. In S2, the switch
compares its address with the destination switch address
and determines the potential ports (‘P0’ and/or ‘P1’ in
S2) in which to forward the incoming request (according
to the minimal adaptive algorithm). If the current and
destination switch addresses do not match, the requested
PE is not connected to the current switch and the cur-
rent switch must forward the request to neighboring
switches. If the current and destination switch addresses
do match, the request is forwarded to the appropriate
local PE port. If there are available output port lanes,
the switch transitions to S3 to establish input-output lane
connections and complete the request service phase. In
S3, the switch adds the appropriate entries to the status
tables (Sections 3.2.1). After adding these entries, the
switch transitions to S4 and forwards the request to the
available lane on port(s) ‘P0’ and/or ‘P1’. On the other
hand, if there are no available output port lanes, the
routing fails and the switch transitions to S10, sends a
deny response to the requesting switch, and transitions
back to the idle state (S1).

After request service phase completion (i.e., af-
ter request forwarding in S4), the switch enters the
grant/deny phase (S5) and waits for the grant and/or
deny signal responses (gnt in or dny in, respectively) on
the output lane of port(s) ‘P0’ and/or ‘P1’. If only one
port (direction‘P0’) was selected in the request service
phase and a grant is received, the switch transitions to
S7 and forwards the gnt in, dny in, and ful in signals to

the corresponding gnt out, dny out, and ful out signals
of the requesting port’s input lane (the port’s input lane
in which the request generated from). If two ports (both
directions) were selected in the request service phase,
there are three possible state transition situations. In the
first situation, the switch receives denies from both ports
and transitions to S6 to release all channel resources
associated with both ports. The switch transitions to S10,
sends a deny to the requesting port’s output lane and
transitions back to the idle state (S1). In the second situ-
ation, the switch receives one grant (e.g., associated with
‘P0’) and one deny (e.g., associated with ‘P1’). The switch
transitions to S7, forwards gnt in, dny in,and ful in from
‘P0’ to the requesting port’s input lane, and releases
the resources associated with ‘P1’ (note that the case is
similar when ‘P0’ denies and ‘P1’ accepts.) In the third
scenario, the switch receives grants from both ports and
transitions to S8 for grant resolution. Grant resolution
selects the best channel to establish by evaluating the
port responses and associated route costs to determine
which response to forward to the requesting port’s input
lane. Route cost is defined as the number of lanes already
assigned to existing communication channels. If both
ports route costs are different, the switch selects the
lowest route cost port as the best port. If both ports
route costs are equal, the switch selects the port with
the lowest PID as the best port. Due to this lowest route
cost-based port resolution and best port selection, MACS
distributes new communication channels towards less
congested portions of the network, thereby achieving
communication load balancing. After the best port is
selected (arbitrarily denoted as ‘P0’ in S8 and S7), the
switch transitions to S7, forwards gnt in, dny in, and
ful in of port ‘P0’ to the requesting port’s input lane,
and releases the resources associated with port ‘P1’. This
algorithm is deadlock free because in all situations, the
switch forwards/sends either a grant or a deny to the
requesting input port, which prohibits infinite channel
locking. The total number of cycles required for releasing
all of the resources is linear with (ΔX +ΔY).

The request service phase propagates successively
down all shortest paths from the source switch to
the destination switch simultaneously. The grant/deny

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2015.2390631

U.S. Government work not protected by U.S. copyright.

KUMAR ET AL. 9

phase propagates successively backward on all of these
paths. Even though multiple request service phase paths
may reach the destination switch, only one path will
propagate the grant signal all the way back to the source
switch, allocating channel resources on this backward
propagation.

At each switch, if sufficient channel resources exist
and that switch is allocated to the routing path (i.e., lies
on the best routing path), grant/deny phase completion
(S7) and channel establishment occur simultaneously
and pipelined data transfers (S9) can begin along the
channel. Data transfer pauses/resumes when the ‘full’
signal (associated with the destination PE’s temporary
inability to accept more data) is asserted/de-asserted by
the destination switch (denoted by the S9 to S11 and
S11 to S9 transitions, respectively). Since MACS uses a
circuit switching methodology, in-order data arrival is
guaranteed. The channel remains established until the
switch enters the resource release phase (i.e., there is no
more data to transfer) to free all associated channel re-
sources. The switch transitions to S12 and releases chan-
nel resources by removing the corresponding status table
entries. The switch enters the resource release phase (S12
and S6) under two situations. The first situation occurs
when a PE requests a data transaction termination (S12).
In the second situation, the resource release phase oc-
curs simultaneously with the grant/deny service phase
when a communication channel establishment request
is denied (S6) (there are insufficient channel resources
or the switch does not lie on the best routing path).
Communication channel establishment denials can be
either internal (a switch generates an internal deny due
to grant/deny resolution) or external (a switch receives
a denial from a neighbouring switch).

5 EXPERIMENTS AND RESULTS

Selecting the best MACS configuration (combination of
MACS’s architectural parameter values) for an appli-
cation is crucial to achieve system-specific area and
performance goals. To evaluate the area utilization and
maximum operating frequency, we implemented MACS
as a highly parametric VHDL model. In order to facili-
tate system designers in selecting the most appropriate
MACS configuration to meet application requirements,
we evaluated MACS by varying the number of lanes
per port (K architectural parameters) and the lane’s
data width (W architectural parameter). Given the pro-
hibitively large design exploration space for all possible
configuration combinations, we fixed the number of
switch port lanes with respect to each other (Kl = Kr =
Kd = Ku) and number of local port lanes with respect to
each other (Kll = Krl) and evaluated the area utilization
and maximum operating frequency for each combination
of Kl, Kr, Kd, Ku, and Kll and Krl.

In addition to area utilization and maximum oper-
ating frequency evaluation, an accurate estimate of the
channel setup latencies are required to evaluate how the

MACS configuration affects application performance. To
evaluate and compare the channel setup latencies, we
simulated several standard network traffic patterns on
the MACS-NoC, a 3x3 mesh topology NoC of MACS
switches, using the Xilinx 12.2 ISE simulator. Addition-
ally, to validate accuracy of estimates given by these
traffic pattern for larger NoCs, we performed a trace-
based simulation of eight JPEG [32] decompression cores
on an 8x8 MACS-NoC.

To give further insight into MACS-NoC’s perfor-
mance, we presented a comparative study of average
packet latency and average bandwidth utilization for an
8x8 MACS-NoC with respect to recent prior work on
packet switching and mixed switching NoCs. We lever-
aged Riviera-Pro for Linux [27] to perform the compara-
tive study’s simulation. To provide a fair comparison, we
performed simulations on the same two synthetic traffic
patterns, uniform random and transpose, used in recent
prior work. Results in Section 5.2.2 show that MACS-
NoC provides similar average packet latency, but has a
much higher network saturation point, and, either equal
or better bandwidth utilization due to MACS-NoC’s PE
clustering and minimal adaptive routing as compared to
prior work.

5.1 Area, Frequency, and Power Analysis

Figure 5a depicts MACS’s switch area utilization in
slices per PE (total switch area is twice these values
since each switch has two PEs) for the Xilinx Virtex-6
(V6) XC6VLX760 FPGA for data widths W=8, 16, and
32 bits. The x-axis in each graph varies the Krl and
Kll architectural parameters from 1 to 3 lanes per local
port. Figure 5a shows area utilization results for both
Kr=Kl=Ku=Kd=1 and Kr=Kl=Ku=Kd=2. For an example,
the area usage for Kl=Kr=Kd=Ku=Kll=Krl=1 and W=32
bits is 180 slices per PE, which equates to only 0.15% of
the available slices on the V6. In general, results reveal a
linear increase in the area utilization for each doubling
of the data width.

Figure 5b depicts the maximum achievable clock fre-
quency for the same parameter values as Figure 5a.
The results show that MACS can achieve high operating
frequencies ranging from 157 MHz to 255 MHz which
provide bandwidths ranging from 1.2 Gbps to 5.9 Gbps.
Figure 5b reveals an abrupt increase in clock frequency
when increasing W from 8 bits to 16/32 bits, which
we attribute to clock frequency estimation difficulties
resulting from too many MACS I/O ports for the V6
test device. Therefore, we discard clock frequencies with
W=16,32 from MACS’s bandwidth calculations.

We compared MACS to the recent works in circuit
switching NoCs that provided area and clock frequency
values for FPGA implementation, CararaNoC [7] and
LusalaNoC [21], in terms of area overhead in FPGA
slices, LUTs, and flip-flop requirements. To make the
comparison as fair as possible, we use the same Xilinx
ISE version 12.2 with default synthesis and implementa-

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2015.2390631

U.S. Government work not protected by U.S. copyright.

KUMAR ET AL. 10

krl, kll (krl=kll)
(a) (b)

Figure 5: (a) Area utilizations in number of slices per PE (b) Maximum achievable clock frequencies. Both, (a)and (b), show
results for data widths W = 8, 16, and 32 bits with a varying number of lanes per switch and local port. The x-axis in each
graph varies the Krl and Kll parameters from 1 to 3 lanes per local port. Area utilization and maximum achievable frequency
is also obtained for varying the Kr, Kl, Ku and Kd parameters are from 1 to 2 lanes per switch port (shown as Wbits#1 and
Wbits#2).

Table 1: Comparison of per-PE switch area overhead.

NoC:Device Slices LUTs FFs Frequency Usage

CararaNoC(VC)
[7]: Virtex2

861 1722 455 Not
published

6.20%

CararaNoC(RC)
[7]: Virtex2

758 1515 398 Not
published

5.50%

MACS(per-PE):
Virtex2

433 785 274 106.7 MHz 3.10%

LusalaNoC [21]:
Stratix3

Absent 1927 1918 179.0 MHz 1.4%

MACS(per-PE):
Virtex5

396 780 630 148.1 MHz 0.84%

tion parameters, and chose similar architectural param-
eters as reported for the CararaNoC—1 lane per port,
a data-width of 8 bits, and the same device (Virtex-2,
XC2VP30). CararaNoC provides two variations in NoC
switches: switches with virtual channels and switches
with repeated channels. The architectural parameters
for LusalaNoC are 1 lane per port, a data-width of
32 bits (equivalent to 3 sub-channels in LusalaNoC),
and a Xilinx Virtex-5 V5LX330 device, which is com-
parable to the Altera Startix-III EP3SL340F device used
for LusalaNoC [30]. Since MACS connects two PEs per
switch, a MACS-NoC requires half as many switches as
CararaNoC or LusalaNoC for the same number of PEs
and thus we compared the both NoCs’ area requirements
with MACS’s per-PE area requirement. Table 1 compares
MACS with CararaNoCs (virtual and repeated channel
variations are suffixed with VC and RC, respectively)
and LusalaNoCs reported area results. Compared to
both variations of CararaNoC and LusalaNoC, MACS
provides a 2x and 1.7x reduction in area overhead,
respectively.

To evaluate MACS’s per-component power con-
sumption, we leveraged Xilinx Xpower [35] to per-
form MACS’s switch’s per-component percentage power

consumption analysis for Kl=Kr=Kd=Ku=Kll=Krl=1 and
W=32 bits. The results show that the ExSIFs consume
52.54% of the total power, which is due to the large
de-multiplexers that route incoming requests and data
signals to all ports identified by minimal adaptive rout-
ing algorithm. The InSIFs consume only 5.75% of the
total power due to our distributed round robin arbiter
and simple path contention resolution algorithm. The
Toplevel includes the interconnections and steering logic
that connect the ExSIFs and the InSIFs and consumes
41.71% of the total power due to routing wires and logic.

5.2 MACS Simulation Results
5.2.1 Channel Setup Latency
To evaluate channel setup latency estimates, we sim-
ulated several traffic patterns on MACS-NoC with
Riviera-Pro on a Linux platform [27]. MACS-NoC con-
tains 9 MACS switches (18 PEs) arranged in a 3x3 mesh
topology with Kl=Kr=Kd=Ku=Kll=Krl=1 and W=32 bits.
To transfer data from/to PEs to/from MACS-NoC, we
implemented FIFO-based PE interfaces with a simple
request-grant (RG) protocol. In order to handle channel
setup request denials, PE interfaces include a counter-
based request retrial mechanism (counter period was
proportional to MACS-NoC’s diameter). Each PE initi-
ates a data transmission to the destination-PE (dictated
by the network traffic pattern under consideration) on
Poisson distributed random intervals (the Poisson dis-
tribution mean was proportional to MACS-NoC’s diam-
eter).

We simulated five standard network traffic patterns:
uniform-random, nearest-neighbor, bit-complement,
transpose, and tornado [11]. With the exception of
tornado, and nearest-neighbor, all other traffic patterns
contain multi-turn routes. Since all of these five traffic
patterns are well suited for throughput calculation in

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2015.2390631

U.S. Government work not protected by U.S. copyright.

KUMAR ET AL. 11

Table 2: Average channel setup latencies for MACS-NoC.

Traffic pattern Average number of
grant cycles

Average number of
deny cycles

Uniform-random 18.8 3.7
Nearest neighbor 7 0
Bit-complement 22 2.9
Transpose 17.8 3
Tornado 16 4

packet-switched NoCs, we did not use these traffic
patterns for MACS-NoC throughput calculation. We
leveraged these traffic patterns only to calculate average
channel setup latency.

We averaged the channel setup latency over 64 simu-
lations for each network traffic pattern. All simulations
showed a low deny latency (number of clock cycles
required for a deny) because of the quick release of
unsuccessful channel establishment requests afforded by
the minimal adaptive routing mechanism. Low deny
latencies decrease the network congestion generated by
network flooding since, at each hop, minimal adaptive
routing generates at most two requests. Thus in some
cases, the number of requests in the network may in-
crease exponentially [11]. The grant latency (number of
clock cycles required for a channel request grant) and
the deny latency results for the nearest-neighbor traffic
pattern simulation supports PE clusterig (i.e., producer-
consumer PE pair placement on the same switch).

Table 2 shows the average grant and deny latencies
calculated across all PEs in MACS-NoC for all traffic
patterns. Due to the efficient mapping of the nearest
neighbor traffic pattern’s source-destination layout to the
MACS PE clustering, the nearest neighbor traffic shows
the lowest grant and deny latency. Results also reveal
that traffic patterns with multi-turn routes (uniform-
random, bit-complement and transpose) require slightly
more cycles for a grant as compared to traffic patterns
with one-turn routes (tornado, nearest neighbor). Addi-
tionally, since literature does not provide the average
transfer latency for the LusalaNoC, we compared the
average transfer latency for 1,280 flits for CararaNoC and
MACS-NoC. CararaNoC’s latency ranged from 4,700 to
9,100 clock cycles and MACS-NoC’s latency ranged from
1287 clock cycles, on nearest neighbor traffic pattern,
to 2,465 clock cycles on bit compliment traffic pattern.
MACS-NoC provides 2x to 7x latency reduction as com-
pared to CararaNoC. The variation in latency range
is attributed to the variation in the source-destination
layout of nearest-neighbors and Bit-complement traffic
pattern. Since nearest-neighbor traffic leverages MACS’s
PE clustering, nearest-neighbors show lowest data trans-
fer latency.

5.2.2 Average Latency and Bandwidth Utilization
Since circuit switching networks provide statically-
scheduled communication paths, direct network per-
formance comparison with dynamically-scheduled com-

Figure 6: Average packet latency in number of clock cycles
with respect to injection rate for uniform random and transpose
traffic patterns for MACS-NoC. The injection rate represents
the number of data packets sent by each PE per clock cycle.

munication path networks, such as packet and mixed
switching networks, is not straightforward. Additionally,
since data in a circuit switching network is streamed,
and thus the packet size is not fixed, it is difficult to
compare the average packet latency with packet and
mixed switching networks.

Therefore, to provide as fair of a comparison as possi-
ble, our simulations use a packet size of Pm, which is a
product of the compared NoC’s packet size Pc and the
simulated network traffic pattern’s average hop count H
for an 8x8 mesh network (i.e., Pm = Pc∗H). We averaged
the transfer latency over 128 iterations and normalize
this average with Pm to calculate the normalized latency
Lt. The average packet latency Lp is then calculated as
a product of the normalized latency and the compared
NoC’s packet size (i.e., Lp = Lt ∗ Pc).

We simulated an 8x8 MACS-NoC with Riviera-Pro [27]
on a Linux platform for uniform random and trans-
pose traffic patterns for different injection rates, which
represents the number of data packets sent by each
PE per clock cycle and compared with recent results
presented in [26] and [22]. Figure 6 depicts our simu-
lation results for MACS-NoC and reveals that MACS-
NoC has similar average packet latency, approximately
30 clock cycles, for both network traffic patterns, and
shows up to an approximate 6x higher network satu-
ration points compared to [26] and [22](see appendix
for visual comparison). This higher network saturation
point shows that MACS-NoC can sustain higher data
injection rates as compared to [26] and [22]. We attribute
MACS-NoC’s high network saturation point to MACS-
NoC’s ability to explore additional paths using minimal
adaptive routing.

We calculated MACS-NoC’s average bandwidth uti-
lization for a network traffic pattern as the ratio of the to-
tal bandwidth used by MACS-NoC for that network traf-

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2015.2390631

U.S. Government work not protected by U.S. copyright.

KUMAR ET AL. 12

Figure 7: Average bandwidth utilization percentage with re-
spect to injection rate for uniform random and transpose
traffic patterns for MACS-NoC. The injection rate represents
the number of data packets sent by each PE per clock cycle.

fic pattern as compared to MACS-NoC’s total available
bandwidth, and compare these results with the recent
results presented by Lan et al. in [18]. Figure 7 shows the
average bandwidth utilization with respect to varying
injection rates and depicts that MACS-NoC provides
better peak bandwidth utilization, 50% in MACS-NoC
as compared to 35% in [18], for transpose traffic pattern
and slightly lower peak bandwidth utilization, 40% in
MACS-NoC as compared to 50% in [18], for uniform
random traffic pattern. Additionally, Figure 7 reveals
that minimal adaptive routing alleviates the increase in
network congestion introduced by MACS’s PE clustering
due to the exploration of additional paths and, thus,
maintains high bandwidth utilization.

5.2.3 Trace-based Simulation
In order to demonstrate MACS’s performance for real
time data processing, we used a JPEG decompression
core for our trace-based simulation experiments. JPEG
is a stream-based data processing application, which
has a defined number of data processing blocks, and
thus easily maps to a MACS-NoC for simulation. Fig-
ure 8a shows JPEG decompression algorithm’s block
diagram, which includes the Huffman decoder, de-
quantizer, de-zigzag, two-dimensional inverse discreet
cosine transform (2D-IDCT), up-sample, and color space
converter (RGBtoYCbCr) block. Compressed image data
is streamed into first block, the Huffman decoder, and
decompressed image data is streamed out of last block,
the RGB2YCbCr.

We collected simulation traces (i.e., the core’s per-
block image data and time stamp at the block’s input
and output) from an in-house JPEG decompression core
implementation. We mapped and simulated parallel 8
JPEG decompression cores to an 8x8 MACS-NoC, as
shown in Figure 8b. Sn-m denotes the (m, n) coordinates

(a)

(b)

(c)

Figure 8: (a) The JPEG decompression core’s block diagram. (b)
Mapping of the 8 JPEG decompression cores on an 8x8 MACS-
NoC. Sn-m represents the MACS switches located at coordinate
(m, n) and CoreN denotes the column where the Nth JPEG
decompression core’s first block is mapped. (c) shows the per-
block per-core average channel setup latencies (deny latencies
are all zeroes, only grant latencies are shown in the graph) for
8 JPEG decompression cores.

for each switch. Each MACS switch connected one JPEG
decompression core block to the left local PE. CoreN
denotes the N th JPEG decompression core and that
core’s first block is mapped as switch S1-N’s left local
PE. Arrows with triangular heads connect the sequence
of switches used by the N th core starting at switch S1-
N. The core’s subsequent blocks are mapped to switches
at equal increments of one row and one column. For
example, if Core0’s first block is mapped to S1-0, Core0’s
second block is mapped to S2-1, Core0’s third block
is mapped to S3-2 and so on until seventh column is
reached and the mapping wraps back to column zero.
Rows zero and seven are used for control purposes
(depicted as arrows with circular heads) and do not

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2015.2390631

U.S. Government work not protected by U.S. copyright.

KUMAR ET AL. 13

contributed to channel latency or data transfer latency
calculations. These mappings ensure a uniform and fair
mapping to each decompression core in terms of mini-
mum number of switches between a core’s two blocks.
Mapping applications on an NoC is a vast research area
in itself and thus, is out of the scope of this paper [28].

To begin the simulation and calculate latencies, switch
S0-N sends a data transfer start request to CoreN’s first
block (i.e., switch S1-N’s left local PE) at Poisson dis-
tributed random intervals (across switch S0-0 to S0-7).
For example, if S0-0 initiates a transfer request at t then
S0-1 initiates a transfer request at t+δt where δt is a Pois-
son distributed random interval. For each core, a block
initiates a communication channel establishment request
over MACS-NoC to the next block. If the requesting
block receives a deny, the requesting block uses the same
retrial mechanism as in Section 5.2.1. If the requesting
core receives a grant, the requesting block transmits the
image data based on the image data’s time-stamp to
the next block. To verify transmission data integrity, we
compare the received image data and time-stamp with
the receiving block’s input trace file. We performed 13
experiments by varying the Poisson distribution mean
from 10 to 40 in intervals of 5 and 40 to 100 in intervals
of 10 and calculated average channel setup latencies and
average data transfer latencies over these experiments.

Figure 8c shows the per-block per-core average chan-
nel setup latencies. Since all blocks receive grants for
every request, the deny latencies are zero and are not
reported. Additionally, since PEs connected at the last
column of each row in MACS-NoC send data to PEs
connected to switches at first column in next row, these
PEs show high average grant latency. The total average
grant latency averaged over all PEs and all cores is
∼ 23.7 cycles, which is very close to the average grant
latency of the bit-complement traffic pattern simulation
(22 cycles) (Section 5.2.1). We note that this MACS-NoC
traffic simulation is sufficient to estimate MACS-NoC’s
scalable network performance because the average chan-
nel setup latency is proportional to the average number
of switches along the channels irrespective of MACS-
NoC dimensions.

6 CONCLUSION

In this paper, we introduced MACS, a highly paramet-
ric switch for a 2D mesh topology NoC. MACS uses
a minimal adaptive routing algorithm with multiple
path evaluation and fair path resolution to maximize
bandwidth utilization. Our minimal adaptive routing
and contention avoidance algorithms afford low average
deny latency, which decreases channel setup latency and
increases the possibility of a successful channel establish-
ment and data transfer. To the best of our knowledge,
the MACS switch is the first NoC switch to use mini-
mal adaptive routing to explore all shortest paths and
leverage route cost evaluation to maximize bandwidth
utilization. Results show that minimal adaptive routing

results in a 6x increase in the network saturation point,
up to a 1.4x increase in the bandwidth utilization, and
similar average packet latency as compared to prior
work. Additionally, to reduce area overhead and increase
application specialization, MACS connects two process-
ing elements (PEs) to each switch. Whereas the system
designer must strategically place producer-consumer PE
pairs on common switches in order to exploit this in-
creased performance benefit, producer-consumer PE pair
placement is not required and only enhances MACSs
specialization abilities. Results show that MACS offers
low average channel setup latencies, a 2x to 7x decrease
in channel setup latency and a 1.7x to 2x reduction in
area requirements as compared to recent circuit-switched
NoCs.

REFERENCES

[1] L. Benini and D. Bertozzi, “Xpipes: A network-on-chip architec-
ture for gigascale systems-on-chip,” IEEE Circuits System Maga-
zine, vol. 4, no. 2, pp. 18–31, 2004.

[2] L. Benini and G. D. Micheli, “Networks on chips: A new soC
paradigm,” IEEE Comput., vol. 35, no. 1, pp. 70–78, Jan. 2002.

[3] T. Bjerregaard and S. Mahadevan, “A survey of research and
practices of Network-on-chip,” ACM Computing Surveys, vol. 38,
no. 1, Jun. 2006.

[4] T. Bjerregaard and J. Sparso, “A router architecture for connection-
oriented service guarantees in the MANGO clockless network-
on-chip,” in DATE ’05: Proceedings of the conference on Design,
Automation and Test in Europe, Washington, DC, USA, 2005, pp.
1226–1231.

[5] C. Bobda and A. Ahmadinia, “Dynamic interconnection of recon-
figurable modules on reconfigurable devices,” IEEE Design and
Test of Computers, vol. 22, no. 5, pp. 443–451, May 2005.

[6] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny, “QNoC: QoS
architecture and design process for network on chip,” J. Syst.
Architecture: EUROMICRO J., vol. 50, pp. 105–128, Feb. 2004.

[7] E. Carara, N. Calazans, and F. Moraes, “A New Router Architec-
ture for High-Performance Intrachip Networks,” Journal Integrated
Circuits and Systems, vol. 3, no. 1, pp. 23–31, 2008.

[8] N. Chin-Ee and N. Soin, “Qualitative and quantitative evaluation
of a proposed circuit switched network-on-chip,” in Semiconductor
Electronics (ICSE), 2010 IEEE International Conference on. Ieee, Jun.
2010, pp. 108–113.

[9] W. J. Dally and B. Towles, “Route packets, not wires: on-chip
interconnection networks,” in Design Automation Conference, 2001.
Proceedings. ACM, 2001, pp. 684–689.

[10] ——, Principles and Practices of Interconnection Networks. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2003.

[11] J. Duato, S. Yalamanchili, and L. M. Ni, Interconnection networks:
An engineering approach. Morgan Kaufmann, 2003.

[12] H. ElGindy, H. Schroder, A. Spray, A. K. Somani, and H. Schmeck,
“RMB-a reconfigurable multiple bus network.” IEEE Comput.
Soc. Press, 1996, pp. 108–117.

[13] K. Goossens, J. Dielissen, and A. Radulescu, “Æthereal network
on chip:concepts, architectures, and implementations,” IEEE De-
sign and Test of Computers, vol. 22, no. 5, pp. 414–421, May 2005.

[14] C. Hilton and B. Nelson, “PNoC: a flexible circuit-switched noC
for FPGA-based systems,” IEE Proceedings - Computers and Digital
Techniques, vol. 153, no. 3, p. 181, 2006.

[15] A. Jara-Berrocal and A. Gordon-Ross, “SCORES: A scalable and
parametric streams-based communication architecture for mod-
ular reconfigurable systems,” in Design, Automation and Test in
Europe Conference, 2009, pp. 268–273.

[16] F. Karim, A. Nguyen, and S. Dey, “An interconnect architecture
for networking systems on chips,” IEEE Micro, vol. 22, no. 5, pp.
36–45, Sep. 2002.

[17] Y. Lan, H. Lin, S. Lo, Y. H. Hu, and S. Chen, “A bidirectional noc
(binoc) architecture with dynamic self-reconfigurable channel,”
Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, vol. 30, no. 3, pp. 427–440, March 2011.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2015.2390631

U.S. Government work not protected by U.S. copyright.

KUMAR ET AL. 14

[18] Y. Lan, S. Lo, Y. Lin, Y. Hu, and S. Chen, “BiNoC: A bidirectional
NoC architecture with dynamic self-reconfigurable channel,” 2009
3rd ACM/IEEE International Symposium Networks-on-Chip, pp. 266–
275, May 2009.

[19] J. Liang, A. Laffely, S. Srinivasan, and R. Tessier, “An architecture
and compiler for scalable on-chip communication,” IEEE Trans.
VLSI Syst., vol. 12, no. 7, pp. 711–726, 2004.

[20] J. Lin and X. Lin, “Express Circuit Switching: Improving the
Performance of Bufferless Networks-on-Chip,” in 2010 First In-
ternational Conference on Network Computing. IEEE, Nov. 2010,
pp. 162–166.

[21] A. K. Lusala and J.-D. Legat, “A sdm-tdm based circuit-switched
router for on-chip networks,” in Reconfigurable Communication-
centric Systems-on-Chip (ReCoSoC), 2011 6th International Workshop
on, june 2011, pp. 1–8.

[22] S. Ma, N. E. Jerger, and Z. Wang, “DBAR: an efficient routing algo-
rithm to support multiple concurrent applications in networks-on-
chip,” Computer Architecture (ISCA), 2011 38th Annual International
Symposium on, 2011.

[23] M. Modarressi, “Virtual point-to-point connections for NoCs,”
Computer-Aided Design of Integrated Circuits and Systems, IEEE
Transactions on, vol. 29, no. 6, pp. 855–868, 2010.

[24] M. Modarressi, H. Sarbazi-azad, and M. Arjomand, “A Hybrid
Packet-Circuit Switched On-Chip Network Based on SDM,” in
Proceedings of the Conference on Design, Automation and Test in
Europe, 2009, pp. 566–569.

[25] F. G. Moraes, N. Calazans, A. Mello, L. Mller, and L. Ost, “HER-
MES: An infrastructure for low area overhead packet-switching
networks on chip,” Integration. The VLSI Journal, vol. 38, no. 1, pp.
69–93, 2004.

[26] Z. Qian, P. Bogdan, and G. Wei, “A traffic-aware adaptive routing
algorithm on a highly reconfigurable network-on-chip architec-
ture,” Proceedings of the Eighth IEEE/ACM/IFIP International Confer-
ence on Hardware/Software Codesign and System Synthesis, pp. 161–
170, 2012.

[27] Riviera Pro, “Aldec inc,” 2100 Logic Drive San Jose, CA 95124-
3400.

[28] P. K. Sahu and S. Chattopadhyay, “A survey on application
mapping strategies for network-on-chip design,” J. Syst. Archit.,
vol. 59, no. 1, pp. 60–76, Jan. 2013.

[29] E. Salminen, T. Kangas, V. Lahtinen, J. Riihimaki, K. Kuusilinna,
and T. Hamalainen, “Benchmarking mesh and hierarchical bus
networks in system-on-chip context,” Journal of Systems Architec-
ture, vol. 53, no. 8, pp. 477–488, Aug. 2007.

[30] Stratix III FPGAs vs. Xilinx Virtex-5 Devices: Architecture and
Performance Comparison, “Altera inc,” 101 Innovation Drive San
Jose, CA 95134.

[31] N. Teimouri, M. Modarressi, and H. Sarbazi-Azad, “Power
and Performance Efficient Partial Circuits in Packet-Switched
Networks-on-Chip,” in 2013 21st Euromicro Int. Conf. Parallel,
Distrib. Network-Based Process. Ieee, Feb. 2013, pp. 509–513.

[32] G. Wallace, “The jpeg still picture compression standard,” Con-

[32] G. Wallace, “The jpeg still picture compression standard,” Con-
sumer Electronics, IEEE Transactions on, vol. 38, no. 1, pp. xviii –
xxxiv, feb 1992.

[33] D. Wiklund and D. Liu, “Design of a system-on-chip switched
network and its design support,” vol. 2. IEEE, 2002, pp. 1279–
1283.

[34] ——, “SoCBUS: switched network on chip for hard real time
embedded systems.” IEEE Computer Society, 2003, p. 8.

[35] Xpower, “Xilinx inc. usa,” 2260 Corporate Circle Henderson, NV
89074 USA.

[36] C. A. Zeferino and A. A. Susin, “SoCIN: a parametric and scalable
network-on-chip.” IEEE Computer Society, 2003, pp. 169–174.

[37] L. R. Zheng and H. Tenhunen, “A circuit-switched network
architecture for network-on-chip,” in Proceedings of the IEEE In-
ternational SOC Conference, 2004, 2004, pp. 55–58.

R. Kumar received the B.Tech degree in elec-
trical and telecommunication engineering from
Indian Institute of Technology, Varanasi, India in
2006 and the MS degree in electrical and com-
puter engineering from the University of Florida,
in 2010. He is currently working towards the PhD
degree at University of Florida. His research in-
terests involve on-chip communication networks,
FPGA partial reconfiguration, and hardware soft-
ware co-design.

A. Gordon-Ross (M’00) received her B.S and
Ph.D. degrees in Computer Science and Engi-
neering from the University of California, River-
side (USA) in 2000 and 2007, respectively.

She is currently an Associate Professor of
Electrical and Computer Engineering at the Uni-
versity of Florida (USA) and is a member of
the NSF Center for High Performance Recon-
figurable Computing (CHREC) at the University
of Florida. She received Best Paper awards at
the Great Lakes Symposium on VLSI (GLSVLSI)

in 2010 and the IARIA International Conference on Mobile Ubiquitous
Computing, Systems, Services and Technologies (UBICOMM) in 2010.
Her research interests include embedded systems, computer architec-
ture, low-power design, reconfigurable computing, dynamic optimiza-
tions, hardware design, real-time systems, and multi-core platforms.

Dr. Gordon-Ross is the faculty advisor for the Women in Electrical
and Computer Engineering (WECE) and the Phi Sigma Rho National
Society for Women in Engineering and Engineering Technology and
is an active member of the Women in Engineering ProActive Network
(WEPAN). She received her CAREER award from the National Science
Foundation in 2010.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TPDS.2015.2390631

U.S. Government work not protected by U.S. copyright.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

