
Accelerated High-Performance Computing Through
Efficient Multi-Process GPU Resource Sharing

Teng Li
ECE Department

The George Washington
University

tengli@gwu.edu

Vikram K. Narayana
ECE Department

The George Washington
University

vikram@gwu.edu

Tarek El-Ghazawi
ECE Department

The George Washington
University

tarek@gwu.edu

ABSTRACT
The HPC field is witnessing a widespread adoption of GPUs
as accelerators for traditional homogeneous HPC systems.
One of the prevalent parallel programming models is the
SPMD paradigm, which has been adapted for GPU-based
parallel processing. Since each process executes the same
program under SPMD, every process mapped to a CPU
core also needs the GPU availability. Therefore SPMD de-
mands a symmetric CPU/GPU distribution. However, since
modern HPC systems feature a large number of CPU cores
that outnumber the number of GPUs, computing resources
are generally underutilized with SPMD. Our previous efforts
have focused on GPU virtualization that enables efficient
sharing of GPU among multiple CPU processes. Neverthe-
less, a formal method to evaluate and choose the appropri-
ate GPU sharing approach is still lacking. In this paper,
based on SPMD GPU kernel profiles, we propose different
multi-process GPU sharing scenarios under virtualization.
We introduce an analytical model that captures these shar-
ing scenarios and provides a theoretical performance gain
estimation. Benchmarks validate our analyses and achiev-
able performance gains. While our analytical study pro-
vides a suitable theoretical foundation for GPU sharing, the
experimental results demonstrate that GPU virtualization
affords significant performance improvements over the non-
virtualized solutions for all proposed sharing scenarios.

Categories and Subject Descriptors
C.4 [PERFORMANCE OF SYSTEMS]: Modeling
techniques; C.1.3 [PROCESSOR ARCHITECTURES]:
Other Architecture Styles—Heterogeneous (hybrid) systems

General Terms
Design, Performance, Measurement, Verification

Keywords
GPU, Resource Sharing, Virtualization, HPC, SPMD

1. INTRODUCTION
Recent years have seen the proliferation of GPUs as ap-

plication accelerators in HPC systems. Contemporary ex-
amples include the latest Cray XK6 [5], SGI Altix UV [10]

Copyright is held by the author/owner(s).
CF’12,May 15–17, 2012, Cagliari, Italy.
ACM 978-1-4503-1215-8/12/05.

and the Tianhe-1A supercomputer [1]. To program current
GPU-based heterogeneous HPC systems, Single-Program
Multiple-Data (SPMD) [6] is still the most common paral-
lel programming model, under which all processors execute
the same program. However, it can be challenging to exe-
cute programs under SPMD for GPU-based HPC systems,
primarily due to the asymmetrical CPU/GPU distribution
and thus leading to system resource (CPUs) underutiliza-
tion. While SPMD requires a 1 to 1 CPU/GPU ratio, with
the fast advancement of multi/many core technologies, the
increasing CPU/GPU ratio is making the resource underuti-
lization a more severe problem. In this paper, we propose
to share the GPU resource among multiple processors under
multiple sharing scenarios. The proposed sharing scenarios
are primarily based on our GPU virtualization approach [7],
which provides a virtual 1 to 1 CPU/GPU ratio and efficient
GPU sharing among multiple processes. It allows GPU ker-
nels from multiple processes to achieve concurrent execution
as well as overlapped execution and GPU I/O. Meanwhile,
the profiles of the GPU applications primarily determine
the actual resource sharing scenario. Thus, varied sharing
efficiency can be achieved under different sharing scenarios.
Depending upon the GPU kernel profile and the number of
SPMD processes, we propose that multiple identical GPU
kernels from the SPMD program can share the GPU under
four sharing scenarios, which are analyzed using our pro-
posed analytical model. We conduct further benchmarks
as verifications of the proposed sharing scenario modeling
analysis as well as experimental studies on comparing GPU
sharing efficiencies under the virtualization.

2. GPU SHARING SCENARIOS
Modern GPUs are composed of many Streaming Multi-

processors (SMs) which execute thread blocks. With the
virtualization approach, multiple kernels are simultaneously
launched from a single daemon process (virtualization layer
which intercepts requests from all CPU processes) through
CUDA streams. Based on how GPU thread blocks (from all
kernels) occupy the SMs, we expect four GPU sharing sce-
narios: Exclusive Space Sharing, Non-exclusive Space Shar-
ing, Space/Time Sharing, Time Sharing. We define neces-
sary parameters for further analysis as shown in Table 1.
We assume that the GPU assigns all blocks to free SMs un-
til every SM is occupied, before assigning additional blocks
to an SM. Therefore, if the total number of blocks from all
SPMD kernels does not exceed (NSM), kernels will execute
on independent SMs, resulting in a space-sharing scenario.

When kernels from all processes can co-exist on the GPU

269

Init Send Data Compute Rtrv Data
Tinit Tdata_in Tcomp Tdata_out

Ctx Switch Send Data Compute Rtrv Data
Tctx_switch Tdata_in Tcomp Tdata_out

Init
Tinit

Ctx Switch Send Data Compute Rtrv Data
Tctx_switch Tdata_in Tcomp Tdata_out

Init
Tinit

Figure 1: Native GPU Sharing

Send
Data ComputeP1

Finish Time For
N Processes

Send
Data Compute

Rtrv
Data

Send
Data Compute

Send
Data Compute

Rtrv
Data

Rtrv
Data

P2

P3

PN Rtrv
Data

Figure 2: Model for Ex Space Sharing

P1

Finish Time For
N Processes

Send
Data

Rtrv
Data

Send
Data

Send
Data

Rtrv
Data

Rtrv
Data

P2

P3

PN Rtrv
Data

Increased Number of
Blocks Per SM

Send
Data Compute

Compute

Compute

Compute

SM Stretch
Per Block

SM Stretch
Per Block

Figure 3: Model for Non-ex Space Sharing

P1

Finish Time For
N Processes

Send
Data

Rtrv
Data

Send
Data

Send
Data

Rtrv
Data

Rtrv
Data

P2

P3

PN Rtrv
Data

Full Rnd
Stretch

Total SM Execution Rounds

Send
Data Compute 1st Rnd

Stretch

Compute

Compute

Compute

Full Rnd
Stretch

Full Rnd
Stretch

Last Rnd
Stretch

Figure 4: Model for Space/Time Sharing

P1

Finish Time For
N Processes

Send
Data

Rtrv
Data

Send
Data

Send
Data

Rtrv
Data

Rtrv
Data

P2

P3

PN Rtrv
Data

Send
Data Compute

Tfull_stretch

Compute

Compute

Compute

Full Stetch

Figure 5: Model for Time Sharing

P1
Finish Time For

N ProcessesRtrv Data

P2

P3

PN

Send Data Comp

Send Data Comp Rtrv Data

Send Data Comp Rtrv Data

Send Data Comp Rtrv Data

W

Wait

Figure 6: Model for I/O-I applications

Table 1: Parameters Defined For GPU Sharing Scenarios
NSM The # of SMs in the GPU
Nmax blks per SM The max possible # of blocks per SM
Nblks per knl The # of blocks per SPMD kernel
Nprocess The # of SPMD processes sharing GPU

and be processed by different SMs simultaneously, we have
Exclusive Space Sharing, occurring under condition (1).

Nblks per knl ×Nprocess ≤ NSM (1)

If each GPU kernel requires many blocks and consequently
does not satisfy condition (1), more than one block (from
different kernels) will be assigned to an SM, when an SM
can execute multiple blocks simultaneously. The scenario
qualifies as space-sharing. Nevertheless, each SM is not ex-
clusively used by one kernel; we therefore term this case as
Non-exclusive Space Sharing, under condition (2) and (3).

Nmax blks per SM > 1 (2)

NSM < Nblks per knl Nprocess ≤ Nmax blks per SM NSM (3)

If the total number of blocks is so large that it exceeds
the RHS of (3), the available SMs will have to be time-
shared through multiple rounds of SM executions. Within
a round, there is space-sharing, and across multiple rounds,
time sharing occurs. Thus we define this scenario as the
Space/Time Sharing under condition (4) and (5). Note
that the space-sharing that is exhibited within an execution
round may be exclusive or non-exclusive.

Nblks per knl Nprocess > Nmax blks per SM NSM (4)

Nblks per knl < Nmax blks per SM NSM (5)

Time Sharing Scenario happens when (a) multiple rounds
are required as exemplified by (4) and (b) Nblks per knl is
large enough to occupy at least one round as shown in (6).

Nblks per knl ≥ Nmax blks per SM NSM (6)

3. GPU SHARING ANALYTICAL MODEL
Our previous scenario analysis only considers the execu-

tion phases of the kernels. Accurate performance estimates
can not be achieved unless the GPU I/O is taken into ac-
count. Here we model the kernel execution from one process
to consist of four stages: Tinit, Tdata in, Tcomp and Tdata out,
as explained in Table 2 along with necessary analytical pa-
rameters. Figure 1 models the native process-level GPU
sharing (without virtualization), under which all SPMD pro-
cesses share the GPU sequentially with context-switch over-
head (one context per process). The native sharing model
is used as our performance baseline for comparison.

Table 2: Parameters Defined For Analytical Modeling
Tinit Time overhead for the GPU to be initialized

Tdata in Time to transfer input data to the GPU mem
Tdata out Time to transfer result data to the main mem
Tcomp Time for the GPU kernel computation

Tctx switch Context-switch overhead between processes
TSM str SM time stretch of adding a block per SM
RSM Total number of SM execution rounds

Tfull rnd str Time stretch of one full SM execution round
Tfs rnd str Time stretch to add the 1st SM round to full
Tls rnd str Time stretch of the last SM execution round
Tfull str Full “comp” time stretch under time sharing

Different from the native sharing, GPU virtualization
achieves inter-process parallelisms using CUDA streams
with two programming styles [9] targeting: (a) kernel con-
currency (concurrency between Tdata in and Tcomp; Tcomp

and Tcomp) (b) I/O concurrency (concurrency between
Tdata in and Tcomp; Tdata in and Tdata out). Our proposed
model is to estimate the total execution time based on inter-
process concurrency behaviors while considering two types
of applications: Compute-Intensive(C-I) and I/O-Intensive
(I/O-I). For C-I applications, I/O time is relatively small
such that Tcomp always overlaps by using programming style
(a), and thus varied sharing scenarios can be achieved.

Under Exclusive Space Sharing, Tcomp achieves complete
concurrency since all kernel blocks are executed on different
SMs. Tdata in can also be overlapped with Tcomp. However,
the Tdata out stages have to wait till all Tcomp stages finish
due to programming style (a), as shown in Figure 2.

For Non-exclusive Space Sharing, blocks from all kernels
reside in all SMs simultaneously within one SM execution
round. However, scheduling more blocks on SMs stretches
the execution time of each SM. Thus we model the term
“SM time stretch” (TSM str) to denote the increased execu-
tion time when the number of blocks per SM increases by 1.
As shown in Figure 3, the total time stretch of Tcomp, is the
product of TSM str and the increased number of blocks per
SM with the added (Nprocess-1) SPMD kernels.

Under Space/Time Sharing, while using the same TSM str

for each of the single SM execution rounds, we further model
time stretches of different rounds to be added to Tcomp of the
1st kernel, shown in Figure 4. The added components consist
of Tfs round str; Tfull rnd str; Tls rnd str. RSM is computed by
dividing the total number of blocks from all kernels by the
maximum SM capacity in each SM execution round.

Time Sharing(C-I) happens when a single kernel is large
enough to occupy one or more SM rounds, which makes all
SPMD kernels sequential, as shown in Figure 5. Here we
further define Tfull str, which is ≈ (Nprocess-1)Tcomp.

270

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 1 2 3 4 5 6 7 8

E
xe

cu
tio

n
T

im
e

(s
)

of Blocks per SM

SM Stretches(BlackScholes and Electrostatics)

BlackScholes
Modeled Linear SM Stretch

Electrostatics
Modeled Linear SM Stretch

Figure 7: SM Stretch Analysis

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 1 2 3 4 5 6 7 8

S
pe

ed
up

of Processes

Theoretical Speedup Comparisons (1)

Exclusive Space Sharing
Non-exclusive Space Sharing

Figure 8: Modeled Speedups(1)

 0

 0.25

 0.5

 0.75

 1

 1.25

 1.5

 1.75

 2

 1 2 3 4 5 6 7 8

S
pe

ed
up

of Processes

Theoretical Speedup Comparisons (2)

Space/Time Sharing
Time Sharing

Time Sharing (I/O-intensive)

Figure 9: Modeled Speedups(2)

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

Ex-Spc N-Ex-Spc Spc/Time Time Time(IO-I)

S
pe

ed
up

Process Turn-around Time Speedup(8 processes)

With Considering VM Tinit
Without Considering VM Tinit

Figure 10: Actual Speedups

I/O-I applications always time-share the GPU since Tcomp

stages cannot overlap due to the dominating I/O time. Our
virtualization layer thus uses programming style (b), which
is captured in Figure 6 - both Tdata in and Tdata out can
be inter-overlapped as well as overlapped with Tcomp, while
Tdata out can only be sequential.

4. RESULTS AND CONCLUSIONS
We conduct several benchmarks to verify the proposed an-

alytical model and demonstrate the GPU sharing efficiencies
under varied scenarios. The experiments are conducted by
using our GPU virtualization implementation on NVIDIA
Tesla C2070 GPU (14 SMs) under CUDA 4.0. Five bench-
marks are utilized and profiled to represent a different shar-
ing scenario. We emulate SPMD execution by launching
the same benchmark on multiple processes simultaneously in
our virtualization infrastructure. The resulting GPU time,
which is the duration spent by each process on GPU tasks, is
compared with the model prediction. The model parameters
are derived using profiling results for each sharing scenario.
With each process affinity assigned to a unique CPU core,
we vary the number of processes from 1 to 8 (8 cores). We
then compare the model deviations from the experimental
results, as shown in Table 3 (averaged from 1 to 8 processes).
We utilize NPB [3] EP GPU kernel (1 block) [8] merely
to verify Exclusive Space Sharing. For Non-exclusive Space
and Space/Time Sharing Scenarios, we respectively utilize
BlackScholes (BS) [4], a European option pricing benchmark
and the fast molecular electrostatics algorithm (ES) (molec-
ular visualization program VMD [2]). Two micro bench-
marks are conducted to analyze the TSM str, for both BS
and ES. As shown in Figure 7, the execution time of BS
and ES are plotted for each number of blocks per SM (1 to
8 for BS and 1 to 5 for ES). Since we previously modeled
TSM str as an average factor, we therefore linearly fit both
BS and ES as shown in Figure 7; derive the average TSM str

for both and thus get the model time of BS. SM execution
rounds (RSM) and corresponding Tfull rnd str, Tfs rnd str and
Tls rnd str are also derived accordingly to get the model time
of ES. We further use our NPB MG kernel (Class W with
4K block size) [8] to verify the Time Sharing Scenario. For
I/O-I applications (Time Sharing), we use a simple Vector
Multiplication benchmark. Table 3 summarizes the average
model deviations from the experimental results and demon-
strate good model accuracy for all scenarios. Note that the
relatively higher deviation from BS(Non-exclusive Space) is
due to inaccuracies from linearly modeling TSM str.

To evaluate the GPU sharing efficiency, we analyze the
speedups over the native sharing approach by using both
the verified model and experimental results. Figure 8 and 9
demonstrate the speedups by using the model results of the
five benchmarks. Since we use Tinit=0 for native sharing in
our analysis, the model results provide the speedup lower

Table 3: Average Model Deviations for All Described Scenarios
Ex Space Non-ex Space Space/Time Time I/O-I
0.42% 14.29% 1.92% 4.10% 4.76%

bounds. We obtained experimental speedups using the five
benchmarks by measuring the process turn-around time (the
time for all processes to finish after simultaneous launch)
under virtualization and comparing it with the turn-around
time under native sharing. 8 processes were launched and
speedups are shown in Figure 10. Our virtualization incurs
a one-time Tinit (single process) that can be hidden, while
the native sharing always suffers multiple Tinit. We evalu-
ate both speedups with and without the Tinit. The results
demonstrate a minimum 1.64/4.03 times speedup and up to
4.1/18.7 times speedup (with/without Tinit). It also demon-
strates that the performance gain potential for each scenario
shown in Figure 8 and 9 matches the experimental speedups.

To summarize, in this paper, we proposed four possi-
ble GPU sharing scenarios with our GPU virtualization ap-
proach. Both theoretical performance modeling and exper-
iments were conducted for each sharing scenario. Our re-
sults demonstrated that the theoretical analysis was fairly
accurate and also proved that efficient GPU sharing can be
achieved by using our virtualization approach.

Acknowledgement
This work was supported by the I/UCRC Program of the
National Science Foundation under Grant No. IIP-0706352.

5. REFERENCES
[1] Tianhe-I, http:// en.wikipedia.org/wiki/Tianhe-I .

[2] Visual Molecular Dynamics Program,
http:// www.ks. uiuc.edu/Research/vmd/ .

[3] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter,
L. Dagum, R. Fatoohi, P. Frederickson, T. Lasinski,
R. Schreiber, et al. The NAS parallel benchmarks.
International Journal of High Performance Computing
Applications, 5(3):63, 1991.

[4] F. Black and M. Scholes. The pricing of options and corporate
liabilities. The journal of political economy, pages 637–654,
1973.

[5] Cray Inc. Cray XK6 Brochure. Available online on http:
//www.cray.com/Assets/PDF/products/xk/CrayXK6Brochure.pdf.

[6] F. Darema. The SPMD model: Past, present and future.
Recent Advances in Parallel Virtual Machine and Message
Passing Interface, pages 1–1, 2001.

[7] T. Li, V. K. Narayana, E. El-Araby, and T. El-Ghazawi. GPU
resource sharing and virtualization on high performance
computing systems. In Proceedings of the 40th International
Conference on Parallel Processing. IEEE, Sep 2011.

[8] M. Malik, T. Li, U. Sharif, R. Shahid, T. El-Ghazawi, and
G. Newby. Productivity of GPUs under different programming
paradigms. Concurrency and Computation: Practice and
Experience, 24(2):179–191, 2012.

[9] NVIDIA Corp. NVIDIA CUDA C-Programming Guide V4.0,
May 2011.

[10] SGI Corp. SGI GPU Compute Solutions. Available online on
http://www.sgi.com/pdfs/4235.pdf.

271

