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Low-Overhead FPGA Middleware for Application Portability
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Reconfigurable computing devices such as field-programmable gate arrays (FPGAs) offer advantages over
fixed-logic CPU and GPU architectures, including improved performance, superior power efficiency, and re-
configurability. The challenge of FPGA application development, however, has limited their acceptance in
high-performance computing and high-performance embedded computing applications. FPGA development
carries similar difficulties to hardware design, requiring that developers iterate through register-transfer
level designs with cycle-level accuracy. Furthermore, the lack of hardware and software standards between
FPGA platforms limits productivity and application portability, and makes porting applications between
heterogeneous platforms a time-consuming and often challenging process. Recent efforts to improve FPGA
productivity using high-level synthesis tools and languages show promise, but platform support remains
limited and typically is left as a challenge for developers. To address these issues, we present RC Middle-
ware (RCMW), a novel middleware that improves productivity and enables application and tool portability
by abstracting away platform-specific details. RCMW provides an application-centric development environ-
ment, exposing only the resources and standardized interfaces required by an application, independent of
the underlying platform. We demonstrate the portability and productivity benefits of RCMW using four het-
erogeneous platforms from three vendors. Our results indicate that RCMW enables application productivity
and improves developer productivity, and that these benefits are achieved with less than 7% performance
and 3% area overhead on average.
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1. INTRODUCTION

Field-programmable gate arrays (FPGAs) allow developers to create application-
specific hardware architectures, enabling several orders of magnitude performance
improvement [El-Ghazawi et al. 2008; Pascoe et al. 2010] while also improving
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computational efficiency [Williams et al. 2010; Betkaoui et al. 2010] for applications
that do not map well to conventional CPU and GPU architectures. This flexibility and
efficiency has made FPGAs ideal for various applications, from embedded systems
[Garcia et al. 2006] to supercomputers [George et al. 2011].

These benefits, however, come with the added complexity of hardware design, lim-
iting developer productivity relative to fixed-logic devices, and preventing widespread
usage of FPGAs. The difficulty of register-transfer level (RTL) design coupled with a
lack of standards between FPGA accelerator platforms, herein referred to as platforms,
complicates application development and limits code reusability. Due to a lack of stan-
dards between platforms, developers must tailor their application to a specific vendor’s
software and hardware interfaces. This platform-specific development cycle prevents
portability, requiring significant developer time and effort to port applications to new
platforms. Additionally, vendor-specific procedural APIs further limit portability. Pro-
cedural APIs embed platform-specific parameters into application code, including data
marshalling and the physical location of application resources.

These portability issues extend to high-level synthesis (HLS) tools and languages,
which intend to improve developer productivity. Although HLS tools typically provide
support for at least one platform out of the box, the growing number of HLS tools
and FPGA platforms outpaces the ability of tool vendors to provide platform support,
leaving the challenge of supporting new platforms to application developers. These
problems ultimately reduce HLS tool performance and usability, and end up costing
tool vendors and application developers valuable time that could better be spent on
developing their tools and applications.

To help overcome the portability and productivity hurdles of FPGA application de-
velopment, we present RC Middleware (RCMW). RCMW is a layered middleware that
enables application and tool portability by creating an application-specific platform
abstraction. Developers specify their application’s required resources and interfaces at
design time, customizing the number, type, size, and data types of interfaces. Using this
specification, RCMW provides a portable application-specific hardware and software
interface. One major research challenge for enabling application portability is provid-
ing standardized interfaces to application-specific resources that are independent of
the underlying platform while also minimizing overhead. Platform details such as the
number and type of FPGAs, and size and performance of external memories, require
careful consideration when mapping an application onto a target platform. To address
these challenges, the RCMW toolchain determines the application-to-platform map-
ping at compile time, selecting an appropriate mapping based on a user-customizable
cost function. Using RCMW, developers can focus on their application or tool rather
than implementing their designs onto a specific platform.

In this article, we present and evaluate RCMW using four platforms from three ven-
dors: the PROCStar III and PROCStar IV from GiDEL, the M501 from Pico Computing,
and the PCIe-385n from Nallatech. We demonstrate the ability to quickly explore differ-
ent application-to-platform mappings with the RCMW toolchain using a representative
convolution case study. We show that the benefits of RCMW can be achieved with min-
imal overhead—less than 7% performance and 3% area in the common case. We also
demonstrate RCMW’s productivity benefits by showing that it requires less develop-
ment time and lines of code for deploying applications compared to the recommended
vendor approaches. Finally, we demonstrate application portability using RCMW by
executing the same application hardware and software source, for several applications
and kernels, across each supported platform.

The remainder of this article is organized as follows. Section 2 presents background
and related work. Section 3 presents the RCMW framework and toolchain. Section 4
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presents our experiments, results, and analysis. Section 5 presents our conclusions and
future work.

2. BACKGROUND AND RELATED WORK

The lack of FPGA-accelerator standards has resulted in the development of vendor-
specific APIs that limit application portability and developer productivity. To address
this issue, OpenFPGA proposed a procedural C-based API standard for managing RC
accelerators [OpenFPGA Inc. 2008]. The OpenFPGA standard defines functions for
initializing, managing, and communicating with FPGA accelerators but requires de-
velopers to embed platform-specific application details such as the physical location
of application resources. The Simple Interface for Reconfigurable Computing (SIRC)
[Eguro 2010] is an object-oriented communication interface that provides functional-
ity similar to the OpenFPGA standard but enables portability using platform-specific
subclasses. Although OpenFPGA and SIRC define comprehensive APIs, both require
embedding platform-specific application details, which limits application portability.
RCMW also provides a portable API standard but overcomes this limitation by pro-
viding an object-oriented representation of application resources that encapsulates
platform-specific details and enables application portability.

HLS tools address the productivity hurdles of FPGA application design by provid-
ing high-level software-style development environments but typically have limited
platform support. HLS tools such as ROCCC [Villarreal et al. 2010] and Impulse-C
[Stone et al. 2010] provide a C-style development environment and stream-optimized
programming model but take different approaches to platform support. ROCCC gen-
erates RTL cores with streaming interfaces but requires that developers handle the
platform-specific implementation. Impulse-C generates synthesizable HDL cores and
an application driver from a single application source and enables portability using
platform-support packages (PSPs). PSPs wrap platform-specific interfaces to enable
portability; however, due to their complexity and the large number of available plat-
forms, developing PSPs is typically left as a challenge for the end user. Recent efforts
such as Altera OpenCL [Czajkowski et al. 2012] enable developers to create portable
FPGA application kernels using OpenCL. Similar to Impulse-C’s PSPs, Altera OpenCL
uses board-support packages (BSPs) to target a specific platform.

The FUSE framework [Ismail and Shannon 2011] provides an OS-level abstraction
of hardware accelerator resources, transparently scheduling software tasks on avail-
able hardware accelerators. Similarly, SPREAD [Wang et al. 2013] provides a unified
hardware and software threading model but takes advantage of partial reconfiguration
to dynamically schedule hardware tasks. Liquid Metal (Lime) [Huang et al. 2008] also
defines a unified hardware and software threading model but enables developers to cre-
ate mixed FPGA and CPU applications using Java. Similar to Lime, hthreads [Andrews
et al. 2008] enables developers to create mixed applications but instead uses a C-based
POSIX threading model. To target a platform, these tools and frameworks must pro-
vide a custom platform-specific hardware and software support package. RCMW is a
complementary approach and could be leveraged by these tools and frameworks to
generate a customized portable support package, allowing tool developers to focus on
improving their tools instead of platform support.

System-design tools such as SpecC [Cai et al. 2001] assist developers with design-
space exploration and partitioning applications across multiple devices. SpecC enables
developers to create a high-level application specification and refine it to select an archi-
tecture model, communication model, and finally create synthesizable RTL. OpenCPI
[Kulp 2010] is a component-based application middleware for heterogeneous systems
that enables seamless communication between components across devices including
FPGAs, GPUs, and CPUs. Similarly, the System Coordination Framework [Aggarwal
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et al. 2012] simplifies task communication between heterogeneous devices, including
CPUs and FPGAs, by creating a partitioned global address space. SIMPPL [Shannon
and Chow 2005] and IMORC [Schumacher et al. 2009] provide frameworks for creating
applications from networks of components on a single FPGA. SIMPPL wraps IP cores
with a core-specific network controller and enables asynchronous communication.
IMORC also creates a network of components but uses a multibus interconnect ar-
chitecture. Although these approaches simplify the development of component-based
applications, they still require significant developer time and effort to port application
to new platforms. RCMW is a related approach that automatically handles mapping
application components and resources onto a target platform using a customizable map-
ping algorithm. RCMW could be leveraged by these tools to handle FPGA-component
mapping and provide portable hardware and software interfaces to components.

An alternative approach to enabling FPGA application portability is to create virtual-
FPGA overlays of application-specific resources. Intermediate fabrics [Stitt and Coole
2011] are coarse-grained virtual-FPGA fabrics customized for a particular application
domain. Similarly, Reves et al. [2005] presents a device-level middleware with cus-
tomizable resources for software-defined radio applications. These approaches enable
device-level portability by providing the same coarse-grained resources independent
of the target device. RCMW is a complementary approach and could provide portable
resource interfaces to these virtual-FPGA fabrics.

Platform vendors typically provide tools to assist with application development.
Two notable examples are Nallatech’s DIMEtalk [Nallatech Ltd. 2007] and GiDEL’s
PROCWizard [GiDEL Ltd. 2014]. DIMEtalk provides a graphical interface to create
networks of components and generate FPGA bitfiles. PROCWizard generates an HDL
wrapper and C++ interface based on developer-specified clocks, registers, and cus-
tomized physical-memory interfaces. Since developers design their applications by cus-
tomizing platform-specific resources, effort is still required when porting between plat-
forms. To overcome this limitation, RCMW enables developers to configure application-
specific resources without assuming any knowledge of the underlying platform.

LEAP scratchpads [Adler et al. 2011] provide cached virtual memory interfaces and
simplify FPGA application memory management. Altera’s Avalon [Altera Corp. 2007]
and ARM’s AXI [ARM 2013] protocol were created to enable component interoperabil-
ity and define streaming and memory-mapped interfaces. RCMW defines interfaces
optimized for streaming applications but can be extended to support any interface us-
ing the extensible core library. LEAP scratchpads, Avalon, and AXI could be added to
RCMW, allowing developers to request the ideal interface for each application resource
while maximizing performance and minimizing design area.

RCMW enables application portability by providing an application-specific view of
available hardware and software interfaces, independent of the underlying platform.
Using RCMW, developers specify the required resources and interfaces needed by
their applications at design time, and RCMW handles determination of application-
to-platform mapping at compile time. RCMW is extensible, allowing support for new
interface and resource types to be added by extending the RCMW core library. An
earlier version of this work can be found in Kirchgessner et al. [2013], in which we
demonstrate a previous version of RCMW. Since that work, we have developed an
RCMW driver that enables us to support platforms without vendor support packages.
Leveraging our driver, we added support for the Nallatech PCIe-385n featuring an
Altera Stratix-V FPGA and explored this platform in our experiments. Additionally,
we have extended the RCMW toolchain to include a best first search algorithm to
select the application-to-platform mapping. This algorithm provides a faster alterna-
tive to the exhaustive approach presented in our previous work. In addition to a case
study demonstrating the RCMW design methodology, we have included results for the
platforms from our earlier work in this article for completeness.
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Fig. 1. Overview of RCMW. (a) Layered model of hardware and software abstractions enabling application
portability across FPGA platforms. (b) Overview of design methodology for executing applications on specific
platforms.

3. RC MIDDLEWARE OVERVIEW

To enable FPGA application portability, we must provide a standardized view of ap-
plication resources independent of the underlying target platform hardware configu-
ration and software API. RCMW enables this standardized view using customizable
hardware and software middlewares consisting of three layers of abstraction, as shown
in Figure 1(a). From the bottom up, these layers are the translation layer, presentation
layer, and application layer. First, the translation layer translates platform-specific
hardware and software interfaces to standardized RCMW interfaces. Next, the presen-
tation layer leverages these standardized interfaces, creating the application-specific
hardware and software interfaces specified by the developer. Finally, these application-
specific resources and interfaces are presented to the developer in the application layer,
independent of the underlying platform.

Figure 1(b) overviews RCMW’s design methodology. Using RCMW, the application
developer only needs to develop the application hardware and create an XML-based
description of the application resources and interfaces. The developer then provides
the application description to the RCMW toolchain and specifies a supported target
platform. RCMW selects an application-to-platform mapping using a customizable cost
function optimizing for device area or interface latency. RCMW then uses the selected
mapping to generate a ready-to-compile project to create bitfiles and a C++ class that
provides interfaces to the application resources and application software stub. Although
RCMW is intended to enable application portability regardless of the application class,
the RCMW core library currently provides cores optimized for streaming applications,
which are the focus of our case studies in this article.

The remainder of this section is organized as follows. Section 3.1 presents the RCMW
hardware abstraction layers. Section 3.2 presents the RCMW software abstraction
layers. Section 3.3 discusses the RCMW XML metadata formats and extensible core
library. Finally, Section 3.4 presents the RCMW toolchain and mapping algorithm.
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Fig. 2. RCMW hardware abstraction layers enabling application portability between GiDEL PROCStar III
and Pico M501.

3.1. Hardware Abstraction

Figure 2 illustrates an example of the three layers of hardware abstraction enabling
portability for a convolution application. In this example, the developer has specified
two input memories, one for the convolution kernel and one for the input signal, and
one output memory for the convolution results. Since the GiDEL PROCStar III board
has three external memories, each application memory can be assigned to a separate
physical memory. The Pico M501, however, only has one external memory, requiring
that the three application memories either share a single physical memory or make use
of on-chip block RAM (BRAM). The developer also requested a go and done memory-
mapped register for triggering the application and waiting for it to finish.

The physical layer consists of the low-level hardware interface controllers for external
memories and host communication. We have leveraged vendor-supplied components for
these interfaces wherever possible to avoid recreating existing interfaces without any
significant benefits. In cases where no vendor components are provided, such as for
the Nallatech PCIe-385n, we leveraged Altera/Xilinx IP cores and created custom HDL
components. The translation layer is responsible for converting the platform-specific
interfaces from the physical layer into a standardized interface that the rest of the
RCMW toolchain understands. This layer is generated by the RCMW toolchain lever-
aging the RCMW core library and depends on the application-to-platform mapping. The
presentation layer handles creation of the application-specific interfaces requested by
the developer using the standardized interfaces exposed by the translation layer. The
presentation layer is customized by the RCMW toolchain based on available platform
resources and requested application resources, and it is generated at compile time. The
HDL cores leveraged in generating this layer are stored in an extensible core library,
which is discussed later in Section 3.3.

To enable a configurable number of developer-requested interfaces to platform re-
sources, the RCMW core library includes a configurable arbitration controller. This
arbitration controller can handle multiplexing any number and type of application
resources to a physical resource or BRAM. Although having too many application
resources mapped to a single platform resource could degrade performance, this
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Fig. 3. Overview of RCMW’s hardware presentation layer.

controller is required to enable application portability between platforms with different
resource configurations. When available physical memory bandwidth is greater than
the required application bandwidth, the middleware can saturate multiple application
interfaces without significant loss in performance. RCMW’s customizable arbitration
controller uses a request-to-send (RTS) and clear-to-send (CTS) protocol to arbitrate
between application interface controllers. This protocol can be used to implement any
arbitration scheme, from simple round-robin to adaptive arbitration schemes similar
to Hao and Stitt [2012], allowing RCMW to optimize design area and performance
depending on application configuration.

RCMW currently provides two standardized interface protocols: the burst interface
and FIFO interface. These protocols were selected because they are commonly used
in streaming applications, but additional interface protocols can be supported by ex-
tending the RCMW core library. The burst interface enables applications to address an
application memory sequentially. The interface word size can be any power-of-two num-
ber of bytes. The application specifies the starting byte-aligned address, size in memory
words, and asserts the start signal to begin a transfer. The interface will transfer the
requested amount of data and assert the done signal. The FIFO interface enables ap-
plication software to read or write data streams to application hardware in a first-in,
first-out order. The FIFO word size can be any power-of-two number of bytes. The ap-
plication first toggles the reset signal to reset the FIFO buffer and read/write pointers.
Then the application reads/writes data to the interface, asserting the flush signal for
write interfaces when the stream is empty. When the read or write stream is complete,
the EOS signal is asserted, indicating the end of the data stream. Both interface types
require the enable and read valid or write ready signals for flow control. Flow control
is required by all interfaces due to differences in performance between platforms.

Figure 3 provides a detailed illustration of the presentation layer. Each application
memory has one or more interface. Using the configurable arbitration module described
previously, any number of application memories and interfaces can be mapped by the
RCMW toolchain to a physical memory. In the case that multiple application memories
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Fig. 4. Overview of RCMW’s software stack and generated C++ application stub.

are mapped by RCMW to the same physical resource, there must be a virtual separation
to prevent resources from affecting each other. This virtual separation is created by the
RCMW toolchain using the generic parameters, including the base address and memory
size, of each HDL interface controller. The base address corresponds to the address
in physical memory where the application memory begins. The size of the memory
is used to calculate address-wrapping conditions. In addition to memory interfaces,
RCMW provides a separate memory-mapped interface to the application. This interface
maps application resources, such as memory-mapped registers, to a host-controlled bus.
The application layer presents the application-specific HDL interfaces specified in the
application description to each application core and generates a vendor-specific project
for each FPGA where an application core is mapped.

3.2. Software Abstraction

Each hardware abstraction layer described in the previous section has a corresponding
layer in software. Figure 4 illustrates the layered software model and RCMW-generated
application stub. RCMW uses a portable object-oriented software API that provides
standardized interfaces to application resources.

The physical layer corresponds to the software driver interface. Although we
try to leverage vendor-supplied drivers wherever possible to minimize development
overhead, we developed a RCMW PCI-Express driver for platforms without a vendor-
provided driver, such as the Nallatech PCIe-385n. The software translation layer wraps
platform-specific APIs and provides a standardized software interface to platform re-
sources. RCMW requires that each supported platform has a subclass of the RCMW
Board class. This Board class defines the required interfaces for the upper API levels,
such as blocking and nonblocking DMA read/write, board enumeration and initializa-
tion, clock configuration, and bitfile programming. The Board class encapsulates FPGA
and Memory objects that represent physical platform components.

The presentation layer handles mapping the application-specific resource interfaces
onto the Board class interface provided by the translation layer. This layer is generated
by the RCMW toolchain as a subclass of the RCMW Application class. Figure 4 illus-
trates the application-specific interface for a convolution example, with two registers,
go and done, and three memories, kernel, signal, and result. The RCMW toolchain-
generated Application subclass encapsulates an instance of each resource specified by
the application description. It provides Register objects, which are mapped onto the
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memory-mapped interface, Memory objects, which correspond to hardware sequential
interfaces, and FIFO objects, which correspond to FIFO hardware interfaces. The Ap-
plication class provides two functions: bind(...) and execute(...). The bind function is
generated by the RCMW toolchain along with the application stub. The bind func-
tion handles the mapping of application resources onto a target platform at runtime,
based on the RCMW-selected application-to-platform mapping. The execute function is
the stub where developers implement their application software using the resources
exposed by the application class. RCMW provides a concurrent API that allows develop-
ers to allocate, manage, and communicate with application resources concurrently and
portably. At runtime, RCMW handles detection of available platforms, selecting which
platform will execute each application, initializing and configuring FPGAs, and man-
aging threads for concurrent transfers. If a bitfile for an application is not available for
a particular platform, the developer must first compile the RCMW toolchain-generated
project using the vendor toolchain before being able to execute it. If a bitfile is found,
the bind function is called on the selected Board object instance and assigns the ap-
plication execute function to an idle software thread. When the application completes,
RCMW releases platform resources.

The application layer exposes an application-customized subclass of an Application
class generated by the RCMW toolchain. This approach provides a portable program-
ming model and allows developers to launch multiple application instances with RCMW
handling platform configuration and scheduling. Developers are provided with stan-
dardized application interfaces without having to worry about where or how they are
mapped onto a target platform.

3.3. Metadata and Extensible Core Library

This section provides an overview of the various XML-based metadata formats used
in RCMW. There are three different metadata formats: the application description,
platform description, and core description. The application description is used by de-
velopers to specify their application’s required resources and interfaces. The appli-
cation description contains information about each core in an application, including
HDL source files and any register or memory resources required. Application cores
can specify any number of register or memory resources with any number and type
of resource interfaces. The application description also contains information about the
structure of the application, including any core instances, and how those instances are
interconnected. An excerpt of the application description from a convolution example
can be seen in Figure 5. Although details have been excluded, the overall application
description can be understood. In this example, the developer specifies a core called
main, composed of two source files: Convolution.vhd and Datapath.vhd. The developer
specifies a memory with a burst read interface for storing the kernel data.

The platform description is used to describe a platform’s resources, such as FPGAs
and memories, as well as their interfaces and physical connections. This description
enables the RCMW toolchain to understand the available resources and how they
are connected. The platform description contains the hardware details of a platform,
with the software details captured by the platform-specific Board class as described in
Section 3.2. Developers or platform vendors can easily extend RCMW to include a new
platform by creating a platform description. In cases where the RCMW core library
contains all required HDL components, no additional coding is needed. If the platform
requires device-specific IP instances or interfaces not supported by RCMW, the core
library must be extended with the necessary components.

The core description describes the interfaces and function of the HDL core com-
ponents in the RCMW core library. These cores are used by the RCMW toolchain to
resolve the connections between application interfaces and platform resources. The
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Fig. 5. Example of an application description XML document.

core metadata describes core generics, clocks, resets, interfaces, and dataflow between
interfaces. Additionally, the core metadata contains information about device-specific
area and performance costs in terms of lookup tables (LUTs) and average latency. The
area-cost data is based on previous postfit results reported by the vendor toolchain. In
the case of a core with a generic number of interfaces, the core entity is generated by a
core-specific Python script depending on the selected mapping discussed in Section 3.4.

3.4. RC Middleware Toolchain

The previous sections presented the hardware and software abstraction layers that en-
able application portability between heterogeneous platforms using RCMW. To provide
an application-specific view of resources, the RCMW toolchain generates customized
translation and presentation layers based on the target platform and required applica-
tion resources. This section presents an overview of the RCMW toolchain and discusses
our application-to-platform mapping approach.

Figure 6 illustrates the RCMW toolchain. To use the RCMW toolchain, an appli-
cation developer only needs to develop the application logic and describe the required
resources and interfaces in the application description. The developer then executes the
RCMW toolchain, providing the application description and specifying a target platform
from the RCMW platform database. The RCMW toolchain determines an application-
to-platform mapping based on a configurable cost function. Using the mapping results,
the RCMW toolchain calls a C++ stub generator, which creates an application-specific
stub similar to Figure 4, an HDL generator, which instantiates the required HDL en-
tities and connects them together as shown in Figure 2, and a vendor-specific project
generator for compiling the FPGA bitfile(s).

The mapping process consists of two stages: (1) determine how to map each applica-
tion resource to platform resources, such as application memories to physical memories,
and application cores to FPGAs, and (2) determine how to connect each application in-
terface to the platform resource selected in (1). In the previous version of RCMW
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Fig. 6. Overview of RCMW toolchain from application specification to vendor-specific project generation.

described in Kirchgessner et al. [2013], we used an exhaustive search to explore ev-
ery valid application-to-platform mapping. For applications with few components, this
approach is acceptable. However, for large applications and multi-FPGA platforms,
the number of possible mappings grows considerably. To overcome this limitation, our
updated mapping approach uses heuristics to guide the mapping process.

The first stage generates a list of candidate application-to-platform resource map-
pings to be considered. Each candidate mapping is generated by selecting an FPGA
for each application core and then selecting an appropriate platform resource for each
application resource. For example, an application memory could be mapped to a BRAM
or an external memory bank. To reduce the number of candidate mappings to be ex-
plored in the second stage, we use the number of FPGA boundaries a datapath must
pass through as a heuristic to estimate the cost of the path. Candidate mappings that
map connected application cores and resources on the same FPGA or local memories
are favored over mapping components across multiple FPGAs. Once the list of candi-
date mappings has been generated, the next stage determines how to implement each
candidate mapping and calculates the cost using a customizable cost function.

The second stage explores each candidate mapping and determines how to connect
each application interface to the selected platform resource using customizable cores
from the RCMW core library. Each core in the RCMW core library is characterized
by an XML-based core description that represents the core’s interfaces, generics, and
dataflow between each interface. An interface in RCMW is characterized by a type,
dataflow direction, and collection of ports. Each port in an interface is characterized by
a width, direction, and a type such as clock, reset, or data. Interfaces with compatible
types, direction, and ports can be mapped together. Mapping interfaces together may
require binding core generics to a particular value, such as the data port width. The
core description can optionally include a Python-based script that allows for automated
generation of an HDL entity declaration in cases where the entity provides a generic
number of interfaces, such as the configurable arbitration controller.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 4, Article 21, Publication date: September 2015.



21:12 R. Kirchgessner et al.

Fig. 7. Overview of mapping process to connect two application read interfaces to a single physical memory.

The process of determining what cores from the RCMW core library are needed
to connect an application interface to a target platform resource is similar to path
finding, where the starting position is an application interface and the goal is the
target platform resource. Each node in the path to the goal corresponds to a core
instance from the RCMW core library, including cores that convert interface types,
cross clock domains, or merge multiple datapaths using a resource arbiter. At each
iteration of this mapping process, there is a set of interfaces that need to be resolved
to their target resource and a set of candidate cores from the RCMW core library
that match those interface types. The set of candidate cores plus the current path
create a new set of paths that need to be explored. The mapper uses a best first
search algorithm, selecting the next candidate path to explore using a knowledge-plus-
heuristic cost function. The knowledge-based cost is cost of the current core instances
in the selected path, such as the estimated FPGA resources or latency. The heuristic
cost estimates the cost for any application interfaces that have not yet been resolved
in the current path and is estimated by weighting the current knowledge-based cost
by the number of unresolved application interfaces. The cost function is defined as
c(p) = g(p) + h(p), where g(p) is the knowledge-based cost and h(p) is the heuristic
cost. We define h(p) = g(p)(N0 − n)u(N0 − n), where N0 is the number of application
interfaces that need to connect to the target physical resource, n is the number of
application interfaces the current path resolves, and u is the unit step function. This
heuristic function provides a lower bound on the path cost by estimating that the
unresolved application interfaces will likely require at least the same core instances as
those in the current path. The step function acts to remove the heuristic cost once the
current path can support all application interfaces. This cost function can be modified
to improve mapping results or optimize for different parameters and will be explored
further in our future work. After calculating the cost for each candidate mapping, the
minimum cost mapping is selected.

Figure 7 illustrates the second stage of the mapping process for resolving two appli-
cation read interfaces, signal and kernel, to a single DDR2 memory bank. Each step in
Figure 7 shows a step of the mapping process. The rectangles refer to cores from the
RCMW core library. This example uses a simplified set of cores and area costs to illus-
trate the mapping process. The cores and their respective costs used in this example
can be found at the bottom of each mapping step. In each step of the mapping process,
there are multiple open paths that need to be considered, each consisting of a set of
core instances from the RCMW core library, and an interface needs to be connected to
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Table I. Currently Supported Platforms

Platform Vendor FPGA(s) Memory per FPGA Host Interface
PROCStar III GiDEL 4x Stratix III E260 1 x 256MB DDR2

2 x 2GB DDR2
PCI Express Gen1 8x

PROCStar IV GiDEL 4x Stratix IV E530 1 x 512MB DDR2
2 x 4GB DDR2

PCI Express Gen1 8x

M501 Pico Computing 1x Virtex-6 LX240T 1 x 512MB DDR3 PCI Express Gen2 8x
PCIe-385n Nallatech 1x Stratix V SGSMD5 2 x 4GB DDR3 PCI Express Gen2 8x

its target platform resource or another core instance. In the first step in Figure 7, the
signal application interface is selected first. The RCMW library is searched for can-
didate cores, which provides the required interface type for the signal interface. One
matching core is found and is appended to the current path. In the second step, the
previous path is expanded to find two candidate cores: an arbitration core that supports
a generic number of interfaces and a low-level controller for interfacing with memory.
Since the arbitration controller supports a generic number of interfaces, it reduces the
heuristic cost and is selected as part of the minimum cost path. Steps three and four
combine several steps using the same method as previous steps to illustrate the re-
maining cores being selected to complete the mapping. In our experiments, we explore
area- and performance-optimizing cost functions. The area-optimizing g(p) is equal
to the total estimated LUTs of core instances in the current path. The performance-
optimizing g(p) is equal to maximum estimated latency from any application interface
to the target platform resource.

4. RESULTS AND ANALYSIS

In this section, we present experiments that demonstrate the portability and pro-
ductivity benefits of RCMW. We evaluate these benefits using four platforms from
three vendors, detailed in Table I. First, we begin with a convolution application as
a case study. We use RCMW to map the application to each supported platform and
look at the differences in application-to-platform mapping results for both area- and
performance-optimizing cost functions. Next, we evaluate the performance and area
overhead incurred when using RCMW compared to native vendor interfaces. Finally,
we evaluate the productivity and portability benefits of using RCMW using several
streaming applications. In our experiments, we compiled Altera bitfiles using Quar-
tus II v13.0sp1. We used GiDEL driver version 8.9.3.0. Bitfiles for the Pico M501 were
generated using Xilinx ISE 14.7. We used Pico driver version 5.2.0.0. RCMW’s software
API was compiled using GCC v4.7.2 with C++11 support. All software was compiled
using optimization flag -O3.

4.1. Convolution Case Study

This case study explores the complete development cycle for a convolution application
using RCMW. Although this example requires a relatively simple resource configura-
tion, it is representative of using the RCMW toolchain for more complex applications.
We examine the required developer effort in terms of hardware and software lines of
code, as well as lines of XML. We explore the RCMW toolchain results for both area-
and performance-optimizing cost functions for each platform. We examine the toolchain
execution time, estimated area in LUTs, estimated interface latency in clock cycles, ac-
tual postfit area in LUTs, and execution time for each platform. The estimated area and
interface latency are used by the RCMW toolchain to evaluate each cost function. The
convolution application performs 1D convolution of 32-bit integers. We use a randomly
generated 2-million point signal and 96-point kernel.
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Fig. 8. Generated mappings for PROCStar III/IV.

Table II. Developer Lines of Code

Source Type Lines of Code
Hardware HDL 456
Software C++ 22
App. Description XML 111

Figure 8 illustrates the area- and performance-optimized mappings generated by
the RCMW toolchain for the convolution application on the PROCStar III and IV. The
circles represent platform and application resources, with the solid lines indicating
interfaces between resources. The dotted lines indicate the platform resource to which
it is mapped. The area-optimizing cost function selects the mapping with the minimum
area in LUTs and does not take into account on-chip BRAM. Using this cost function,
the RCMW toolchain maps all application memories to the 2 and 4 GB bank B of the
PROCStar III and IV, respectively. This mapping minimizes the number of LUTs by
minimizing the number of memory controller instances, which require significantly
more area than the RCMW arbitration logic. The performance-optimizing cost func-
tion selects the mapping where the greatest latency of all application interfaces is
minimized. Using this cost function, the RCMW toolchain maps each application mem-
ory to a separate physical memory bank, minimizing the latency for each application
interface. Since the kernel is sufficiently small, it is mapped to BRAM.

Table II presents the total hardware and software lines of code, as well as the lines
of XML in the application description written by the application developer. We only
include lines of code written by the developer, not including spacing or comments. Due
to the differences in coding styles and developer experience, this table is meant to
compare the relative effort for creating each component of the application.

Table III presents the results of using the RCMW toolchain to map the convolution
application onto each supported platform for both performance- and area-optimizing
cost functions. The map time is the required execution time for the RCMW toolchain to
finish mapping the application to each platform and to generate the associated FPGA
project file and C++ software stub. We ran the RCMW toolchain on a quad-core Xeon
E5520. The estimated area in LUTs is the area calculated by the RCMW mapper using
the postfit area results reported by the FPGA-vendor toolchain for each individual core.
The estimated latency in clock cycles is the estimated maximum latency of all appli-
cation interfaces in the selected mapping. The latency of each interface is calculated
by adding the estimated latency of each core instance in the path from the application
interface to platform interface. The calculated latency for the area- and performance-
optimized mappings are only a few cycles different, as the RCMW MUX component only
estimates a single clock cycle for each multiplexed interface. This estimate could be
improved by taking into account the type of arbitration used, the number of interfaces,
and average transfer length. The area in LUTs is the postfit area reported by the vendor
toolchain. This area is similar to the estimated area that was calculated using postfit
results for each core individually but is not equal due to optimizations made during the
analysis and synthesis, and fitter stages of the vendor toolchain. The execution time
is the total time to transfer the input signal and kernel data, perform the convolution,
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Table III. Mapping Results for Convolution Application on Each Platform Optimizing for Performance and Area

Platform Optimization
Map
Time

Estimated
Area (LUTs)

Estimated Latency
(clock cycles)

Area
(LUTs)

Execution
Time

PROCStar III Area 17.66ms 17,857 26 15,348 39.3ms
Performance 18.75ms 26,619 24 23,934 38.9ms

PROCStar IV Area 14.27ms 17,125 26 16,938 39.1ms
Performance 17.47ms 25,669 24 25,194 38.8ms

M501 Area 2.17ms 12,330 38 12,396 35.1ms
Performance 2.46ms 17,403 36 16,843 34.7ms

PCIe-385n Area 7.16ms 11,762 16 10,843 29.9ms
Performance 6.21ms 15,862 14 12,997 28.9ms

and transfer the results. We selected an application clock frequency of 150MHz for each
platform. The execution times are similar for both performance and area optimization,
as the available memory bandwidth is sufficiently higher than the bandwidth required
by the convolution core. Depending on the target platform hardware configuration and
required application resources, the performance optimization may or may not give
significant performance improvements. As illustrated in Figure 8, the area-optimized
mapping results in all application memories being mapped to a single external memory
bank, requiring only a single memory controller instance. The performance-optimized
mapping, however, required two memory controller instances and additional logic for
the kernel BRAM. We were able to reduce postfit logic usage of our application by 36%
by selecting an area-optimizing cost function, which could enable applications to fit
additional processing elements on an FPGA and increase application performance. In
our previous work, we used an exhaustive mapping algorithm that explored all possible
application-to-platform resource mappings. Given the simplicity of the resource con-
figuration for this case study, both the exhaustive and heuristic mapping algorithms
converge to the same mappings for both the area- and performance-optimizing cost
functions. The exhaustive algorithm, however, requires more than an order of magni-
tude longer to find the same mapping even for this simple example.

4.2. Analysis of Performance and Area Overhead

In this section, we analyze the interface and area overhead introduced by RCMW. First,
we measure the overhead introduced by RCMW’s software API by transferring data
between host and FPGA for varying transfer sizes. We measure the time required to
complete each transfer and calculate the overhead as a percentage reduction in effec-
tive bandwidth compared to the vendor-specific API. Next, we measure the overhead
introduced by RCMW when transferring data between application and platform mem-
ory. We compare the effective bandwidth when transferring data for a single RCMW
read/write interface to the vendor-specific interface. To measure the FPGA to external
memory bandwidth, we count the total number of clock cycles required to perform a
transfer of a given size and use the known application clock frequency to calculate the
effective bandwidth. We calculate overhead as a percentage reduction in effective band-
width. Finally, we measure the RCMW area overhead by comparing the relative logic
usage of RCMW, vendor, and application components for several simple applications.
The area percentages were obtained using the postfit device usage report provided by
Altera Quartus II and Xilinx ISE.

Figure 9 presents the effective read and write bandwidth of the RCMW host to FPGA
and FPGA to external memory transfers. We find that the M501 and PCIe-385n lead
the GiDEL PROCStar III and IV by a factor of two in host/FPGA bandwidth due to the
newer generations of PCI Express. The maximum bandwidth of writing from the FPGA
to external memory is approximately the same for each platform due to the fixed word
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Fig. 9. Host and FPGA read and write performance to external memory for PROCStar III/IV, M501, and
PCIe-385n. FPGA-to-memory bandwidth was measured with a word size of 128 bytes at 150MHz.

size of 128 bytes at 150MHz in our benchmarks. The FPGA to external memory read
performance is also approximately the same for each platform, with the exception being
the M501. The fixed latency for each 4KB read of the M501’s AXI memory interface
results in the effective read bandwidth plateauing around 1GB/s.

Figure 10 presents the overhead incurred by using RCMW compared to vendor-only
baseline interfaces. The Nallatech PCIe-385n is not included in this figure, as the
vendor provides no baseline with which to compare.

The left side of Figure 10 presents the RCMW overhead for transfers between the
FPGA and external memory. The peak FPGA/memory write overhead was similar
for each platform: 50%, 43%, and 43% overhead for the M501, PROCStar III, and
PROCStar IV, respectively. For large transfers, this overhead quickly becomes less
than 1% for each platform. The peak read overhead is less than 10% for each platform
and similarly becomes less than 1% for large transfers. For small transfers, an overhead
of 50% equates to only tens of clock cycles, which is relatively insignificant. The peak
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Fig. 10. Host and FPGA read and write overhead to external memory for PROCStar III/IV and M501.
FPGA-to-memory overhead was measured with a word size of 128 bytes at 150MHz.

write overhead is greater than the peak read overhead due to the additional cycles
required to flush memory buffers and ensure read-after-write consistency.

The right side of Figure 10 presents the RCMW overhead for transfers between the
FPGA and host. The high variance found in these graphs for small transfers is due
to the variance in the host’s OS scheduler. The greatest FPGA/host transfer overhead
is incurred by the PROCStar III, which peaks at approximately 80% for reads and
70% for writes. This seemingly high overhead is due to the additional features pro-
vided by the RCMW software API, including thread safety and user memory buffer
management. Although we could disable these features and significantly reduce this
overhead, they are vital to RCMW’s concurrent API and therefore are included in our
results. Furthermore, this high overhead occurs at small transfer sizes and accounts
for approximately 1- to 2ms overhead. Since the M501 provides thread safety for some
of their API calls by default, the peak overhead is less, at approximately 20% for both
read and writes. Large overheads are restricted to small transfer sizes, resulting in
only a few additional microseconds for each transfer. For increasing transfer sizes, this
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Fig. 11. Area overhead analysis of RCMW compared vendor IP and application components.

overhead is quickly amortized, resulting in less than 1%, 5%, and 7% read and write
overhead for the M501, PROCStar III, and PROCStar IV, respectively.

Figure 11 presents the logic usage of RCMW, application, and vendor components.
The bottom layer in the stacked bar graph represents the vendor logic usage, the
middle layer represents the application logic usage, and the top layer represents RCMW
overhead. Each set of bars represents the area breakdown for each platform for a
specific application. The PCIe-385n does not have a vendor component, as there is no
vendor-provided hardware components. From this figure, we see that RCMW accounts
for a very small fraction of the overall design area, typically less than 1% of the total
device resources. The largest RCMW area overhead was less than 3% for the sum
of absolute differences (SAD) on the Pico M501. For the PCIe-385n, RCMW handles
the PCIe and external memory interfaces, resulting in a relatively larger RCMW area
usage. Although the total area required by RCMW is platform and application specific,
it is important to note that at least a portion of the area resulting from mapping
multiple application resources to a single physical memory would be necessary even
for non-RCMW implementations. For a performance comparison of these applications
and kernels, please see Table V.

4.3. Analysis of Productivity

In this section, we analyze the productivity benefits of RCMW by comparing soft-
ware lines of code (SLoCs), hardware lines of code (HLoCs), and total development
time required by the developer. Although lines of code and development time are com-
monly used for measuring software development productivity, it is worth mentioning

ACM Transactions on Reconfigurable Technology and Systems, Vol. 8, No. 4, Article 21, Publication date: September 2015.



Low-Overhead FPGA Middleware for Application Portability and Productivity 21:19

Table IV. Factors Contributing to Improved Developer Productivity Using RCMW

Standardized Interfaces RCMW provides standardized hardware and software interfaces,
independent of the underlying platform, enabling code reuse and
allowing developers to use a single API for multiple platforms.

Application-Specific Interfaces RCMW provides only the requested resource interfaces independent
of the underlying platform, reducing application complexity.

Reduced Lines of Code RCMW reduces hardware and software lines of code by handling
typical sources of coding overhead. In hardware, RCMW handles
resource arbitration and clock domain crossing (CDC). In software,
RCMW manages platform initialization, cleanup, and application
multithreading.

Application Portability RCMW enables portability through abstraction. Application
developers specify their applications in terms of cores, which can then
be re-used in other applications, maximizing productivity.

Object-Oriented API RCMW provides an object-oriented API that provides an objectified
representation of application resources, simplifying application
development and avoiding procedural API calls.

API Validation RCMW validates API calls to prevent platforms from entering an
invalid state, alerting users via C++ exceptions when necessary.

that these measures are heavily influenced by developer-specific factors such as cod-
ing style [Schofield 2005]. To explore the productivity benefits of RCMW, a developer
familiar with the Pico Computing M501, GiDEL PROCStar III/IV, and RCMW im-
plemented five cores from OpenCores [2014] using both vendor- and RCMW-specific
design flows for each platform. The cores used included an AES128 encryption core,
a JPEG encoder, a SHA256 hashing core, an FIR filter, and a 3DES encryption core.
Each core was implemented using both the vendor’s recommended design flow and the
RCMW toolchain. We included all code written by the developer, excluding comments
and whitespace. The Nallatech PCIe-385n was excluded from this experiment due to
lack of a vendor-specific design flow.

GiDEL and Pico Computing provide different approaches for developers to inter-
face their applications with platform resources. GiDEL provides a graphical tool called
PROCWizard, which enables developers to customize GiDEL-provided IP cores and
resource interfaces. Pico Computing takes a different approach, providing develop-
ers with a Xilinx AXI bus interface to platform memory. Pico Computing provides a
streaming abstraction in both hardware and software, enabling efficient transfer of
data between host and FPGA.

Our experiments indicated that, on average, RCMW required 65% less SLoCs, 41%
less HLoCs, and 53% less development time than the GiDEL-specific design flow, and
66% less SLoCs, 59% less HLoCs, and 69% less development time than Pico-specific
design flow. Since these numbers are averaged for a single developer, we cannot draw
conclusions as to an exact improvement for all developers, but we can support the
argument that RCMW improves productivity. These improvements are expected, as
RCMW handles many development tasks typically left to the developer. The major
factors leading to improved productivity are summarized in Table IV.

In our experiments, the Pico M501 required relatively high HLoCs due to the generic
interfaces exposed to developers. Unlike PROCWizard and RCMW, the Pico M501
does not assist developers in customizing platform resources, forcing developers to
handle arbitration and clock domain crossing (CDC). GiDEL’s approach required less
HLoCs due to PROCWizard assisting developers in customizing IP interfaces for their
application. GiDEL also handles CDC for memory interfaces, reducing HLoCs. RCMW
required the least HLoCs, generating the specific interfaces required by the application
and handling all required arbitration and CDC. Similar results were found for total
SLoCs, with Pico requiring the most SLoCs, followed by GiDEL and then RCMW. Both
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Table V. Execution Time and Area of Several Applications and Kernels on Each
Supported Platform Using RCMW

M501 PCIe 385n PROCStar III PROCStar IV
Kernel/Application Time Logic (%) Time Logic (%) Time Logic (%) Time Logic (%)
1D Convolution 43.3ms 26 32.9ms 3 39.3ms 14 38.9ms 7
2D Convolution 16.0ms 57 12.8ms 13 13.2ms 44 16.3ms 25
Image Segmentation 1.73s 64 1.24s 11 1.41s 53 1.39s 26
Needle-Distance 161.0ms 48 173.0ms 10 194.0ms 38 203.0ms 21
OpenCores AES128 32.6ms 32 19.3ms 6 25.3ms 22 24.3ms 11
OpenCores FIR 21.5ms 28 21.3ms 3 24.5ms 15 24.0ms 8
OpenCores JPEGEnc. 23.9ms 29 14.3ms 3 15.3ms 15 19.6ms 8
OpenCores SHA256 73.3ms 26 52.3ms 4 64.1ms 12 63.3ms 5
Smith-Waterman 96.0ms 23 104.0ms 4 116.0ms 11 119.0ms 6
Sum of Abs. Diff. 18.7ms 86 13.8ms 18 14.7ms 75 19.1ms 38

vendor APIs require developers to manage buffers and platform-specific restrictions
such as data alignment and transfer size.

4.4. Analysis of Portability

Table V presents the execution time and logic usage of various streaming applications
and kernels for all four supported platforms. Each application was executed using the
same application source code with a clock frequency of 150MHz and required between
two and four streaming interfaces. The OpenCores JPEG encoder required a random-
access memory interface to integrate with its on-board peripheral bus (OPB) interface.
This table demonstrates the same application hardware and software source executing
across heterogeneous platforms. Porting applications across each platform was accom-
plished with almost no effort, requiring only that the RCMW toolchain be executed
once for each application and platform. This table is not meant to be a comparison of
platform performance, as the maximum device area and achievable clock frequency
was not used for each application. In our tested applications and kernels, however, we
found that the PCIe-385n outperforms the PROCStar III and IV for the given imple-
mentations and input datasets. The M501 and PCIe-385n use a newer PCIe generation,
enabling higher peak from host to FPGA, making transfer-heavy applications like
Smith-Waterman, which streams a large database from host-to-FPGA, perform better.
For applications that require more memory interfaces, such as Image Segmentation,
the two additional memory banks of the PROCStar III and PROCStar IV provide
an advantage over the M501. It is important to note that with newer platforms with
state-of-the-art FPGAs, the increase in FPGA resources enables more application cores
to fit on a single FPGA. This trend is illustrated in Table V, as the device-logic usage
greatly decreases from the PROCStar III, which uses a Stratix III, to the PCIe-385n,
which uses a Stratix V. For high-performance computing applications with data-level
parallelism, RCMW could enable significant performance improvements by targeting
existing applications to newer FPGA platforms with little to no developer effort.

5. CONCLUSIONS

Despite performance and power advantages over conventional many-core CPU and
GPU architectures, FPGAs have had limited acceptance in high-performance comput-
ing and high-performance embedded computing applications due to their portability
and productivity challenges. To help overcome these challenges, we introduced RCMW,
which provides an extensible framework that abstracts away platform-specific details
to provide an application-centric hardware and software development environment.
This environment is customized by the RCMW toolchain using the developer-provided
application description and allows developers to focus on the ideal resources and
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interfaces for their application without worrying about the underlying platform. To
create this environment, the RCMW toolchain first selects an application-to-platform
mapping using a customizable cost function and then generates the required hardware
and software interfaces.

We evaluated RCMW’s performance and productivity benefits for four platforms
from three vendors. We demonstrated RCMW’s ability to quickly explore different
application-to-platform mappings using a convolution application case study or both
area- and performance-optimizing cost functions. We demonstrated that the benefits of
RCMW can be achieved with less than 1% FPGA/memory and 7% host/FPGA transfer
overhead in the common case. We also demonstrated that RCMW has relatively low
area overhead, requiring less than 3% of logic resources for several applications across
all four platforms. We presented evidence that RCMW improves developer productivity
by showing that RCMW requires fewer lines of code and total development time for
deploying several kernels than vendor-specific approaches. Finally, we demonstrated
that RCMW enables portability by showing that the same application source was able
to execute without change across each supported platform.

Directions for future work include improving the RCMW mapping algorithm to map
application cores to multi-FPGA systems and investigating different mapping cost func-
tions and arbitration schemes to maximize performance for heterogeneous application
configurations. Additionally, we will continue to add support for new FPGA accelerator
platformsand extend the RCMW core library to include optimized cores for a broad
range of application classes.
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