
A Static Task Scheduling Framework for Independent Tasks Accelerated using a
Shared Graphics Processing Unit

Teng Li, Vikram K. Narayana, Tarek El-Ghazawi
NSF Center for High-Performance Reconfigurable Computing (CHREC),

Department of Electrical and Computer Engineering
The George Washington University

Washington, DC, USA
{tengli, vikram, tarek}@gwu.edu

Abstract—The High Performance Computing (HPC) field is
witnessing the increasing use of Graphics Processing Units
(GPUs) as application accelerators, due to their massively
data-parallel computing architectures and exceptional floating-
point computational capabilities. The performance advantage
from GPU-based acceleration is primarily derived for GPU
computational kernels that operate on large amount of data,
consuming all of the available GPU resources. For applications
that consist of several independent computational tasks that do
not occupy the entire GPU, sequentially using the GPU one
task at a time leads to performance inefficiencies. It is
therefore important for the programmer to cluster small tasks
together for sharing the GPU; however, the best performance
cannot be achieved through an ad-hoc grouping and execution
of these tasks. In this paper, we explore the problem of GPU
tasks scheduling, to allow multiple tasks to efficiently share
and be executed in parallel on the GPU. We analyze factors
affecting multi-tasking parallelism and performance, followed
by developing the multi-tasking execution model as a
performance prediction approach. The model is validated by
comparing with actual execution scenarios for GPU sharing.
We then present the scheduling technique and algorithm based
on the proposed model, followed by experimental verifications
of the proposed approach using an NVIDIA Fermi GPU
computing node. Our results demonstrate significant
performance improvements using the proposed scheduling
approach, compared with sequential execution of the tasks
under the conventional multi-tasking execution scenario.

Keywords-GPU; scheduling; multi-tasking; resource sharing

I. INTRODUCTION
Modern High Performance Computer architecture has

evolved from the traditional homogeneous architecture
equipped with only CPUs to the modern heterogeneous
architecture incorporating CPUs and hardware accelerators.
Due to the rapid technological advancements in the graphics
processing field over the past few years, Graphics Processing
Units (GPUs) have been increasingly used as co-processors
in High Performance Computing (HPC). While the use of
GPUs sacrifices programming generality, it provides
massively parallel computing and programming architecture
as well as significantly improved floating-point computing
performance. As a result, a wide range of HPC systems have
incorporated GPUs as co-processors to achieve better
performance for various applications. Example systems

include the latest top ranking supercomputer in the Top 500
list such as Tianhe-1A (Rank 2nd), which is equipped with
NVIDIA Tesla M2050 GPUs and able to achieve a sustained
2.57 PFlop/s LINPACK performance [1].

In order to use GPUs within an application, current
programming models are based on the use of a separate
programming language for the GPU. Execution of GPU tasks
therefore relies on function calls in the main application
process running on the CPU. Since the main control process
resides on the CPU, there are overheads associated with
transferring data back and forth between the CPU and GPU
memory. Nevertheless, substantial gains in performance can
be achieved due to the massive computational capability of
the most recent GPU, with long computations on the GPU
amortizing the data transfer overheads. Needless to say, the
best performance in this mode of computation is obtained
when tasks make the use of all the available GPU
computational resources or processing cores.

The number of processing cores utilized by a GPU task is
directly related to the processed data size, due to the Single-
Instruction, Multiple-Thread (SIMT) programming approach
followed for GPUs [2]. Although programmers attempt to
maximize the use of the available SIMT parallelism,
oftentimes applications have tasks that do not utilize all the
processing cores in the GPU due to the limited data size they
operate on. The sequential use of the GPU for accelerating
each of these tasks leads to performance inefficiencies due to
the idle GPU resources during the execution of each task. It
is therefore important for the programmer to cluster these
small tasks together for sharing the GPU; however, the best
performance cannot be achieved through an ad-hoc grouping
and execution of these tasks. A scheduling framework for
carrying out an off-line clustering and sequencing of GPU
tasks is therefore essential to be studied and implemented.

 In this paper, we explore the problem of GPU task
scheduling to allow multiple tasks to efficiently share the
GPU and execute in parallel. Our study is based on the
currently available NVIDIA Fermi class of GPUs that
support the execution of multiple kernels simultaneously [3].
We analyze factors affecting multi-tasking parallelism and
performance, and exploit features available in contemporary
GPUs, such as concurrent I/O and execution, bi-directional
data transfers, as well as concurrent kernel execution. For
NVIDIA GPUs programmed using CUDA [2], the use of
these capabilities relies on programming constructs called

2011 IEEE 17th International Conference on Parallel and Distributed Systems

1521-9097/11 $26.00 © 2011 IEEE

DOI 10.1109/ICPADS.2011.13

88

streams, with each stream essentially taking care of the set of
operations required for executing a task. The programmer
can make use of CUDA streams to launch independent tasks
for parallel execution on the GPU, subject to the availability
of GPU compute resources. Since GPU resource constraints
prevent the programmer from grouping together all tasks into
one cluster, the available set of tasks needs to be broken
down into two or more subsets, with each subset making use
of streams to launch the constituent tasks for parallel
execution. Even though GPU tasks within each subset
execute in parallel, they sequentially make use of the same
I/O channel for transferring data from the CPU to the GPU
(and vice versa), and as a result, the order in which the tasks
are launched becomes an important factor in determining the
performance of the parallel tasks.

We therefore propose a scheduling framework to aid the
programmer in efficiently grouping the available tasks into
subsets for parallel execution on the GPU, in addition to
sequencing the launching of tasks within each group. To
enable efficient scheduling, it becomes necessary to model
the parallel GPU execution of the clustered group of tasks,
with the performance prediction based on the compute and
I/O characteristics of each task. The description of our
scheduling framework thus begins with a discussion of a
multi-tasking performance model.

The remainder of the paper is organized as follows.
Section II highlights the related work available in the
literature, followed by a brief background on GPU
computing in Section III. Subsequently, Section IV describes
the proposed scheduling framework, including the
performance model as well as heuristics carrying out the
required task scheduling. Section V then validates the
performance model through a set of experiments, followed
by an evaluation of the proposed scheduling algorithms
through synthetic tasks as well as actual application kernels
running on the GPU. Finally, Section VI concludes the work
and discusses future work.

II. RELATED WORK
There are several research efforts related to task

scheduling in the HPC field. One direction of research has
looked at scheduling for General-Purpose computation on
Graphics Processing Units (GPGPU) [4]. In this direction,
previous work has investigated the problem of GPU resource
under-utilization by providing task scheduling at various
levels either statically or at runtime. Guevara et al. [5]
introduced a GPU kernel merging approach, which merges
task workloads that underutilize the GPU resource. The work
focuses mainly on providing a runtime environment that
intercepts kernel invocation as the scheduling inputs and
makes scheduling decision by making necessary kernel
merges. A similar approach was adopted by Saba et al. [6].
They presented an algorithm for GPU architectures that
would adaptively allocate GPU resource matching the goals
and loads for large workloads. Their approach focuses on a
time-bound algorithm that measures the output quality and
optimizes the execution path. While the approach targets a
different problem with large runtime workloads, they also
employ a similar kernel-merging approach to increase the

GPU utilization. Furthermore, Chen et al. [7] proposed a task
queue scheme, by utilizing a kernel-merging approach that
merges the kernels of the workloads into the persistent
kernel, to achieve dynamic load balancing on the GPU
systems Although these approaches improve task
parallelism and the GPU utilization, they suffer from several
drawbacks. Firstly, [5][6] do not consider the task data
transfer metrics in the scheduling approach, which is not
negligible since data transfer time is a key factor that
determines multi-tasking performance. Secondly, the GPU
architecture used by these work are superseded by the latest
Fermi architecture, which provides further kernel parallelism
support. Thus, with Fermi, kernel-merging approach would
not be necessary. Furthermore, kernel-merging approach
would require additional programming efforts, which would
also pose a programmability problem to be solved.

Another stream of similar research concentrates on task
scheduling on heterogeneous architectures [8][9]. [8]
presented StarPU, which is a runtime execution model based
platform allowing easy programmability and co-scheduling
of both GPU and CPU tasks targeting at a general
heterogeneous platform. Similarly, [9] discussed a static task
partitioning approach for heterogeneous system composed of
both CPUs and GPUs with predictive execution model
approach. While both work employed execution model
prediction approach (combined coarse-grained CPU and
GPU model), which is also the approach we use (fine-
grained GPU task model) in this paper, our approach draws
the difference in tackling a different scheduling problem,
which is the scheduling of static GPU tasks by performing a
finer-grained task execution modeling and scheduling.

Task scheduling on other types of co-processors such as
Field-Programmable Gate Arrays (FPGAs) has also been
studied in the literature. For example, [10] described an early
attempt by using task scheduling to efficiently share the
FPGA with partial run-time reconfiguration. [12] discussed
the Reconfigurable Computer(RC) task scheduling with a
HW/SW automatic co-design approach. [11] explored the
FPGA task scheduling problem with the consideration of
inter-task data communication. In [13], Angermeier et al.
proposed a virtual area management approach to pack
hardware modules with time-varying resource requests
efficiently and tackled the problem by designing a series of
heuristics. Our work in this paper also defines a similar
scheduling problem and uses similar heuristics. However, in
this paper, we target at a completely different problem of
static multi-tasking GPU scheduling to improve resource
utilization, which has not been tackled before. We
investigate the problem by considering task I/O and resource
profiling, multiple inter-task concurrency scenarios, derived
execution model as well as multiple scheduling heuristics.

III. BACKGROUND
 We provide a brief overview of CUDA [2] and NVIDIA

GPU architecture in this section. Our further analysis will be
based on CUDA programming model and NVIDIA Fermi
architecture [3]. CUDA is the parallel programming model
provided by NVIDIA following master-slave model. The
master-slave flow follows that the CPU master process

89

launches the GPU program, sends the data to GPU device
memory, waits for the GPU to finish executing and retrieves
the result data. Currently, CUDA does not allow the
interruption of a GPU program once it starts, limiting the
GPU tasks to be atomic. The finest execution unit in CUDA
is the thread, which is grouped into two hierarchical levels:
blocks and grids. A CUDA program is launched per grid by
executing a kernel function. A grid is composed of a number
of blocks and each block contains a number of threads. A
detailed description of NVIDIA Tesla GPU architecture is
provided by [14]. Figure 1 shows the latest Fermi
architecture from NVIDIA. From a top-down overview,
Fermi is consisted of 16 Streaming Multiprocessors (SMs),
each of which can be further decomposed of 32 Streaming
Processors (SPs). Each thread block can only run on a single
SM. Inside each SM, while each thread is executed on an SP;
threads are dispatched as warps (a group of 32 threads) at
one time. Moreover, 48 warps (Fermi) can be tracked on
each SM allowing up to 1,536 concurrent threads per SM.

Since GPU kernel execution is non-preemptive, the
launching of one kernel blocks the execution of other kernels
until current one finishes. Thus multi-tasking execution on
GPU generally follows sequential execution. Fermi employs
concurrent kernel execution through CUDA streams. By
using streams, further overlapping such as concurrent I/O
and kernel execution and concurrent bi-directional I/O can be
achieved. However, the required number of streams need to
be allocated statically a priori, and the launching of kernels
either sequentially or in an ad-hoc manner through random
streams leads to resource waste since no prior scheduling
decision has been made; thus this leads us to further discuss
the proposed task scheduling and execution framework to
tackle the problem by utilizing kernel and I/O concurrency
support from Fermi in the following sections.

IV. SCHEDULING APPROACH
In this section, three major components of our approach

are presented. We first conduct a profiling study of GPU
tasks under multi-tasking scenario. As we are interested in
improving the performance of multiple independent tasks,
tasks are treated equally as non-interruptible GPU kernels. In
the meantime, we analyze necessary task timing and resource
metrics to be considered in our execution model and
scheduling study. In the text that follows, we present the task
execution model based on the optimized task execution

scenario, which provides the task execution flow and
performance prediction of a task sequence. We further define
the multi-tasking scheduling problem; analyze the problem
based on the execution model and present several scheduling
algorithm heuristics as the scheduling problem solution.

A. Task Profiling Analysis and Metrics Definition
The primary goal in conducting preliminary task

profiling is to utilize characteristics of each task and derive
corresponding performance metrics as a way of performance
prediction. We define both timing and resource metrics to be
profiled for tasks. While timing metric is mainly used for
deriving predicted execution time, the resource metric is
defined to analyze the possible inter-task concurrency.

For timing profiles of each task, we define the metrics
explained as follow. Since offloading a single task on the
GPU involves initializing the required GPU resource such as
GPU context, we define the GPU initialize time as one
general timing metric. The initialization time is generally a
one-time overhead per task can also be referred as a “warm-
up” time when the GPU starts to execute the task. For each
GPU task, the execution cycle is composed of the following
stages. The task sends the input data to the GPU device
memory, followed by computing the task and retrieving the
result data back from the GPU device memory, as shown in
Figure 2 with the timing metric defined for each stage.

When considering GPU resource metrics, we consider
the GPU resource utilization of each task (Rtask) and define it
as (task resource utilization / full resource of the GPU) in
general with details shown in equation 1. The amount of
GPU resource utilized by one task primarily depends on the
data parallelism of the task kernel. While some tasks with
enough data parallelism can fully utilize the GPU, most tasks
without being described as embarrassingly parallel can only
utilize partial resource. In each task (kernel), threads are
allocated with computing resource in the SMs such as
registers and special functional units. Thus, the total number
of threads of the task determines the fine-grained resource
utilization. While one block only runs on an SM, CUDA also
allows multiple blocks to run on a single SM. This only
happens when the block cannot fully utilize the SM resource.
The metric considers the full point block # of the task to be
the number of blocks that will be used when all the GPU
SMs are utilized, which is the product of the number of SMs
on the GPU and the number of blocks running on each SM.
Thus, the metric defined in equation 1 provides the basis for
analyzing multi-tasking resource sharing in the following
discussions of the analytical multi-tasking GPU execution
model and the scheduling algorithms.

�
�

�
��

��

)}##({if
##

#
#

#

})##({if..1

fullpointtask
SMGPU

task

fullpoint

task

fullpointtask
task

BlockBlock
BlockSM

Block
Block

Block

BlockBlock
R (1)

B. The Multi-tasking GPU Execution Model
1) The Multi-tasking Execution Scenario

Global GPU Memory

Interconnection Network

Streaming
Multiprocessor

Streaming
Multiprocessor

Streaming
Multiprocessor

Streaming
Multiprocessor

Warp Scheduler Warp Scheduler

Interconnection Network

Shared Memory

Streaming
Processor

Streaming
Processor

Streaming
Processor

Streaming
ProcessorThread Block

A thread block is executed
only on a SM

Streaming
Multiprocessor

Figure 1. A top-down overview of Fermi architecture

GPU Initialization Send Data Compute Retrieve Data

Tinit Tdata_in Tcomp Tdata_out
Figure 2. A GPU execution cycle for a single task

90

The tradition multi-tasking scenario follows sequentially
executing each task, where resource can be under-utilized
and no inter-task concurrency occurs. The key approach to
avoid resource underutilization among multiple tasks is to
achieve inter-task parallelism. Thus, we propose a multi-
tasking execution scenario on the GPU, which our further
execution framework is based on. At the presence of
multiple GPU tasks, the execution scenario we propose to
efficiently execute all tasks is to divide tasks into task groups
and execute each group sequentially. Each task group needs
to be able to provide full task parallelism, which requires that
each group has enough SM resource for the each task within
the group. Therefore, under CUDA architecture, each task
needs to be launched in a separate asynchronous stream. By
launching tasks through streams, three kinds of inter-task
concurrency can be achieved on Fermi: the concurrency of
data transfer and task computation, task computations and bi-
directional data transfers.

2) The Multi-Tasking Execution Model
When tasks are grouped and executed sequentially with

the proposed task execution scenario, the execution model
emulates the asynchronous stream execution scenarios for
each group with possible inter-task overlapping. It uses
profiling metrics from each task and predicts the execution
time of tasks in a group. To merely demonstrate the inter-
task overlapping, we first show a special execution scenario
with identical tasks. Since the task group has been given full
task parallelism, all tasks can execute concurrently. As the
execution model is used to provide a performance upper
bound, we further make the assumptions that single
directional data transfers are atomic and cannot be
overlapped or interrupted. In other words, single directional
data transfers always take the full I/O bandwidth. Thus, as
shown in Figure 3, the next task can only start after the first
task finishes inbound data transfer. Since CUDA stream
execution allows both task execution and inbound data
transfer from one stream to overlap with the task execution
and outbound data transfer from another stream, both Figure
3(a) and Figure 3(b) demonstrate the concurrencies occurred.
By assuming data transfers are atomic, we use Figure 3(a)
and Figure 3(b) to show two scenarios when data retrieving
wait occurs in Figure 3(b) but does not occur in Figure 3(a).

As the output of the model, the predicted finish time is based
on the finishing point of the last completed task in the model.

We further apply a general case to the model when
multiple tasks have varied profiles as described in Figure 4.
Since each task can achieve a complete overlapping for both
“send data” and “compute” with the prior task, we define the
point for a task to finish “compute” stage without proceeding
to “retrieve data” as “finish_comp” point. Different from the
special case with identical tasks that “finish_comp” of each
task follows the task starting order, tasks reach
“finish_comp” point out of order in the general case. Thus,
the “retrieve data” stage for each task also occurs out of
order and follows “First-Finish, First-Served (FF-FS)” policy
as shown in Figure 4. The last “retrieve data” determines the
total time of finishing all tasks as the model output.

Table I defines necessary parameters for both the
execution model and the algorithm. As the execution model
focuses on the general multi-tasking scenario, we first
present an algorithm that generalizes the total time of
executing all tasks in a group for the model, as shown in
Algorithm 1. The algorithm follows the FF-FS policy for the
“retrieve data” stage and performs the sorting based on
Tfinish_comp_t(i). Since “retrieve data” stage is atomic, the sorting
enables deriving the finishing time of the last task in the
sorted task list, therefore outputs the total time for the model.
By using Algorithm 1, given a task group with a defined
sequence, the expected total group time can be derived, as
shown in Figure 5 by an example. While Algorithm 1 does
the task-sorting based on “finish_comp” point, it does not
change the task sequence since the sorting is only used for

GPU Initialization Send Data Compute Retrieve Data
Task 1

Task 2

Task 3

Task N

Finish Time For N Tasks

Send Data Compute Retrieve Data

Send Data Compute Retrieve Data

Send Data Compute Retrieve Data

Figure 3(a). A special multi-tasking execution scenario without data
retrieving wait, when all tasks have the same profile

GPU Initialization Send Data Compute Retrieve Data
Task 1

Task 2

Task 3

Task N

Finish Time For N Tasks

Send Data Compute Retrieve Data

Send Data Compute Retrieve Data

Send Data Compute

Wait

W

Wait Retrieve Data

Figure 3(b). A special multi-tasking execution scenario with data
retrieving wait, when all tasks have the same profile

TABLE I. PARAMETERS DEFINED

Ntask The number of GPU tasks to be executed in the group

Tinit
The average time to initialize the GPU device and

corresponding GPU contexts

Tdata_in_t(i)
The average time for task i to transfer the data into the

GPU device memory

Tdata_out_t(i)
The average time for task i to retrieve the data back

from the GPU device memory

Tcomp_t(i) The average time for the GPU to compute the task i

Tfinish_comp_t(i)
The total time it takes for task i to reach “finsh_comp”

point since the execute model starts

Ttotal_t(i)
The total time it takes for task i to finish since the

execution model starts

Ttotal_grp(m)
The total time it takes for the task group m to finish,

which is the output of the Algorithm 1

Ttotal
The total time it takes for all tasks in all task groups to

finish, which is the output of the model

Rtask_t(i)
The GPU resource utilization metric defined earlier for

task i

RGPU The GPU full resource point as defined earlier

GPU Initialization Send Data Compute Retrieve Data

Send Data Compute

Send Data Compute

Send Data Compute

Task 1

Task 2

Task 3

Task N

Retrieve Data

Retrieve
Data

Retrieve
DataWait

Wait

Wait

Finish Time For N Tasks

Task 1 Task 2 Task 2 Task N…...Input Data Bus

Task 2Output Data Bus Task 1 ... Task N Task 3

Figure 4. A general multi-tasking execution scenario

91

deriving the total time. We also choose not to consider Tinit in
Algorithm 1 and further analysis only because Tinit is a
constant overhead and does not affect the model and further
scheduling results with varied task profiles.

In multi-tasking scenario, the execution model targets at
all tasks in a single task group. Since many tasks cannot be
fit into a single group due to the resource constraint.
Different groups need to be executed sequentially, with a
barrier between two groups. We simply model the multiple
group execution total time, Ttotal, by sequentially adding
Ttotal_grp(m) of each group, as shown in Figure 6.
C. The Scheduling Problem and Algorithm Heuristics

As we propose the scenario of executing task groups and
the total execution time of all tasks depends on the number
of groups, finding the smallest number of groups becomes
one of the key scheduling issues. Meanwhile, when
executing each task group using the proposed execution
scenario and model, different task execution sequences give
varied group execution time. Thus, finding the best execution
sequence within each group becomes the other scheduling
problem. By considering both task grouping and sequencing
problems, we define the multi-tasking scheduling problem,
which is to find the grouping scenario that minimizes the

number of groups while giving out an optimized task
sequence with the minimum execution time for each group.

We first consider the sequencing algorithm for tasks
within a task group. The sequencing problem can be solved
by the brute-force method, which tries every possible
sequence permutation and applies Algorithm 1 to find the
task sequence with shortest execution time. While the brute-
force method gives the optimal time, the time consuming
nature of this approach motivates us to find additional faster
heuristics. We therefore propose two heuristics for the
sequencing problem as part of our initial efforts, as outlined
in both Algorithm 2 and 3. Both algorithms are based on a
greedy approach to choose the next task within a group of
tasks. The main idea of the heuristics is to always achieve
the maximum inter-task overlapping. In other words, starting
by executing the task with maximum (Tcomp_t(i) + Tdata_out_t(i)),
both heuristics choose the next task with the maximum
overlapping with the current task. If the maximum
overlapping (Tcomp_t(current) + Tdata_out_t(current)) can be found
among multiple tasks, both algorithms choose the next task
with maximum (Tcomp_t(next) + Tdata_out_t(next)). If not, Algorithm
2 focuses on the priority of Tcomp_t(i), which guarantees the
task with the longest Tcomp_t(i) to be executed as early as
possible, and Algorithm 3 focuses on the priority of
Tdata_in_t(i), which ensures starting the “compute” stage of the
next task as early as possible (with shortest Tdata_in_t(i)).

For the task grouping problem, all tasks need to be
grouped into a finite number of groups while minimizing the

Algorithm 1: Algorithm for the Execution Model
Input: Ntask GPU tasks in task group m with profiling
information
for i = 1 to Ntask

 Tfinish_comp_t(i) =)(_
1

)(__)(itcomp

i

n
ntindata TT ��

�

;

Sort Ntask tasks according to Tfinish_comp_t(i) in an ascending
order, giving Tlistsorted;
Using Tlistsorted
 Ttotal_t(1) = Tfinish_comp_t(1) + Tdata_out_t(1);
 for i = 2 to Ntask in Tlistsorted
 j = i-1;
 Ttotal_t(i) = MAX (Tfinish_comp_t(i), Ttotal_t(j)) + Tdata_out_t(i);
 Ttotal_grp(m) = Ttotal_t(Ntask);
Output: Ttotal_grp(m)

GPU Initialization Send Data Compute

Send Data Compute

Send Data Compute

Send Data Compute

Task 1

Task 2

Task 3

Task N

Sort by Tfinish_comp to get a sorted task list for algorithm
purpose only (actual sequence does not change)

Task 2
GPU Initialization

Task 1

Task 3

Task N

Task 2
GPU Initialization

Task 1

Task 3

Task N

Adding the retrieve data time by one by one comparison

Retrieve Data

Retrieve Data

Retrieve
Data

Retrieve
Data

Final Finish Time

Send Data Compute

Send Data Compute

Send Data Compute

Send Data Compute

Send Data Compute

Send Data Compute

Send Data Compute

Send Data Compute

Figure 5. Deriving method of Algorithm 1 by an example

Task Sequencing Heuristics: Algorithm 2 (Tcomp
Prioritized) and Algorithm 3 (Tdata_in Prioritized)

Input: Ntask GPU tasks with profiling information (Tlist)
In Tlist
find the task m with MAX (Tcomp_t(m) + Tdata_out_t(m));
swap_task (Tlist(1), Tlist(m));
for i = 1 to Ntask – 1 in Tlist

for j = i + 1 to Ntask
 if (there exist tasks that meet (Tdata_in_t(j) + Tcomp_t(j))

≥ (Tcomp_t(i) + Tdata_out_t(i)))
 find task k with MAX (Tcomp_t(k) + Tdata_out_t(k))

within all found tasks meeting the previous requirement;
 swap_task (Tlist(i+1), Tlist(k));
 else
 (Algorithm 2) find task k with MAX (Tcomp_t(k));
 OR
 (Algorithm 3) find task k with MIN (Tdata_in_t(k));
 swap_task (Tlist(i+1), Tlist(k));
Output: Tlist;

Group 1 Group 2

Ba
rr

ie
r

Group 3

Ba
rr

ie
r

Ba
rr

ie
r

Group N

Ba
rr

ie
r

Ttotal_grp(1) Ttotal_grp(2) Ttotal_grp(3) Ttotal_grp(N)+ + + +

Ttotal

Figure 6. Total execution time deriving of multiple task groups

92

number of groups. As our goal is to provide each group with
complete execution concurrency, the grouping policy
considers Rtask of all tasks and constrains that the total Rtask in
each group does not exceed RGPU. Thus, the problem can be
categorized as a general NP-hard bin-packing problem [15].
As an initial effort, we consider using the following two bin-
packing heuristics: FirstFit and BestFit. FirstFit is the
heuristic that places the task in the first group where the task
fits. BestFit is the heuristic that considers all groups where
the task fits and places the task in the fullest group. With
both grouping heuristics, we formalize the main scheduling
algorithm as shown in Algorithm 4. It first conducts the
sorting of all tasks based on Rtask. This is for better bin-
packing results by grouping the task with largest Rtask first
[16]. We apply the two bin-packing heuristics first to group
tasks into m groups and perform sequencing to the m groups
using the sequencing heuristics. For the derived sequence of
each group, we apply Algorithm 1 to derive Ttotal_grp(i) for
each group and summarize Ttotal. Algorithm 4 gives both the
grouping and sequencing results as well as Ttotal as outputs.

V. IMPLEMENTATIONS AND RESULTS
The proposed execution model and algorithm are based

on modern GPU’s capability of asynchronous kernel
execution and data transfer. In other words, the model
emulates the GPU execution scenario when multiple tasks
take asynchronous CUDA streams to achieve inter-task
overlapping. Figure 7 shows the details of the proposed GPU
execution framework, which is used for our further
benchmarks. The framework initially creates the required
GPU execution resources for the task group such as CUDA
streams and host pinned memory for the concurrent data-

transfer and execution. It executes each task within a group
using a single CUDA stream based on the scheduling
sequencing results. The execution performs sequentially for
each task group until all groups have been executed.

To demonstrate the efficiency of our approach in
executing multiple GPU tasks with scheduling, we start with
analyzing the proposed execution model and scheduling
framework by conducting several micro-benchmarks. We
primarily use micro-benchmarks to evaluate the accuracy of
the proposed model with GPU results, followed by
evaluating the efficiencies of the proposed algorithm
heuristics. We further utilize an application benchmark to
show the advantage of our scheduling approach by
comparing multi-tasking execution using the proposed
scheduling framework with native sequential task execution.
The experiments are conducted on our GPU computing node.
The node is equipped with NVIDIA Tesla C2070 (Fermi)
computing GPU with 14SMs running at 1.15 GHz and 6GB
device memory, which allows maximum 16 concurrent
running tasks (kernels). The node also has dual Intel Xeon
X5570 quad-core hyper-threading CPU running at 2.93 GHz
and 48 GB system memory. The CUDA version is 3.2,
which runs under Ubuntu 10.10 with 2.6.32-30 Linux kernel.

To demonstrate the prediction accuracy of the model, we
first utilize the micro-benchmark, which is composed of a
sequence of 14 vector multiplication GPU kernels (1 block
of kernel size), to compare the GPU running time versus the
predicted time from the model. We choose 14 kernels due to
availability of 14 SMs within the chosen GPU platform [2].
The kernel computing intensity has been varied based on the
number of vectors used in the computation. By adjusting the
kernel computing intensity, we divide our analysis into two
categories: compute-intensive and I/O-intensive applications,
to analyze computing and I/O behavior separately, as shown
in Table II. For each category, we evaluate three types of
task (kernel) sequences under the model: in order, reversed
order and random order based on the order of Tfinish_comp_t(i) in
the task sequence. When “in order”, Tfinish_comp_t(i) follows the
sequence starting order, and when “reversed ”, Tfinish_comp_t(i)
follows the reversed sequence starting order. “Random”
simply makes the case when Tfinish_comp_t(i) does not follow the
sequence starting order. The reason we choose to use varied
orders is to verify the correctness of Algorithm 1 in
conducting the sorting-based calculation. By comparing the
task sequence execution time on the GPU and the model
prediction, we derive the model deviations for all cases, as
shown in Table II. For data-intensive task sequence, the
model matches the GPU results very well, which
demonstrates that, our I/O assumption in the model agrees
with reality. For compute-intensive task sequence, the model
deviation is around 15%, which still matches the GPU result
well. Meanwhile, we further conduct a concurrency analysis
of running the same compute-intensive vector multiplication
kernels but with zero I/O. We use an increasing number of
streams to show the concurrent kernel execution occurred.
As shown in Figure 8, as the stream number increases while
each stream carries one kernel, the total execution time
increases slightly until a sharp increase from 14 to 15
streams. This is due to the fact that there are 14 SMs in

Algorithm 4: Main Task Scheduling
Input: All GPU tasks with profiling information
Sort all tasks according to Rtask in a descending order,
giving the sorted task list Tlistsorted;
Using Tlistsorted

Perform bin-packing heuristic(FirstFit, BestFit) on
Tlistsorted, giving m task groups;
for i = group 1 to group m

Perform the sequencing heuristc(Algorithm 2, 3) ;
Perform Algorithm 1 giving Ttotal_grp(i);

 Ttotal = Ttotal + Ttotal_grp(i);
Output: m groups of sequenced tasks, Ttotal;

GPU Initialization

CUDA pinned memory allocation

CUDA stream initialization(N streams)
CUDA device memory allocation for all N tasks in group i

Starts executing all N CUDA streams by sequence
Stream 1 start point
AsycMemCpy H2D

Asynchronously
Launches Task 1

AsycMemCpy D2H

CUDA Thread synchronization

Stream 1 end point

Stream 2 start point
AsycMemCpy H2D

Asynchronously
Launches Task 2

AsycMemCpy D2H
Stream 2 end point

for task group i = 1 to M
Scheduling Outputs:

M groups
N task in each group

Repeat for all groups

Scheduling Output:
Task sequence

Stream N start point
AsycMemCpy H2D

Asynchronously
Launches Task N

AsycMemCpy D2H
Stream N end point

Figure 7. The GPU execution framework

93

C2070 and each kernel is using one block that occupies one
SM. It also shows that inter-kernel overlapping involves
slight overheads with the increasing number of concurrent
kernels to be executed, which has not been considered in the
proposed model and explains the slightly higher model
deviation for compute-intensive task sequence.

With the verified model accuracy, we analyze the
algorithm heuristics by using synthetic micro-benchmarks.
We first analyze the efficiency of the proposed sequencing
heuristics and use three types of workloads which have the
randomly generated task profiles(in certain intervals (ms)):
intermediate(IM) (50<Tcomp<100,50<TI/O<100), compute-
intensive(C-I) (500<Tcomp<1000,50<TI/O<100), and I/O
intensive(IO-I) (50<Tcomp<100,500<TI/O<1000). We compare
the model results from the two proposed sequencing
heuristics with model results from both a random sequence
and the optimal sequence (by the brute-force method), as
shown in Figure 9, 10, 11 for all three types of workloads.
While both heuristics perform close to the optimal results,
Algorithm 3 performs slighter better than Algorithm 2 in IM
and IO-I applications due to its priority of starting the
“compute” stage early for more concurrency. Algorithm 2
only performs better in C-I applications due to giving
priority to tasks with the longest Tcomp, which is especially

helpful in providing more concurrency when tasks have
longer Tcomp and shorter Tdata_in. Table III describes the
performance gain of the sequencing algorithms over a
random sequence as well as the algorithm running time,
which shows that both heuristics can provide near optimal
results with much less running time.

We further analyze the scheduling efficiency of
Algorithm 4 by increasing the task count and comparing the
model results from four proposed heuristics (FirstFit-A2,
FirstFit-A3, BestFit-A2, and BestFit-A3) with the sequential
results using the synthetic task workload (Intermediate
Tasks). Figure 12 shows the scenario when tasks utilizing
moderate resources (Rtask is randomly generated from 25% to
75%) while Figure 13 shows when tasks utilizing lower
resources (Rtask is randomly generated from 5% to 25%). As
the results show, BestFit performs slightly better than
FirstFit with better grouping results and Algorithm 3
performs slightly better than Algorithm 2 in both cases. In
general, the lower resource tasks utilize, the higher inter-task
concurrency can be achieved using our scheduling approach.

As a step further, we utilize the application benchmark
composed of 3 applications. 5 different tasks have been
created from each application with varied problem sizes,
which makes the total of 15 tasks to be scheduled. Table IV
shows the profiles of the applications. MM64 refers to 64x64
matrix multiplication, with 1 to 40 matrices to be computed
among the 5 tasks (evenly distributed). Electrostatics refers
to the fast molecular electrostatics algorithm as a part of the
molecular visualization program VMD [17] and we evenly
vary the atom sizes among 5 tasks. BlackScholes [18],

TABLE II. EXECUTION MODEL VERIFICATION RESULTS

 Sequence
Compute-intensive I/O-intensive

GPU
(us)

Model
(us)

Deviati
on

GPU
(us)

Model
(us)

Deviati
on

In order 4325 3653 15.54% 322 323 2.83%
Reversed 4035 3456 14.35% 269 257 4.29%
Random 4139 3485 15.81% 277 266 3.99%

TABLE III. SEQUENCING HEURISTICS COMPARISONS

 Performance gain over random
for 12 tasks (IM / C-I / IO-I)

Running Time
(12 tasks)

Algorithm 2 6.96% / 7.54% / 6.64% 158us
Algorithm 3 6.96% / 4.93% / 7.86 159us
BruteForce 9.67% / 14.87% / 8.45% 335.48s

Figure 9. Sequencing efficiency:
Intermediate(IM) Tasks

Figure 13. Scheduling efficiency:
Tasks utilizing low resource

Figure 10. Sequencing efficiency:
Compute-intensive(C-I) Tasks

Figure 14. Comparisons of the GPU
and model (Application Benchmark)

Figure 11. Sequencing efficiency:
I/O-intensive(IO-I) Tasks

 Figure 15. Speedups comparisons

Figure 8. Kernel execution
concurrency analysis

Figure 12. Scheduling efficiency:
Tasks utilizing moderate resource

TABLE IV. PROFILES OF APPLICATIONS USED IN THE BENCHMARK

 MM64 Electrostatics BlackScholes
of Tasks 5 5 5

Problem Size
Ranges

64x64 matrix
(1-40 calculations)

4,000-20,000
atoms

100K-500K
calls

of Blks 4 8 2
of Blks/SM 1 1 1

Class IM C-I IM

94

obtained from the NVIDIA CUDA SDK, is a European
option pricing benchmark used in financial field with evenly
varied number of calls among 5 tasks. All 15 tasks have been
profiled using CUDA profiler with resource results such as
number of blocks launched per SM and timing results. We
utilize the results as inputs to the Algorithm 4 and derive the
4 schedules with the proposed 4 heuristics and the modeled
total execution time. The 15 tasks are executed under the
proposed GPU execution framework with derived 4
schedules. When considering the GPU time, we ignore the
inter-group resource (memory and stream) allocation
overheads since they are not considered in the model. The
comparisons are between model and GPU results for all
scenarios as shown in Figure 14. The results demostrate an
agreement between the model and GPU execution with
deviations less than 12%. Figure 15 shows the speedups
achieved from our scheduling appoach. The left bars
demonstrate a 28% performance gain (GPU results) of the
application benchmark (15 tasks) with our scheduling
algorithm over the sequential execution without scheduling
running on the GPU; the middle and right bars demostrate
37% (moderate resource) and 108% (low resource)
performance gains (model results) from a theoretical
scenario which has 200 synthetic tasks to be scheduled.
Therefore, while the proposed scheduling approach improves
the GPU multi-tasking performance and device utilization,
the performance improvements also depend on the task
profiles. In general, our experimental results demonstrate the
efficiency of the proposed scheduling approach and the
accuracy of our execution model analysis.

VI. CONCLUSION AND FUTURE WORK
In this paper, we proposed a scheduling framework

which enables efficient GPU resource sharing among
multiple GPU tasks. Our approach investigated the
concurrency and overlapping potential and scenarios that can
be achieved on modern GPU devices. We analyzed the
execution overlapping scenarios by proposing a multi-
tasking GPU execution model. The analytical model
provides a theoretical performance prediction, which is
utilized by the proposed scheduling framework. We
presented several algorithm heuristics as part of our initial
efforts in addressing the scheduling problem. We further
implemented the presented algorithm heuristics and
conducted a series of experimental benchmarks on our
NVIDIA Fermi GPU computing node, ranging from
evaluating the execution model accuracy and scheduling
efficiency, to evaluation of real-life benchmark performance
gain using our approach. The experimental results
demonstrate that the use of our scheduling approach can
provide significant performance gains. Furthermore, the
results also show an agreement between our execution model
analysis and the actual experiments carried out on the GPU.

Future work should consider improvements to the
performance model to further reduce the deviations observed
from the experiment. This will involve accounting for the
various overheads in GPU execution. Furthermore, speeding
up the scheduling algorithms will provide opportunities for
using the developed framework for run-time task scheduling,

thereby extending the applicability of the proposed approach
for scenarios when multiple CPU processes share a GPU.

ACKNOWLEDGEMENT
This work was supported by the I/UCRC Program of the

National Science Foundation under Grant No. IIP-0706352.

REFERENCES
[1] Top 500 Supercomputer Sites Webpage, http://www.top500.org, Last

Accessed: 28th June 2011.
[2] “NVIDIA CUDA C-Programming Guide,” v3.2, Sep. 8th 2010.
[3] NVIDIA Corporation, “NVIDIA’s next generation CUDA compute

architecture: Fermi,” White paper V1.1, Jun.2009, available online on
http://www.nvidia.com.

[4] GPGPU Webpage, http://www.gpgpu.org, Last Accessed: Oct. 1st 10.
[5] M. Guevara, C. Gregg, K. Hazelwood, K. Skadron, "Enabling Task

Parallelism in the CUDA Scheduler," in Proc. of the Workshop on
Programming Models for Emerging Architectures (PMEA), pp. 69-76,
Sep. 2009.

[6] A. A. Saba and R. Mangharam,“Anytime Algorithms for GPU
Architectures,” in Proc. of the Analytic Virtual Integration of Cyber-
Physical Systems Workshop, Co-located with RTSS, 2010.

[7] L. Chen, O. Villa, S. Krishnamoorthy and G. R. Gao, “Dynamic Load
Balancing on Single- and Multi-GPU Systems,” in Proc. of the 24th
IEEE International Parallel & Distributed Processing Symposium
(IPDPS 2010), Apr. 19-23, 2010.

[8] C. Augonnet, S. Thibault, R. Namyst and P.-A. Wacrenier, “StarPU: a
unified platform for task scheduling on heterogeneous multicore
architectures,” Concurrency and Computation: Practice and
Experience, vol. 23, pp. 187–198, 2011. doi: 10.1002/cpe.1631.

[9] D. Grewe and M. F. P. O’Boyle, “A Static Task Partitioning
Approach for Heterogeneous Systems Using OpenCL,” in Proc. of
the 20th International Conference on Compiler Construction, pp. 286-
305, 2011.

[10] O. Diessel, H. ElGindy, M. Middendorf, H. Schmeck, and B.
Schmidt, “Dynamic scheduling of tasks on partially reconfigurable
fpgas,” IEEE Proc. Computers and Digital Techniques, Special Issue
on Reconfigurable Systems, vol. 147, no. 3, pp. 181–188, May 2000.

[11] M. Huang, V. K. Narayana, H. Simmler, O. Serres, and T. El-
Ghazawi, "Reconfiguration and Communication-Aware Task
Scheduling for High-Performance Reconfigurable Computing," ACM
Transactions on Reconfigurable Technology and Systems (TRETS),
vol. 3, no. 4, pp. 20:1-20:25, Nov. 2010.

[12] P. Saha, “Automatic software hardware co-design for reconfigurable
computing systems,” in Proc. of International Conference on Field
Programmable Logic and Applications, 2007 (FPL 2007), pp. 507-
508, Aug. 2007.

[13] J. Angermeier, S. P. Fekete, T. Kamphans, N. Schweer, J. Teich,
“Maintaining Virtual Areas on FPGAs using Strip Packing with
Delays,” in Proc. of the 17th Reconfigurable Architecture Workshop
(RAW 2010), May 2010.

[14] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “NVIDIA
Tesla: A unified graphics and computing architecture,” IEEE Micro,
pp. 39-55, 2008.

[15] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson, 1996,
“Approximation algorithms for bin packing: a survey,” In
Approximation algorithms for NP-hard problems, Dorit S. Hochbaum
(Ed.), pp. 46-93, PWS Publishing Co., Boston, MA, USA.

[16] D. S. Johnson, “Fast Algorithms for Bin Packing,” Journal of
Computer and System Sciences, vol. 8, pp. 272-314, 1974.

[17] Visual Molecular Dynamics Program Webpage,
http://www.ks.uiuc.edu/Research/vmd/, Last Accessed: Mar. 14th 11.

[18] F. Black and M. Scholes, “The pricing of options and corporate
liabilities,” Journal of Political Economy, vol. 81, no. 3, pp. 637–654,
May-June 1973.

95

