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Abstract—Block RAMs on FPGAs are susceptible to
radiation-induced SEUs, and are usually protected by fault-
tolerant techniques such as SEC/DED code and/or scrub-
bing. Scrubbing can be divided into two categories based on
the mechanism which controls the scrubbing interval. With
deterministic scrubbing, each memory location is scrubbed
(repaired) on a regular basis and the interval is fixed. With
probabilistic scrubbing, a word can be checked and corrected
any time it is accessed (read or written). In this case the
scrubbing interval is exponentially distributed.

This paper presents two MTTF models for SEC/DED mem-
ory with scrubbing. The first one considers only probabilistic
write scrubbing, but takes into account non-uniform write rates
for different memory locations. The second model combines
both deterministic scrubbing and probabilistic write scrubbing
into a single model. The proposed models provide more
accurate MTTF estimates compared to prior models, and allow
for insights into the impact of write rate and memory access
distributions on memory reliability.

I. INTRODUCTION

Field Programmable Gate Arrays (FPGAs) are an attrac-
tive technology for space applications due to their repro-
grammability and low NRE cost. However, SRAM-based
FPGAs are susceptible to radiation-induced single-event
upsets (SEUs) because they employ volatile memory for
configuration data and user data storage.

Block RAMs (BRAMs) are widely used in FPGAs to
store user data. BRAMs are smaller and more distributed
than traditional memories. In addition, the depth and width
of BRAMs in Xilinx FPGAs are configurable [1], [2],
making them more flexible to fit the functionality of various
modules or designs. For example, in digital signal processing
(DSP) applications, different modules usually perform dif-
ferent operations on the data. This would result in different
BRAM sizes and non-uniform write access patterns to the
BRAMs. The impact of non-uniform write distributions
on memory reliability will be discussed in more detail in
Section II.

The reliability of BRAMs can be jeopardized by
radiation-induced SEUs. Single error correction/double error
detection (SEC/DED) codes are a common fault tolerant
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technique for memory systems. SEC/DED can detect any
single-bit error in a memory word and correct it immedi-
ately, as well as detect but not correct double-bit errors.
However, when a word is corrupted by a single-bit error, the
data is only corrected on the output port, while the corrupted
word remains erroneous in the memory storage. As errors
accumulate in the memory, multiple faults in a word will
eventually defeat SEC/DED. Thus scrubbing, another fault
tolerant technique, is often employed along with SEC/DED
to prevent a memory from accumulating a second error in
a single word.

During deterministic scrubbing, each word of the memory
is regularly read and checked for correctness. If a single-
bit error is detected, it is corrected by SEC/DED and
written back to the memory. An appropriate scrub interval
can effectively prevent a memory from gathering a second
error and therefore considerably improves the memory’s
reliability.

However, another kind of scrubbing exists and is called
probabilistic scrubbing [3]. With probabilistic scrubbing,
whenever a word is accessed by the circuit using the BRAM,
the data is checked and corrected. Probabilistic scrubbing
can be done any time a word is read, written, or both. For
example, with probabilistic read scrubbing, the word would
be read and, if an error was detected by the SEC/DED
circuitry, another memory cycle would be used to write
the corrected value back to memory. This obviously has
performance ramifications by requiring additional memory
write cycles from time to time, something that may interfere
with normal circuit operation. However, on all memory write
operations, new (and therefore correct) data is written into
the memory. Hence write operations can be seen as a kind
of probabilistic write scrubbing which requires no extra
circuitry or clock cycles — that is, it comes for free.

Others have investigated the problem of memory reliabil-
ity over the past decades [3], [4], [5], [6]. Both [3] and [6]
have provided reliability/MTTF models for SEC/DED mem-
ory with deterministic scrubbing only. Saleh et al. [3] have
provided a reliability/MTTF model for SEC/DED memory
with probabilistic scrubbing only but do not differentiate
between read and write scrubbing. Additionally, this model
is limited because it assumes that all memory locations



have a uniform access (probabilistic scrub) rate, which is
unrealistic for FPGA applications. In addition, none of
the prior work has proposed models which combine both
deterministic and probabilistic scrubbing in the same model.

This paper will investigate the reliability and MTTF of
memories in FPGA-based designs by proposing two new
MTTF models which improve on the prior work. The first
one considers only probabilistic write scrubbing, but takes
into account non-uniform write rates for different memory
locations. The second model combines both deterministic
scrubbing and probabilistic write scrubbing into a single
model. The proposed models provide more accurate MTTF
estimates compared to existing models, and will allow for
insights into the impact of write rate and memory access
patterns on memory reliability.

II. RELIABILITY MODELS FOR SEC/DED MEMORY
WITH SCRUBBING

In this section, several previous models for SEC/DED
memory with scrubbing are introduced and compared, and
the motivations of the proposed models are discussed.

A. Saleh’s Deterministic model

In [3], Saleh et al. proposed a reliability model for
SEC/DED memories with deterministic scrubbing. This
model was developed for caches in desktop computing
devices rather than for embedded FPGA memories. Thus
it is a different environment than FPGA applications, but
the modeling process and some of their assumptions still
apply.

Saleh’s deterministic model made four assumptions:
• Transient faults occur with the Poisson distribution.
• All the bit flips are statistically independent.
• A second bit flip in a single word does not correct the

first one.
• Every word is considered as an entity with error rate

λN , where λ is the bit failure rate, and N is the number
of bits in a single word.

The MTTF estimate of Saleh’s deterministic model is
given in Table I. In the MTTF equation, ν is the deter-
ministic scrub rate enforced by the scrubber, and M is the
number of words in the memory.

TABLE I: Saleh’s Deterministic Model

Memory System MTTF

SEC/DED with deterministic scrubbing 2ν
Mλ2N2

B. Edmonds’ Deterministic Model

Edmonds et al. [6] proposed another reliability model
for SEC/DED memories with deterministic scrubbing. This
model was created for BRAMs on a Xilinx FPGA,
XQR5VFX130 [2], and therefore had a similar context to
the proposed models of this paper.

The assumptions of Edmonds’ deterministic model are the
same as Saleh’s probabilistic model, except for the fourth
one. Edmonds’ deterministic model assumes that every bit
has an error rate of λ, thus the error rate of a word depends
on the number of existing errors. Table II gives the equation
of Edmonds’ deterministic model.

TABLE II: Edmonds’ Deterministic Model

Memory System MTTF

SEC/DED with deterministic scrubbing 2ν
Mλ2N(N−1)

It is worth noting that although Saleh’s deterministic
model and Edmonds’ deterministic model take different
derivation approaches, they give almost the same results.
Specifically, the ratio of the result given by Saleh’s model
to that of Edmonds’ model is N/(N − 1). Since N is
the number of bits per word, usually being 36 or 72, this
difference is very small.

C. Saleh’s Probabilistic Model

Saleh et al. also presented a model for SEC/DED mem-
ories with probabilistic scrubbing [3], following the same
assumptions for Saleh’s deterministic scrubbing. This model
assumes that a word is read and checked whenever it is
addressed (written or read) by the program in execution. It
also assumes that the cache memory locations are some-
what evenly accessed due to the least recently used (LRU)
approach used to manage lines in cache memories.

In Saleh’s probabilistic model, µ represents the proba-
bilistic scrub rate. Unlike the scrub interval in deterministic
scrubbing, which is fixed, scrub interval in probabilistic
scrubbing distributes exponentially with a rate of 1/µ. The
mathematical expression of Saleh’s probabilistic model is
presented by Table III.

TABLE III: Saleh’s Probabilistic Model

Memory System MTTF

SEC/DED with probabilistic scrubbing µ
Mλ2N2

D. Motivations of the Proposed Models

In Section I, it has been pointed out that probabilistic
scrubbing can occur when a word is being written or read.
Although probabilistic read scrubbing has performance and
area overhead by requiring additional circuitry and clock
cycle to complete, probabilistic write scrubbing comes for
free as new (and therefore correct) data will be written into
the word on write operations. Saleh’s probabilistic model
does not differentiate between read and write scrubbing.
Additionally, because of the context of cache memory in
which it was developed, Saleh’s probabilistic model assumes
a uniform scrub rate for all the memory locations. However,



this is not always true for FPGA applications. For example,
in digital signal processing (DSP) applications, different
modules usually perform different operations on the data.
This would result in different BRAM sizes and non-uniform
write access patterns to BRAMs. In order to study the
reliability of the memory on FPGAs, a new reliability
model will be proposed by this paper which considers only
probabilistic write scrubbing, and which takes into account
non-uniform write rates for different memory locations.

Furthermore, although Saleh’s deterministic model and
Edmonds’ deterministic model both aim at memories with
deterministic scrubbing, none of the prior work has pro-
posed models which combine both deterministic scrubbing
and probabilistic write scrubbing in the same model. As
discussed above, probabilistic write scrubbing comes for free
whenever a word is being overwritten and therefore should
be included. The second model proposed by this paper,
named the model for mixed scrubbing, will combine both
probabilistic write scrubbing and deterministic scrubbing.
Probabilistic read scrubbing is not considered because it
requires performance and area overhead.

The main contribution of the proposed models is that they
will allow for a more accurate and thorough understanding
of memory reliability by providing MTTF estimates that are
applicable to FPGAs. If a memory involves frequent write
operations, it is likely to survive with a lower deterministic
scrub rate or with no deterministic scrubbing at all. For
example, deterministic scrubbing is not necessary for a FIFO
because it already involves sufficient writes (probabilistic
scrubbing). In this case, the proposed model for probabilistic
write scrubbing can be used. Otherwise, if deterministic
scrubbing is necessary as a supplement to probabilistic write
scrubbing, the proposed model for mixed scrubbing can be
applied. The two proposed models will suggest that the
deterministic scrub rate may be lower than otherwise pre-
dicted because probabilistic write scrubbing can compensate
for the difference. This suggests that designers may have
previously over-engineered their memories because existing
models gave them estimates that were way too conservative.
The problem of over-scrubbing could lead to unnecessary
waste of power and design effort.

Furthermore, different memory locations usually have
different write rates. For example, rarely modified memory
locations such as look-up tables may be written only once
while locations in a RAM may be overwritten frequently.
The difference in write rates among memory locations may
have considerable impact on the reliability of a memory
system. Consequently, it is important for the new model
to reveal the relation between memory write distribution
and reliability. By using per-word write rates, the proposed
models will be able to give more accurate results than other
models.

III. PROPOSED MODEL FOR PROBABILISTIC WRITE
SCRUBBING

In this section, the proposed model for probabilistic write
scrubbing will be derived and analyzed. Several insights
revealed by this model will be discussed.

A. Mathematical Expression

The proposed models will be built on the following
assumptions:

• Transient faults occur with a Poisson distribution.
• All the bit flips are statistically independent.
• A second bit flip in a word does not correct the first

one.
• Every bit has an independent error rate λ.
• Every word i has its own write rate µi.
The first three assumptions are the same as those of

Saleh’s and Edmonds’ deterministic model. The fourth as-
sumption differs from that of Saleh’s deterministic model,
which considers each N -bit word as an independent entity.
This will result in a more accurate model than Saleh’s model.
The fifth assumption is a new one that is introduced by the
proposed model, and again will allow for a more accurate
model and novel insights of the relation between write rates
and reliability. This assumption, however, requires more
parameters and a more detailed understanding on how the
memory is used.

This subsection presents the deriving process of the
proposed model for non-uniform probabilistic scrubbing.
This memory system has non-uniform write distribution,
meaning that the write rate is different for each word.
When a memory location is overwritten, the new word
can be considered as correct. Thus write operations can be
considered as equivalent to repair processes. The memory
fails whenever two errors accumulate in one word to defeat
the capability of the SEC/DED protection. For a single word,
both the failure and the repair processes occur continuously
and independently, therefore their occurrences follow the
Poisson distribution. The time interval between two writes
or two bit errors in the same memory location is not fixed
and can be modeled by exponential distribution. Thus, this
random process can be well modeled using a Markov model.

1) Markov Model: The continuous-time Markov model
of a single word i is given in Figure 1. Each state represents
the number of errors in the word, and the directed arcs
between states indicate the transition rate from one state
to another. For example, if the total number of bits in the
word is N , and each bit has the same failure rate λ, then
the failure rate of the entire word is λN , which is labeled
on the arrow pointing from state 0 to state 1. If the word is
already in state 1, then a write operation will bring it back
to state 0 because the single-bit error is corrected. Therefore
the transition rate from state 1 to state 0 is the writing rate
µi. State 2 is the failing state, or the absorbing state, of a
word when SEC/DED is used, so there is no outgoing arc
from state 2.
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Fig. 1: State Transition Rate Diagram for Word i with write
rate µi

From Figure 1 we can write the following transition
matrix:  −λN λN 0

µi −λ(N − 1)− µi λ(N − 1)
0 0 0

 .

2) MTTF of a Single Word: The solution to this Markov
chain can be obtained by defining Pi(t) as being the
probability of reaching state i in the time interval [0, t].
From the transition matrix, we can get the following set
of differential equations (Chapman-Kolmogorov equations)
which represents the dynamics of the probability system [3]:

dp0(t)

dt
= −λNp0(t) + µip1(t)

dp1(t)

dt
= λNp0(t)− [λ(N − 1) + µi]p1(t) (1)

dp0(t)

dt
= λ(N − 1)p1(t).

Taking the Laplace transform for the set of equations in
Equation 1 gives

sp0(s)− p0(0) = −λNp0(s) + µip1(s)

sp1(s)− p1(0) = λNp0(s)− [λ(N − 1) + µi]p1(s)(2)
sp2(s)− p2(0) = λ(N − 1)p1(s).

Then, by adjusting the set of equations in Equation 2, we
get

p0(0) = (s+ λN)p0(s)− µip1(s)

p1(0) = −λNp0(s) + [s+ λ(N − 1) + µi]p1(s) (3)
p2(0) = −λ(N − 1)p1(s) + sp2(s).

Therefore the vector ⃗P (0) can be expressed as

⃗P (0) = ⃗P (s)×A,

where

A =

 s+ λN −λN 0
−µi s+ λ(N − 1) + µi −λ(N − 1)
0 0 s

 .

It is assumed that the word has no error at time 0. In other
words, the probability that the word is in state 0 at time 0
is 1. Therefore we get

⃗P (s) = ⃗P (0)×A−1

=
[
1 0 0

]
×A−1.

Then p2(s) can be calculated as follows:

p2(s) =

(−1)4 × det

[
−λN 0

s+ λ(N − 1) + µi −λ(N − 1)

]
detA

=
λ2N2 − λ2N

(s+ λN)(s2 + λs(N − 1) + µi)− λµiNs

=
λ2N(N − 1)

s[s2 + (2λN − λ+ µi)s+ λ2N(N − 1)]

=
a

s
+

b

s+ α1
+

c

s+ α2
, (4)

where α1 =
λ(2N−1)+µi−

√
λ2+2λµi(2N−1)+µ2

i

2 and α2 =
λ(2N−1)+µi+

√
λ2+2λµi(2N−1)+µ2

i

2 .
By solving Equation 4 for a, b, and c, we get

p2(s) =

λ2N(N−1)
α1α2

s
+

λ2N(N−1)
α1(α1−α2)

s+ α1
+

λ2N(N−1)
α2(α2−α1)

s+ α2
. (5)

By taking the inverse Laplace transform for Equation 5,
it gives

p2(t) = 1 +
λ2N(N − 1)

α1(α1 − α2)
e−α1t +

λ2N(N − 1)

α2(α2 − α1)
e−α2t

= 1 +
α2

α1 − α2
e−α1t +

α1

α2 − α1
e−α2t. (6)

By definition, p2(t) is the probability that the word is in
state 2 after time interval [0, t], and the reliability of the
word is the probability that the word is in state 0 or state 1
at time instant t. Therefore we have

r(t) = 1− p2(t)

=
α2

α2 − α1
e−α1t +

α1

α1 − α2
e−α2t. (7)

Then MTTFi, the MTTF of the word is given by

MTTFi =

∫ ∞

0

r(t) dt

=
α2

α2 − α1

∫ ∞

0

e−α1t dt+
α1

α1 − α2

∫ ∞

0

e−α2t dt

=
α1 + α2

α1α2

=
λ(2N − 1) + µi

λ2N(N − 1)
. (8)

3) MTTF of the Memory: According to definition, the
MTTF of the entire memory with M words can be calculated
by

MTTF =

∫ ∞

0

R(t) dt =

∫ ∞

0

M∏
i=1

r(t) dt.

However, this equation leads to an extremely complex result
which cannot be analytically derived. Therefore we go back
to Equation 7 and seek for possible simplifications.

Note that when µi is many orders of magnitude greater
than λ (which is true for FPGA applications, as long as the
BRAM is being regularly written), α1 will approach 0. In



this case, we can make an approximation for ri(t), and we
call the approximated value ari(t):

ari(t) ≈ e−α1t. (9)

Calculations show that if µ is five orders of magnitude
higher than λ, then ari(t) can be viewed as a good ap-
proximation for ri(t). In this case, the reliability of word i
follows an exponential distribution, and thus word i can be
seen as an entity with a constant failure rate γi:

γi =
1

MTTFi

=
λ2N(N − 1)

λ(2N − 1) + µi
.

Consequently, the MTTF of the entire memory can be
calculated by

MTTF =
1∑M

i=1
1

MTTFi

=
1

λ2N(N − 1)
∑M

i=1
1

λ(2N−1)+µi

. (10)

Note that if µi is not orders of magnitude higher than
λ (in extreme cases like a ROM, µi could be zero), then
Equation 10 is not accurate and should not be used.

Because the bit failure rate λ is usually orders of mag-
nitude lower than the write rate µi, the term λ(2N − 1) in
Equation 10 can be discarded. The simplified equation for
MTTF can be expressed as

MTTF =
1

λ2N(N − 1)
∑M

i=1
1
µi

. (11)

This approximation only has a tiny effect to the result, and
makes the result more conservative.

B. Simplifying by Dividing Memory into Groups

Equation 11 requires per-word write rates. However, it
may be feasible to categorize the words with similar write
rates into one group, and then the words in the same
group are considered to have the same write rate instead
of individual ones. This would simplify the model and may
help us better understand the characteristics of probabilistic
write scrubbing. In order to investigate this feasibility, a
special example is considered where a memory consists of
only two words and each word has its own write rate (µ1

and µ2, respectively). Thus Equation 11 becomes

MTTF =
1

λ2N(N − 1)
· µ1µ2

µ1 + µ2
. (12)

If the two words can be combined into one group with write
rate of µ1, then Equation 12 becomes

MTTF =
1

λ2N(N − 1)
· µ1

2
(13)

In Figure 2, the curve shows the reliability of the combi-
nation of the two words (Equation 12), and the horizontal

line (MTTFµ1
) shows the MTTF when both words are con-

sidered to have the same write rate of µ1 (Equation 13). The
parameters used for this experiment are: λ = 1.97× 10−11

upsets per bit-second, N = 72 bits, and µ1 = 1 per second.
In Figure 2, µ1 = 1 and µ2 ranges from 0.8 to 1.2. When

µ1 = µ2 = 1, Equation 12 and Equation 13 are equivalent
and give the same result. When µ2 is within the range of
µ1 ± 10% (between the two vertical dotted lines), the error
introduced by using Equation 12 is around 5% (between
the two horizontal dotted lines). This indicates that multiple
words with close write rates can be combined into one group
without introducing significant error to the result.
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Fig. 2: Combining Two Words with Similar Write Rates into
One Group.

With the knowledge from the previous example, we would
like to expand the case to a larger number of words. Here
is an example: there are in total 101 words in a memory,
and the write rate of word 1, µ1, is 1. The write rates of
50 words distribute randomly in the open interval (0.9, 1),
and the other 50 words in (1, 1.1). Thus µ1 is the median
of all the write rates. Two types of MTTF are calculated
using Equation 11. The first one is calculated with the
median write rate, µ1, called MTTF median. The second
one is calculated using the write rate of each individual
word, called MTTF accurate. The errors introduced by
MTTF median over MTTF accurate were gathered
from 1,000 sets of random write rates and shown in Figure 3.

Figure 3 shows that when the write rates distribute in the
range of the median write rate ±10%, the errors are always
less than 2% - in most cases, 1%. The error level is lower
than the first example where there are only 2 words, because
the effects of fast write rates and slow write rates can cancel
each other out to some extent.

C. Impact of Write Rate on Reliability
With the knowledge from the previous subsection, it

becomes possible to investigate the reliability of a mem-
ory with multiple groups. In this subsection, the situation



100 200 300 400 500 600 700 800 900 1000
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Experiments

E
rr

or
 (

%
)

Fig. 3: Error Introduced by Using the Median Write Rate
for the Entire Memory.

where two groups with significantly different write rates is
considered. In this case, each group has its own write rate,
being µ1 and µ2, respectively, and µ1 is orders of magnitude
greater than µ2. Group 1 has M1 words, and group 2 has
M2 words. Thus Equation 10 becomes

MTTF =
1

λ2N(N − 1)
· µ1µ2

M1µ2 +M2µ1
. (14)

Figure 4 shows Equation 14 with M1 increasing and
M1 +M2 being fixed at 100. In addition, µ1 is four orders
of magnitude greater than µ2. The memory can reach its
highest possible MTTF when M1 = 100, and its lowest
possible MTTF when M1 = 0. These two bounds are
marked by the two dotted lines in Figure 4. It is notable
that as M1 increases, the improvement of memory reliability
shows a non-linear characteristic. When 10% of the words
belong to group 2, the MTTF of the memory is 105.2 years.
When all the words are in group 1, the MTTF skyrockets
to 108.2 years. This huge difference indicates that having a
small fraction of words with slow write rates can drastically
hurt the reliability of the memory.

Figure 4 shows that the overall reliability of a memory is
mainly determined by the memory locations that have low
write rates. Therefore it is crucial to improve the reliability
of these locations in order to protect the entire memory.

IV. PROPOSED MODEL FOR MIXED SCRUBBING

In this section, the proposed model for mixed scrubbing
will be derived and analyzed.

A. Mathematical Expression

In the previous subsection, the reliability of a single word
i with probabilistic scrub rate µi was given:

ri(t) =
α2

α2 − α1
e−α1t +

α1

α1 − α2
e−α2t, (15)
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where α1 =
λ(2N−1)+µi−

√
λ2+2λµi(2N−1)+µ2

i

2 and α2 =
λ(2N−1)+µi+

√
λ2+2λµi(2N−1)+µ2

i

2 . Then the reliability of an
M -word memory is

R(t) =
M∏
i=1

ri(t). (16)

When deterministic scrubbing is also taken into account,
this reliability is valid before the first scrub. We assume
that the deterministic scrub rate is T . After the memory is
scrubbed at time T , it is considered error-free. Therefore,
the reliability of the memory at time nT (n is a positive
integer) is the probability that the memory has survived all
n previous scrub intervals, which can be expressed as

Q(nT ) = Rn(T ). (17)

Equation 17 has staircase characteristics which help the
evaluation of the MTTF. Figure 5 shows such characteristics.
Since MTTF is the integral of the reliability function over
time, the area covered by the horizontal dotted lines in
Figure 5 represents the lower bound of the MTTF, and the
area covered by the horizontal dotted lines plus the area
covered by the vertical dotted lines represents the upper
bound.

Using the summation formula of geometric progression,
we can get the upper bound and lower bound of MTTF:

MTTFu = T [1 +R(T ) +R2(T ) +R3(T ) + ...] (18)

=
T

1−R(T )
,

MTTFl = T [R(T ) +R2(T ) +R3(T ) + ...] (19)

=
T

1−R(T )
− T.

In Equation 18 and Equation 19, R(T ) is the reliability
of the memory at time T when only probabilistic scrubbing
is applied (can be calculated using Equation 16).
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B. Impact of Deterministic Scrubbing on Reliability

Deterministic scrubbing can be applied when probabilistic
scrubbing cannot provide sufficient protection, and the com-
prehensive scrubbing model proposed by this paper includes
both types of scrubbing. In order to better understand the
characteristics of the proposed model for comprehensive
scrubbing, we consider a case where the memory has in
total 100 words, which can be divided into two groups. The
first group has a write rate of 1, and the second group has a
write rate of 10−4. The deterministic scrub rate is 0.01 for
every location in the memory. Figure 6 presents the MTTF
of the entire memory when group 1 has different number of
words.

The lower dotted curve in Figure 6 shows the MTTF when
only probabilistic scrubbing is considered (Equation 10),
and the horizontal line shows the MTTF of deterministic
scrubbing. When all the words are in group 2, the memory

has the lowest MTTF because group 2 has a lower write rate.
If deterministic scrubbing is combined with probabilistic
scrubbing, then the MTTF can be greatly elevated. From
Figure 6 we can see that deterministic scrubbing provides
a “base protection” for the memory and it helps the most
when most words have low write rates.

From the discussion on the model for comprehensive
scrubbing, we can conclude that deterministic scrubbing
can improve the MTTF of the entire memory when part
of the memory is less frequently written than other parts,
as long as the deterministic scrub rate is higher than the
lowest write rate of all the locations. In addition, if there are
locations with write rate of zero, then adding deterministic
scrubbing is an effective way to provide a minimum level
of protection.

V. VALIDATION OF THE PROPOSED MODELS

Two sets of Monte Carlo simulations were run to validate
the proposed models. MATLAB programs were written to
simulate upsets in the memory as well as the scrubbing
behavior of the memory. Figure 7 presents a flow chart
of the MATLAB program used for the proposed model for
non-uniform probabilistic scrubbing. The program used for
the proposed model for mixed scrubbing is very similar
to Figure 7, with only a few slight changes. The key is
to generate random scrubbing events and bit error events
with their intervals being exponentially distributed. When
two errors show up in a single word, a failure of the
memory occurs and the time to failure is recorded. After
100 iterations of such a simulation, the mean time to failure
is calculated and then compared to the theoretical value
obtained by the proposed models. It is shown that both
proposed models give results within 3% of the mean value
of the simulated MTTFs.

Figure 8 shows the Monte Carlo simulation results for the
proposed model with non-uniform probabilistic scrubbing.
In this simulation, λ = 10−3 per second and µi randomly
distributes in the range of (100,200) per second. Therefore
µi is five orders of magnitude higher than λ and Equation 10
is valid. In Figure 8, the mean value of the simulation results
is 2.89 × 10−5 years, and the MTTF estimate given by
Equation 10 is 2.86 × 10−5 years. The difference between
the theoretical value and the simulated value is 1.03%.

Figure 9 presents the Monte Carlo simulation results for
the proposed model with mixed scrubbing. In this simu-
lation, λ = 10−3 per second, µi randomly distributes in
the range of (100,200) per second, and the deterministic
scrub interval is T = 0.02 (or, ν = 50). In Figure 9,
the mean value of the simulation results is 4.17 × 10−5

years, the MTTF of the memory when only probabilistic
scrubbing is considered is 2.82× 10−5 years, the MTTF of
the memory when only deterministic scrubbing is considered
is 1.97× 10−5 years, and the MTTF of mixed scrubbing is
4.25×10−5 years. Again, the estimate given by Equation 19
is very close to the mean value of the simulation results, with
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Fig. 7: Flow Chart of the Monte Carlo Simulation.
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Fig. 8: Comparison of Monte Carlo Simulation Results
and the Proposed Model for Non-Uniform Probabilistic
Scrubbing.

a difference of 2.08%.

VI. A REAL LIFE EXAMPLE ILLUSTRATING THE VALUE
OF THE PROPOSED MODELS

FPGAs are an attractive technology for DSP applications
because they are particularly suitable for parallel algorithm
implementation. In [7], Lavin et al. described the design of
a Space-time Coded Telemetry Receiver (SCTR), which can
solve the issue of data dropouts due to the use of multiple
transmit antennas. Figure 10 shows a block diagram of
this design. The SCTR design spreads over three FPGAs,
called brik1, brik2, and brik3, respectively. The information
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Fig. 9: Comparison of Monte Carlo Simulation Result and
the Proposed Model for Mixed Scrubbing.

of BRAM memory use in each block is summarized by
Table IV.
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Fig. 10: A Block Diagram of the 3-FPGA MIMO Re-
ceiver [7].

Simulations were run on each FPGA block for 1.5× 106

cycles, and the write access patterns of all memories in
each block were collected. The data width of the BRAM
memories were 18 bits each, and clock period was approxi-
mately 5ns. The first column of Table IV gives the number
of memory words in each design block. The “Least µi”
column presents the write rate (per second) of the least
written location in each block. The third column, “Never”,
shows the number of words that were never written to. Using
Equation 10, the last column gives the MTTF estimates
when all memories in each block are considered as an entity.

TABLE IV: BRAM Use in the SCTR Design

Block Words of Least Never MTTF
Memory µi (years)

Brik1 8,448 8.68× 104 0 4.05× 1012

Brik2 5,664 0 12 <32.35 *

Brik3 2,752 2.67× 103 0 2.59× 1011

* The MTTF of brik2 is calculated using the equation for
SEC/DED memory without scrubbing [3].

In brik1, there are 23 BRAMs and 8,448 words in total.
All memory words in brik1 were written, and the least
written location has a write rate of 8.68 × 104. Using
Equation 10, the MTTF of the memory on brik1 is calculated



as 4.05 × 1012 years. Brik3 has 32 BRAMs and 2,752
words. Similar to brik1, all memory words in brik3 were
written, and the memory has an MTTF of 2.59×1011 years.
Brik2 has 18 BRAMs and 5,664 words. However, 12 words
from two of the BRAMs were never written to and thus
have a probabilistic scrub rate of zero. Because Equation 10
is not accurate when µi = 0, the MTTF of the 12 non-
written words is calculated using the equation for SEC/DED
memory without scrubbing [3] and the result is 32.35 years.
Thus the MTTF of the BRAMs on brik2 must be shorter
than 32.35 years. This confirms the discussion in Section
III that the words with zero write rate drastically reduce the
MTTF of the entire memory system. If the 12 words can be
excluded from the memory, then the MTTF will be elevated
to 8.05× 1010 years.

This example further shows that in DSP applications,
most memory cells tend to be written frequently because
of the streaming of large amounts of data through memory.
Thus, memories that are regularly written do not need to
be protected by extra deterministic scrubbing. However, it
also shows how severely the words with low write rate
can hurt the overall reliability of the memory. Therefore,
memories which have words with very low or zero write
rate must be scrubbed. For example, adding a scrubber is
the most straightforward way to protect those infrequently
written locations. Alternatively, if the memory access pattern
is known, the designer may be able to modify the design and
have it periodically correct these locations. Another possible
solution is replacing these locations with triplicated registers
if there are only a few such locations.

VII. CONCLUSION

In this paper, previous reliability models for SEC/DED
memory with scrubbing are discussed and compared, and
two new models are derived based on the characteristics of
FPGA applications. The proposed model for probabilistic
write scrubbing takes into account non-uniform write rates,
and the proposed model for mixed scrubbing combines both
probabilistic write scrubbing and deterministic scrubbing.
The proposed models indicate that memory locations that
are frequently overwritten tend to be reliable while locations
that have rare write access may need extra protection in
order to maintain the overall reliability or the entire memory.
Therefore it can help the designers if they know the memory
access patterns of their designs. In addition, Matlab-based
Monte Carlo simulations show that both models give results
within 3% of the simulation mean value for MTTF.

DSP is a common application of FPGAs. Experiments
showed that in DSP applications, most memory locations are
frequently rewritten and do not require deterministic scrub-
bing. For those few words that are seldom or never written,
solutions such as deterministic scrubbing or triplication are
required to protect the overall reliability.
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