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Abstract—The High Performance Computing (HPC) field is 
witnessing the increasing use of Graphics Processing Units 
(GPUs) as application accelerators, due to their massively 
data-parallel computing architectures and exceptional floating-
point computational capabilities. The performance advantage 
from GPU-based acceleration is primarily derived for GPU 
computational kernels that operate on large amount of data, 
consuming all of the available GPU resources. For applications 
that consist of several independent computational tasks that do 
not occupy the entire GPU, sequentially using the GPU one 
task at a time leads to performance inefficiencies. It is 
therefore important for the programmer to cluster small tasks 
together for sharing the GPU; however, the best performance 
cannot be achieved through an ad-hoc grouping and execution 
of these tasks. In this paper, we explore the problem of GPU 
tasks scheduling, to allow multiple tasks to efficiently share 
and be executed in parallel on the GPU. We analyze factors 
affecting multi-tasking parallelism and performance, followed 
by developing the multi-tasking execution model as a 
performance prediction approach. The model is validated by 
comparing with actual execution scenarios for GPU sharing. 
We then present the scheduling technique and algorithm based 
on the proposed model, followed by experimental verifications 
of the proposed approach using an NVIDIA Fermi GPU 
computing node. Our results demonstrate significant 
performance improvements using the proposed scheduling 
approach, compared with sequential execution of the tasks 
under the conventional multi-tasking execution scenario.  
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I.  INTRODUCTION 
Modern High Performance Computer architecture has 

evolved from the traditional homogeneous architecture 
equipped with only CPUs to the modern heterogeneous 
architecture incorporating CPUs and hardware accelerators. 
Due to the rapid technological advancements in the graphics 
processing field over the past few years, Graphics Processing 
Units (GPUs) have been increasingly used as co-processors 
in High Performance Computing (HPC).  While the use of 
GPUs sacrifices programming generality, it provides 
massively parallel computing and programming architecture 
as well as significantly improved floating-point computing 
performance. As a result, a wide range of HPC systems have 
incorporated GPUs as co-processors to achieve better 
performance for various applications. Example  systems 

include the latest top ranking supercomputer in the Top 500 
list such as Tianhe-1A (Rank 2nd), which is equipped with 
NVIDIA Tesla M2050 GPUs and able to achieve a sustained 
2.57 PFlop/s LINPACK performance [1].  

In order to use GPUs within an application, current 
programming models are based on the use of a separate 
programming language for the GPU. Execution of GPU tasks 
therefore relies on function calls in the main application 
process running on the CPU. Since the main control process 
resides on the CPU, there are overheads associated with 
transferring data back and forth between the CPU and GPU 
memory. Nevertheless, substantial gains in performance can 
be achieved due to the massive computational capability of 
the most recent GPU, with long computations on the GPU 
amortizing the data transfer overheads. Needless to say, the 
best performance in this mode of computation is obtained 
when tasks make the use of all the available GPU 
computational resources or processing cores.  

The number of processing cores utilized by a GPU task is 
directly related to the processed data size, due to the Single-
Instruction, Multiple-Thread (SIMT) programming approach 
followed for GPUs [2]. Although programmers attempt to 
maximize the use of the available SIMT parallelism, 
oftentimes applications have tasks that do not utilize all the 
processing cores in the GPU due to the limited data size they 
operate on. The sequential use of the GPU for accelerating 
each of these tasks leads to performance inefficiencies due to 
the idle GPU resources during the execution of each task. It 
is therefore important for the programmer to cluster these 
small tasks together for sharing the GPU; however, the best 
performance cannot be achieved through an ad-hoc grouping 
and execution of these tasks. A scheduling framework for 
carrying out an off-line clustering and sequencing of GPU 
tasks is therefore essential to be studied and implemented.   

 In this paper, we explore the problem of GPU task 
scheduling to allow multiple tasks to efficiently share the 
GPU and execute in parallel. Our study is based on the 
currently available NVIDIA Fermi class of GPUs that 
support the execution of multiple kernels simultaneously [3].  
We analyze factors affecting multi-tasking parallelism and 
performance, and exploit features available in contemporary 
GPUs, such as concurrent I/O and execution, bi-directional 
data transfers, as well as concurrent kernel execution. For 
NVIDIA GPUs programmed using CUDA [2], the use of 
these capabilities relies on programming constructs called 
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streams, with each stream essentially taking care of the set of 
operations required for executing a task. The programmer 
can make use of CUDA streams to launch independent tasks 
for parallel execution on the GPU, subject to the availability 
of GPU compute resources. Since GPU resource constraints 
prevent the programmer from grouping together all tasks into 
one cluster, the available set of tasks needs to be broken 
down into two or more subsets, with each subset making use 
of streams to launch the constituent tasks for parallel 
execution. Even though GPU tasks within each subset 
execute in parallel, they sequentially make use of the same 
I/O channel for transferring data from the CPU to the GPU 
(and vice versa), and as a result, the order in which the tasks 
are launched becomes an important factor in determining the 
performance of the parallel tasks. 

We therefore propose a scheduling framework to aid the 
programmer in efficiently grouping the available tasks into 
subsets for parallel execution on the GPU, in addition to 
sequencing the launching of tasks within each group. To 
enable efficient scheduling, it becomes necessary to model 
the parallel GPU execution of the clustered group of tasks, 
with the performance prediction based on the compute and 
I/O characteristics of each task. The description of our 
scheduling framework thus begins with a discussion of a 
multi-tasking performance model.  

The remainder of the paper is organized as follows.  
Section II highlights the related work available in the 
literature, followed by a brief background on GPU 
computing in Section III. Subsequently, Section IV describes 
the proposed scheduling framework, including the 
performance model as well as heuristics carrying out the 
required task scheduling. Section V then validates the 
performance model through a set of experiments, followed 
by an evaluation of the proposed scheduling algorithms 
through synthetic tasks as well as actual application kernels 
running on the GPU. Finally, Section VI concludes the work 
and discusses future work. 

II. RELATED WORK 
There are several research efforts related to task 

scheduling in the HPC field. One direction of research has 
looked at scheduling for General-Purpose computation on 
Graphics Processing Units (GPGPU) [4]. In this direction, 
previous work has investigated the problem of GPU resource 
under-utilization by providing task scheduling at various 
levels either statically or at runtime. Guevara et al. [5] 
introduced a GPU kernel merging approach, which merges 
task workloads that underutilize the GPU resource. The work 
focuses mainly on providing a runtime environment that 
intercepts kernel invocation as the scheduling inputs and 
makes scheduling decision by making necessary kernel 
merges. A similar approach was adopted by Saba et al. [6]. 
They presented an algorithm for GPU architectures that 
would adaptively allocate GPU resource matching the goals 
and loads for large workloads. Their approach focuses on a 
time-bound algorithm that measures the output quality and 
optimizes the execution path. While the approach targets a 
different problem with large runtime workloads, they also 
employ a similar kernel-merging approach to increase the 

GPU utilization. Furthermore, Chen et al. [7] proposed a task 
queue scheme, by utilizing a kernel-merging approach that 
merges the kernels of the workloads into the persistent 
kernel, to achieve dynamic load balancing on the GPU 
systems Although these approaches improve task 
parallelism and the GPU utilization, they suffer from several 
drawbacks. Firstly, [5][6] do not consider the task data 
transfer metrics in the scheduling approach, which is not 
negligible since data transfer time is a key factor that 
determines multi-tasking performance. Secondly, the GPU 
architecture used by these work are superseded by the latest 
Fermi architecture, which provides further kernel parallelism 
support. Thus, with Fermi, kernel-merging approach would 
not be necessary. Furthermore, kernel-merging approach 
would require additional programming efforts, which would 
also pose a programmability problem to be solved.  

Another stream of similar research concentrates on task 
scheduling on heterogeneous architectures [8][9]. [8] 
presented StarPU, which is a runtime execution model based 
platform allowing easy programmability and co-scheduling 
of both GPU and CPU tasks targeting at a general 
heterogeneous platform. Similarly, [9] discussed a static task 
partitioning approach for heterogeneous system composed of 
both CPUs and GPUs with predictive execution model 
approach. While both work employed execution model 
prediction approach (combined coarse-grained CPU and 
GPU model), which is also the approach we use (fine-
grained GPU task model) in this paper, our approach draws 
the difference in tackling a different scheduling problem, 
which is the scheduling of static GPU tasks by performing a 
finer-grained task execution modeling and scheduling. 

Task scheduling on other types of co-processors such as 
Field-Programmable Gate Arrays (FPGAs) has also been 
studied in the literature. For example, [10] described an early 
attempt by using task scheduling to efficiently share the 
FPGA with partial run-time reconfiguration. [12] discussed 
the Reconfigurable Computer(RC) task scheduling with a 
HW/SW automatic co-design approach. [11] explored the 
FPGA task scheduling problem with the consideration of 
inter-task data communication. In [13], Angermeier et al. 
proposed a virtual area management approach to pack 
hardware modules with time-varying resource requests 
efficiently and tackled the problem by designing a series of 
heuristics. Our work in this paper also defines a similar 
scheduling problem and uses similar heuristics. However, in 
this paper, we target at a completely different problem of 
static multi-tasking GPU scheduling to improve resource 
utilization, which has not been tackled before. We 
investigate the problem by considering task I/O and resource 
profiling, multiple inter-task concurrency scenarios, derived 
execution model as well as multiple scheduling heuristics. 

III. BACKGROUND 
  We provide a brief overview of CUDA [2] and NVIDIA 

GPU architecture in this section. Our further analysis will be 
based on CUDA programming model and NVIDIA Fermi 
architecture [3]. CUDA is the parallel programming model 
provided by NVIDIA following master-slave model. The 
master-slave flow follows that the CPU master process 
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launches the GPU program, sends the data to GPU device 
memory, waits for the GPU to finish executing and retrieves 
the result data. Currently, CUDA does not allow the 
interruption of a GPU program once it starts, limiting the 
GPU tasks to be atomic. The finest execution unit in CUDA 
is the thread, which is grouped into two hierarchical levels: 
blocks and grids. A CUDA program is launched per grid by 
executing a kernel function. A grid is composed of a number 
of blocks and each block contains a number of threads. A 
detailed description of NVIDIA Tesla GPU architecture is 
provided by [14]. Figure 1 shows the latest Fermi 
architecture from NVIDIA. From a top-down overview, 
Fermi is consisted of 16 Streaming Multiprocessors (SMs), 
each of which can be further decomposed of 32 Streaming 
Processors (SPs). Each thread block can only run on a single 
SM. Inside each SM, while each thread is executed on an SP; 
threads are dispatched as warps (a group of 32 threads) at 
one time. Moreover, 48 warps (Fermi) can be tracked on 
each SM allowing up to 1,536 concurrent threads per SM.  

Since GPU kernel execution is non-preemptive, the 
launching of one kernel blocks the execution of other kernels 
until current one finishes. Thus multi-tasking execution on 
GPU generally follows sequential execution. Fermi employs 
concurrent kernel execution through CUDA streams. By 
using streams, further overlapping such as concurrent I/O 
and kernel execution and concurrent bi-directional I/O can be 
achieved. However, the required number of streams need to 
be allocated statically a priori, and the launching of kernels 
either sequentially or in an ad-hoc manner through random 
streams leads to resource waste since no prior scheduling 
decision has been made; thus this leads us to further discuss 
the proposed task scheduling and execution framework to 
tackle the problem by utilizing kernel and I/O concurrency 
support from Fermi in the following sections. 

IV. SCHEDULING APPROACH 
In this section, three major components of our approach 

are presented. We first conduct a profiling study of GPU 
tasks under multi-tasking scenario. As we are interested in 
improving the performance of multiple independent tasks, 
tasks are treated equally as non-interruptible GPU kernels. In 
the meantime, we analyze necessary task timing and resource 
metrics to be considered in our execution model and 
scheduling study. In the text that follows, we present the task 
execution model based on the optimized task execution 

scenario, which provides the task execution flow and 
performance prediction of a task sequence. We further define 
the multi-tasking scheduling problem; analyze the problem 
based on the execution model and present several scheduling 
algorithm heuristics as the scheduling problem solution. 

A. Task Profiling Analysis and Metrics Definition 
The primary goal in conducting preliminary task 

profiling is to utilize characteristics of each task and derive 
corresponding performance metrics as a way of performance 
prediction. We define both timing and resource metrics to be 
profiled for tasks. While timing metric is mainly used for 
deriving predicted execution time, the resource metric is 
defined to analyze the possible inter-task concurrency. 

For timing profiles of each task, we define the metrics 
explained as follow. Since offloading a single task on the 
GPU involves initializing the required GPU resource such as 
GPU context, we define the GPU initialize time as one 
general timing metric. The initialization time is generally a 
one-time overhead per task can also be referred as a “warm-
up” time when the GPU starts to execute the task. For each 
GPU task, the execution cycle is composed of the following 
stages. The task sends the input data to the GPU device 
memory, followed by computing the task and retrieving the 
result data back from the GPU device memory, as shown in 
Figure 2 with the timing metric defined for each stage.  

When considering GPU resource metrics, we consider 
the GPU resource utilization of each task (Rtask) and define it 
as (task resource utilization / full resource of the GPU) in 
general with details shown in equation 1. The amount of 
GPU resource utilized by one task primarily depends on the 
data parallelism of the task kernel. While some tasks with 
enough data parallelism can fully utilize the GPU, most tasks 
without being described as embarrassingly parallel can only 
utilize partial resource. In each task (kernel), threads are 
allocated with computing resource in the SMs such as 
registers and special functional units. Thus, the total number 
of threads of the task determines the fine-grained resource 
utilization. While one block only runs on an SM, CUDA also 
allows multiple blocks to run on a single SM. This only 
happens when the block cannot fully utilize the SM resource. 
The metric considers the full point block # of the task to be 
the number of blocks that will be used when all the GPU 
SMs are utilized, which is the product of the number of SMs 
on the GPU and the number of blocks running on each SM. 
Thus, the metric defined in equation 1 provides the basis for 
analyzing multi-tasking resource sharing in the following 
discussions of the analytical multi-tasking GPU execution 
model and the scheduling algorithms.  
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Figure 1.   A top-down overview of Fermi architecture 
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Tinit Tdata_in Tcomp Tdata_out  
Figure 2.   A GPU execution cycle for a single task 
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The tradition multi-tasking scenario follows sequentially 
executing each task, where resource can be under-utilized 
and no inter-task concurrency occurs. The key approach to 
avoid resource underutilization among multiple tasks is to 
achieve inter-task parallelism. Thus, we propose a multi-
tasking execution scenario on the GPU, which our further 
execution framework is based on. At the presence of 
multiple GPU tasks, the execution scenario we propose to 
efficiently execute all tasks is to divide tasks into task groups 
and execute each group sequentially. Each task group needs 
to be able to provide full task parallelism, which requires that 
each group has enough SM resource for the each task within 
the group. Therefore, under CUDA architecture, each task 
needs to be launched in a separate asynchronous stream. By 
launching tasks through streams, three kinds of inter-task 
concurrency can be achieved on Fermi: the concurrency of 
data transfer and task computation, task computations and bi-
directional data transfers.  

2) The Multi-Tasking Execution Model  
When tasks are grouped and executed sequentially with 

the proposed task execution scenario, the execution model 
emulates the asynchronous stream execution scenarios for 
each group with possible inter-task overlapping. It uses 
profiling metrics from each task and predicts the execution 
time of tasks in a group. To merely demonstrate the inter-
task overlapping, we first show a special execution scenario 
with identical tasks. Since the task group has been given full 
task parallelism, all tasks can execute concurrently. As the 
execution model is used to provide a performance upper 
bound, we further make the assumptions that single 
directional data transfers are atomic and cannot be 
overlapped or interrupted. In other words, single directional 
data transfers always take the full I/O bandwidth. Thus, as 
shown in Figure 3, the next task can only start after the first 
task finishes inbound data transfer. Since CUDA stream 
execution allows both task execution and inbound data 
transfer from one stream to overlap with the task execution 
and outbound data transfer from another stream,  both Figure 
3(a) and Figure 3(b) demonstrate the concurrencies occurred.  
By assuming data transfers are atomic, we use Figure 3(a) 
and Figure 3(b) to show two scenarios when data retrieving 
wait occurs in Figure 3(b) but does not occur in Figure 3(a). 

As the output of the model, the predicted finish time is based 
on the finishing point of the last completed task in the model.  

We further apply a general case to the model when 
multiple tasks have varied profiles as described in Figure 4. 
Since each task can achieve a complete overlapping for both 
“send data” and “compute” with the prior task, we define the 
point for a task to finish “compute” stage without proceeding 
to “retrieve data” as “finish_comp” point. Different from the 
special case with identical tasks that “finish_comp” of each 
task follows the task starting order, tasks reach 
“finish_comp” point out of order in the general case. Thus, 
the “retrieve data” stage for each task also occurs out of 
order and follows “First-Finish, First-Served (FF-FS)” policy 
as shown in Figure 4. The last “retrieve data” determines the 
total time of finishing all tasks as the model output. 

Table I defines necessary parameters for both the 
execution model and the algorithm. As the execution model 
focuses on the general multi-tasking scenario, we first 
present an algorithm that generalizes the total time of 
executing all tasks in a group for the model, as shown in 
Algorithm 1. The algorithm follows the FF-FS policy for the 
“retrieve data” stage and performs the sorting based on 
Tfinish_comp_t(i). Since “retrieve data” stage is atomic, the sorting 
enables deriving the finishing time of the last task in the 
sorted task list, therefore outputs the total time for the model. 
By using Algorithm 1, given a task group with a defined 
sequence, the expected total group time can be derived, as 
shown in Figure 5 by an example. While Algorithm 1 does 
the task-sorting based on “finish_comp” point, it does not 
change the task sequence since the sorting is only used for 

GPU Initialization Send Data Compute Retrieve Data
Task 1

Task 2

Task 3

Task N

Finish Time For N Tasks

Send Data Compute Retrieve Data

Send Data Compute Retrieve Data

Send Data Compute Retrieve Data

Figure 3(a).   A special multi-tasking execution scenario without data 
retrieving wait, when all tasks have the same profile 

GPU Initialization Send Data Compute Retrieve Data
Task 1

Task 2

Task 3

Task N

Finish Time For N Tasks

Send Data Compute Retrieve Data

Send Data Compute Retrieve Data

Send Data Compute

Wait

W

Wait Retrieve Data

Figure 3(b).   A special multi-tasking execution scenario with data 
retrieving wait, when all tasks have the same profile 

TABLE I.      PARAMETERS DEFINED 

Ntask The number of GPU tasks to be executed in the group 

Tinit 
The average time to initialize the GPU device and 

corresponding GPU contexts 

Tdata_in_t(i) 
The average time for task i to transfer the data into the 

GPU device memory 

Tdata_out_t(i) 
The average time for task i to retrieve the data back 

from the GPU device memory 

Tcomp_t(i) The average time for the GPU to compute the task i 

Tfinish_comp_t(i) 
The total time it takes for task i to reach “finsh_comp” 

point since the execute model starts   

Ttotal_t(i) 
The total time it takes for task i to finish since the 

execution model starts   

Ttotal_grp(m) 
The total time it takes for the task group m to finish, 

which is the output of the Algorithm 1 

Ttotal 
The total time it takes for all tasks in all task groups to 

finish, which is the output of the model 

Rtask_t(i) 
The GPU resource utilization metric defined earlier for 

task i 

RGPU The GPU full resource point as defined earlier 

GPU Initialization Send Data Compute Retrieve Data

Send Data Compute

Send Data Compute

Send Data Compute

Task 1

Task 2

Task 3

Task N

Retrieve Data

Retrieve 
Data

Retrieve 
DataWait

Wait

Wait

Finish Time For N Tasks

Task 1 Task 2 Task 2 Task N…...Input Data Bus 

Task 2Output Data Bus Task 1 ... Task N Task 3

Figure 4.  A general multi-tasking execution scenario 
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deriving the total time. We also choose not to consider Tinit in 
Algorithm 1 and further analysis only because Tinit is a 
constant overhead and does not affect the model and further 
scheduling results with varied task profiles. 

In multi-tasking scenario, the execution model targets at 
all tasks in a single task group. Since many tasks cannot be 
fit into a single group due to the resource constraint. 
Different groups need to be executed sequentially, with a 
barrier between two groups. We simply model the multiple 
group execution total time, Ttotal, by sequentially adding 
Ttotal_grp(m) of each group, as shown in Figure 6.  
C. The Scheduling Problem and Algorithm Heuristics 

As we propose the scenario of executing task groups and 
the total execution time of all tasks depends on the number 
of groups, finding the smallest number of groups becomes 
one of the key scheduling issues. Meanwhile, when 
executing each task group using the proposed execution 
scenario and model, different task execution sequences give 
varied group execution time. Thus, finding the best execution 
sequence within each group becomes the other scheduling 
problem. By considering both task grouping and sequencing 
problems, we define the multi-tasking scheduling problem, 
which is to find the grouping scenario that minimizes the 

number of groups while giving out an optimized task 
sequence with the minimum execution time for each group. 

We first consider the sequencing algorithm for tasks 
within a task group. The sequencing problem can be solved 
by the brute-force method, which tries every possible 
sequence permutation and applies Algorithm 1 to find the 
task sequence with shortest execution time. While the brute-
force method gives the optimal time, the time consuming 
nature of this approach motivates us to find additional faster 
heuristics. We therefore propose two heuristics for the 
sequencing problem as part of our initial efforts, as outlined 
in both Algorithm 2 and 3.  Both algorithms are based on a 
greedy approach to choose the next task within a group of 
tasks.  The main idea of the heuristics is to always achieve 
the maximum inter-task overlapping. In other words, starting 
by executing the task with maximum (Tcomp_t(i) + Tdata_out_t(i)),  
both heuristics choose the next task with the maximum 
overlapping with the current task. If the maximum 
overlapping (Tcomp_t(current) + Tdata_out_t(current)) can be found 
among multiple tasks, both algorithms choose the next task 
with maximum (Tcomp_t(next) + Tdata_out_t(next)). If not, Algorithm 
2 focuses on the priority of Tcomp_t(i), which guarantees the 
task with the longest Tcomp_t(i)  to be executed as early as 
possible, and Algorithm 3 focuses on the priority of 
Tdata_in_t(i), which ensures starting the “compute” stage of the 
next task as early as possible (with shortest Tdata_in_t(i)).    

For the task grouping problem, all tasks need to be 
grouped into a finite number of groups while minimizing the 

Algorithm 1: Algorithm for the Execution Model 
Input: Ntask GPU tasks in task group m with profiling 
information 
for i = 1 to Ntask 

        Tfinish_comp_t(i) = )(_
1

)(__ )( itcomp

i

n
ntindata TT ��

�

; 

Sort Ntask tasks according to Tfinish_comp_t(i) in an ascending 
order, giving Tlistsorted; 
Using Tlistsorted 
    Ttotal_t(1) = Tfinish_comp_t(1) + Tdata_out_t(1); 
    for i = 2 to Ntask in Tlistsorted 
         j = i-1; 
        Ttotal_t(i)  = MAX (Tfinish_comp_t(i), Ttotal_t(j)) +  Tdata_out_t(i); 
        Ttotal_grp(m) = Ttotal_t(Ntask); 
Output: Ttotal_grp(m) 

GPU Initialization Send Data Compute

Send Data Compute
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Send Data Compute

Task 1

Task 2

Task 3

Task N

Sort by Tfinish_comp to get a sorted task list for algorithm 
purpose only (actual sequence does not change)

Task 2
GPU Initialization

Task 1

Task 3

Task N

Task 2
GPU Initialization

Task 1

Task 3

Task N

Adding the retrieve data time by one by one comparison

Retrieve Data

Retrieve Data

Retrieve 
Data

Retrieve 
Data

Final Finish Time 

Send Data Compute

Send Data Compute

Send Data Compute

Send Data Compute

Send Data Compute

Send Data Compute

Send Data Compute

Send Data Compute

Figure 5. Deriving method of Algorithm 1 by an example  

Task Sequencing Heuristics: Algorithm 2 (Tcomp 
Prioritized) and Algorithm 3 (Tdata_in Prioritized)  

Input: Ntask GPU tasks with profiling information (Tlist) 
In Tlist 
find the task m with MAX (Tcomp_t(m) + Tdata_out_t(m)); 
swap_task (Tlist(1), Tlist(m)); 
for i = 1 to Ntask – 1 in Tlist 

for j = i + 1 to Ntask 
    if (there exist tasks that meet (Tdata_in_t(j) + Tcomp_t(j)) 

≥ (Tcomp_t(i) + Tdata_out_t(i))) 
        find task k with MAX (Tcomp_t(k) + Tdata_out_t(k)) 

within all found tasks meeting the previous requirement; 
            swap_task (Tlist(i+1), Tlist(k)); 
        else 
            (Algorithm 2) find task k with MAX (Tcomp_t(k)); 
                                      OR 
            (Algorithm 3) find task k with MIN (Tdata_in_t(k)); 
            swap_task (Tlist(i+1), Tlist(k)); 
Output: Tlist; 
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Figure 6. Total execution time deriving of multiple task groups 
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number of groups. As our goal is to provide each group with 
complete execution concurrency, the grouping policy 
considers Rtask of all tasks and constrains that the total Rtask in 
each group does not exceed RGPU. Thus, the problem can be 
categorized as a general NP-hard bin-packing problem [15]. 
As an initial effort, we consider using the following two bin-
packing heuristics: FirstFit and BestFit. FirstFit is the 
heuristic that places the task in the first group where the task 
fits. BestFit is the heuristic that considers all groups where 
the task fits and places the task in the fullest group. With 
both grouping heuristics, we formalize the main scheduling 
algorithm as shown in Algorithm 4. It first conducts the 
sorting of all tasks based on Rtask. This is for better bin-
packing results by grouping the task with largest Rtask first 
[16]. We apply the two bin-packing heuristics first to group 
tasks into m groups and perform sequencing to the m groups 
using the sequencing heuristics. For the derived sequence of 
each group, we apply Algorithm 1 to derive Ttotal_grp(i) for 
each group and summarize Ttotal. Algorithm 4 gives both the 
grouping and sequencing results as well as Ttotal as outputs. 

V. IMPLEMENTATIONS AND RESULTS 
The proposed execution model and algorithm are based 

on modern GPU’s capability of asynchronous kernel 
execution and data transfer. In other words, the model 
emulates the GPU execution scenario when multiple tasks 
take asynchronous CUDA streams to achieve inter-task 
overlapping. Figure 7 shows the details of the proposed GPU 
execution framework, which is used for our further 
benchmarks. The framework initially creates the required 
GPU execution resources for the task group such as CUDA 
streams and host pinned memory for the concurrent data-

transfer and execution. It executes each task within a group 
using a single CUDA stream based on the scheduling 
sequencing results. The execution performs sequentially for 
each task group until all groups have been executed. 

To demonstrate the efficiency of our approach in 
executing multiple GPU tasks with scheduling, we start with 
analyzing the proposed execution model and scheduling 
framework by conducting several micro-benchmarks. We 
primarily use micro-benchmarks to evaluate the accuracy of 
the proposed model with GPU results, followed by 
evaluating the efficiencies of the proposed algorithm 
heuristics. We further utilize an application benchmark to 
show the advantage of our scheduling approach by 
comparing multi-tasking execution using the proposed 
scheduling framework with native sequential task execution. 
The experiments are conducted on our GPU computing node. 
The node is equipped with NVIDIA Tesla C2070 (Fermi) 
computing GPU with 14SMs running at 1.15 GHz and 6GB 
device memory, which allows maximum 16 concurrent 
running tasks (kernels). The node also has dual Intel Xeon 
X5570 quad-core hyper-threading CPU running at 2.93 GHz 
and 48 GB system memory. The CUDA version is 3.2, 
which runs under Ubuntu 10.10 with 2.6.32-30 Linux kernel. 

To demonstrate the prediction accuracy of the model, we 
first utilize the micro-benchmark, which is composed of a 
sequence of 14 vector multiplication GPU kernels (1 block 
of kernel size), to compare the GPU running time versus the 
predicted time from the model. We choose 14 kernels due to 
availability of 14 SMs within the chosen GPU platform [2]. 
The kernel computing intensity has been varied based on the 
number of vectors used in the computation. By adjusting the 
kernel computing intensity, we divide our analysis into two 
categories: compute-intensive and I/O-intensive applications, 
to analyze computing and I/O behavior separately, as shown 
in Table II. For each category, we evaluate three types of 
task (kernel) sequences under the model: in order, reversed 
order and random order based on the order of Tfinish_comp_t(i) in 
the task sequence. When “in order”, Tfinish_comp_t(i) follows the 
sequence starting order,  and  when “reversed ”, Tfinish_comp_t(i) 
follows the reversed sequence starting order. “Random” 
simply makes the case when Tfinish_comp_t(i)  does not follow the 
sequence starting order. The reason we choose to use varied 
orders is to verify the correctness of Algorithm 1 in 
conducting the sorting-based calculation. By comparing the 
task sequence execution time on the GPU and the model 
prediction, we derive the model deviations for all cases, as 
shown in Table II. For data-intensive task sequence, the 
model matches the GPU results very well, which 
demonstrates that, our I/O assumption in the model agrees 
with reality. For compute-intensive task sequence, the model 
deviation is around 15%, which still matches the GPU result 
well. Meanwhile, we further conduct a concurrency analysis 
of running the same compute-intensive vector multiplication 
kernels but with zero I/O. We use an increasing number of 
streams to show the concurrent kernel execution occurred. 
As shown in Figure 8, as the stream number increases while 
each stream carries one kernel, the total execution time 
increases slightly until a sharp increase from 14 to 15 
streams. This is due to the fact that there are 14 SMs in 

Algorithm 4: Main Task Scheduling  
Input: All GPU tasks with profiling information 
Sort all tasks according to Rtask in a descending order, 
giving the sorted task list Tlistsorted; 
Using Tlistsorted 

Perform bin-packing heuristic(FirstFit, BestFit) on   
Tlistsorted, giving m task groups; 
for i = group 1 to group m 

Perform the sequencing heuristc(Algorithm 2, 3) ; 
Perform Algorithm 1 giving Ttotal_grp(i); 

        Ttotal = Ttotal + Ttotal_grp(i); 
Output: m groups of sequenced tasks, Ttotal; 

 
GPU Initialization

CUDA pinned memory allocation

CUDA stream initialization(N streams)
CUDA device memory allocation for all N tasks in group i

Starts executing all N CUDA streams by sequence
Stream 1 start point
AsycMemCpy H2D

Asynchronously 
Launches Task 1 

AsycMemCpy D2H

CUDA Thread synchronization

Stream 1 end point

Stream 2 start point
AsycMemCpy H2D

Asynchronously 
Launches Task 2 

AsycMemCpy D2H
Stream 2 end point

for task group i = 1 to M
Scheduling Outputs:

M groups
N task in each group

Repeat for all groups

Scheduling Output:
Task sequence

Stream N start point
AsycMemCpy H2D

Asynchronously 
Launches Task N 

AsycMemCpy D2H
Stream N end point

Figure 7. The GPU execution framework  
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C2070 and each kernel is using one block that occupies one 
SM. It also shows that inter-kernel overlapping involves 
slight overheads with the increasing number of concurrent 
kernels to be executed, which has not been considered in the 
proposed model and explains the slightly higher model 
deviation for compute-intensive task sequence.  

With the verified model accuracy, we analyze the 
algorithm heuristics by using synthetic micro-benchmarks. 
We first analyze the efficiency of the proposed sequencing 
heuristics and use three types of workloads which have the 
randomly generated task profiles(in certain intervals (ms)): 
intermediate(IM) (50<Tcomp<100,50<TI/O<100), compute-
intensive(C-I) (500<Tcomp<1000,50<TI/O<100), and I/O 
intensive(IO-I) (50<Tcomp<100,500<TI/O<1000). We compare 
the model results from the two proposed sequencing 
heuristics with model results from both a random sequence 
and the optimal sequence (by the brute-force method), as 
shown in Figure 9, 10, 11 for all three types of workloads. 
While both heuristics perform close to the optimal results, 
Algorithm 3 performs slighter better than Algorithm 2 in IM 
and IO-I applications due to its priority of starting the 
“compute” stage early for more concurrency. Algorithm 2 
only performs better in C-I applications due to giving 
priority to tasks with the longest Tcomp, which is especially 

helpful in providing more concurrency when tasks have 
longer Tcomp and shorter Tdata_in. Table III describes the 
performance gain of the sequencing algorithms over a 
random sequence as well as the algorithm running time, 
which shows that both heuristics can provide near optimal 
results with much less running time.  

We further analyze the scheduling efficiency of 
Algorithm 4 by increasing the task count and comparing the 
model results from four proposed heuristics (FirstFit-A2, 
FirstFit-A3, BestFit-A2, and BestFit-A3) with the sequential 
results using the synthetic task workload (Intermediate 
Tasks). Figure 12 shows the scenario when tasks utilizing 
moderate resources (Rtask is randomly generated from 25% to 
75%) while Figure 13 shows when tasks utilizing lower 
resources (Rtask is randomly generated from 5% to 25%). As 
the results show, BestFit performs slightly better than 
FirstFit with better grouping results and Algorithm 3 
performs slightly better than Algorithm 2 in both cases. In 
general, the lower resource tasks utilize, the higher inter-task 
concurrency can be achieved using our scheduling approach.   

As a step further, we utilize the application benchmark 
composed of 3 applications. 5 different tasks have been 
created from each application with varied problem sizes, 
which makes the total of 15 tasks to be scheduled. Table IV 
shows the profiles of the applications. MM64 refers to 64x64 
matrix multiplication, with 1 to 40 matrices to be computed 
among the 5 tasks (evenly distributed). Electrostatics refers 
to the fast molecular electrostatics algorithm as a part of the 
molecular visualization program VMD [17] and we evenly 
vary the atom sizes among 5 tasks. BlackScholes [18], 

TABLE II.      EXECUTION MODEL VERIFICATION RESULTS 

 Sequence 
Compute-intensive I/O-intensive 

GPU
(us) 

Model 
(us) 

Deviati
on 

GPU
(us) 

Model 
(us) 

Deviati
on 

In order 4325 3653 15.54% 322 323 2.83% 
Reversed 4035 3456 14.35% 269 257 4.29% 
Random 4139 3485 15.81% 277 266 3.99% 

TABLE III.      SEQUENCING HEURISTICS COMPARISONS 

 Performance gain over random 
for 12 tasks (IM / C-I / IO-I) 

Running Time 
(12 tasks) 

Algorithm 2 6.96%  /  7.54%  /  6.64% 158us 
Algorithm 3 6.96%  /  4.93%  /  7.86 159us 
BruteForce 9.67%  /  14.87%  /  8.45% 335.48s 

Figure 9. Sequencing efficiency: 
Intermediate(IM) Tasks  

 

Figure 13. Scheduling efficiency: 
Tasks utilizing low resource 

Figure 10. Sequencing efficiency: 
Compute-intensive(C-I) Tasks 

 

Figure 14. Comparisons of the GPU 
and model (Application Benchmark) 

Figure 11. Sequencing efficiency: 
I/O-intensive(IO-I) Tasks 

 

 Figure 15. Speedups comparisons 

Figure 8. Kernel execution 
concurrency analysis 

  

Figure 12. Scheduling efficiency: 
Tasks utilizing moderate resource 

TABLE IV.      PROFILES OF APPLICATIONS USED IN THE BENCHMARK  

  MM64 Electrostatics BlackScholes 
# of Tasks  5 5 5 

Problem Size 
Ranges  

64x64 matrix 
(1-40 calculations) 

4,000-20,000 
atoms 

100K-500K 
calls 

# of Blks 4 8 2 
# of Blks/SM 1 1 1 

Class IM C-I IM 
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obtained from the NVIDIA CUDA SDK, is a European 
option pricing benchmark used in financial field with evenly 
varied number of calls among 5 tasks. All 15 tasks have been 
profiled using CUDA profiler with resource results such as 
number of blocks launched per SM and timing results. We 
utilize the results as inputs to the Algorithm 4 and derive the 
4 schedules with the proposed 4 heuristics and the modeled 
total execution time. The 15 tasks are executed under the 
proposed GPU execution framework with derived 4 
schedules. When considering the GPU time, we ignore the 
inter-group resource (memory and stream) allocation 
overheads since they are not considered in the model. The 
comparisons are between model and GPU results for all 
scenarios as shown in Figure 14. The results demostrate an 
agreement between the model and GPU execution with 
deviations less than 12%. Figure 15 shows the speedups 
achieved from our scheduling appoach. The left bars 
demonstrate a 28% performance gain (GPU results) of the 
application benchmark (15 tasks) with our scheduling 
algorithm over the sequential execution without scheduling 
running on the GPU; the middle and right bars demostrate 
37% (moderate resource) and 108% (low resource) 
performance gains (model results) from a theoretical 
scenario which has 200 synthetic tasks to be scheduled. 
Therefore, while the proposed scheduling approach improves 
the GPU multi-tasking performance and device utilization, 
the performance improvements also depend on the task 
profiles. In general, our experimental results demonstrate the 
efficiency of the proposed scheduling approach and the 
accuracy of our execution model analysis.  

VI. CONCLUSION AND FUTURE WORK 
In this paper, we proposed a scheduling framework 

which enables efficient GPU resource sharing among 
multiple GPU tasks. Our approach investigated the 
concurrency and overlapping potential and scenarios that can 
be achieved on modern GPU devices. We analyzed the 
execution overlapping scenarios by proposing a multi-
tasking GPU execution model. The analytical model 
provides a theoretical performance prediction, which is 
utilized by the proposed scheduling framework. We 
presented several algorithm heuristics as part of our initial 
efforts in addressing the scheduling problem. We further 
implemented the presented algorithm heuristics and 
conducted a series of experimental benchmarks on our 
NVIDIA Fermi GPU computing node, ranging from 
evaluating the execution model accuracy and scheduling 
efficiency, to evaluation of real-life benchmark performance 
gain using our approach. The experimental results 
demonstrate that the use of our scheduling approach can 
provide significant performance gains. Furthermore, the 
results also show an agreement between our execution model 
analysis and the actual experiments carried out on the GPU.  

Future work should consider improvements to the 
performance model to further reduce the deviations observed 
from the experiment. This will involve accounting for the 
various overheads in GPU execution.  Furthermore, speeding 
up the scheduling algorithms will provide opportunities for 
using the developed framework for run-time task scheduling, 

thereby extending the applicability of the proposed approach 
for scenarios when multiple CPU processes share a GPU. 
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