
RapidSmith: Do-It-Yourself CAD Tools for
Xilinx FPGAs

Christopher Lavin, Marc Padilla, Jaren Lamprecht, Philip Lundrigan,
Brent Nelson and Brad Hutchings

NSF Center for High-Performance Reconfigurable Computing (CHREC)
Dept. of Electrical and Computer Engineering

Brigham Young University
Provo, UT, 84602, USA

Email: {chrislavin, brent nelson, brad hutchings}@byu.edu

Abstract—Creating CAD tools for commercial FPGAs is a dif-
ficult task. Closed proprietary device databases and unsupported
interfaces are largely to blame for the lack of CAD research found
on commercial architectures versus hypothetical architectures.

This paper formally introduces RapidSmith, a new set of tools
and APIs that enable CAD tool creation for Xilinx FPGAs. Based
on the Xilinx Design Language (XDL), RapidSmith provides a
compact, yet, fast device database with hundreds of APIs that
enable the creation of placers, routers and several other tools for
Xilinx devices. RapidSmith alleviates several of the difficulties
of using XDL and this work demonstrates the kinds of research
facilitated by removing such challenges.

I. INTRODUCTION

Broadly viewed, most FPGA research falls into one of
two categories. One category tends to deal with commercial
devices and often includes such topics as application-mapping
experiments, application support, e.g., OS extensions, IP li-
braries, and limited CAD tool efforts, etc. The other category
focuses on hypothetical architectures and includes architecture
exploration and CAD tool efforts. Much of the work on hy-
pothetical architecture and CAD tool research is facilitated by
VPR [1]. However, studying and developing CAD tools, e.g.,
placers, routers, etc., for commercial devices is challenging
or impossible. Device databases are often proprietary and the
provided interfaces are either not well suited for CAD tool
development, or they don’t provide sufficient information to
enable someone to write a router, for example.

The challenges of custom CAD tool creation for commercial
FPGAs are quite unfortunate. Carrying out experiments on
real FPGAs brings tremendous credibility to new concepts
and ideas as they are proof of concept in their own right.
Experiments targeting commercial FPGAs enable new abilities
for researchers such as discovering and mitigating new FPGA
security vulnerabilities, insights into bitstream density or its
sensitivity to single event upsets in high radiation environ-
ments. If more researchers had the capability to create custom
CAD tools for commercial FPGAs, it is likely that higher
quality solutions would be found to several of the growing
challenges faced by FPGA vendors.

This work was supported by the I/UCRC Program of the National Science
Foundation under Grant No. 0801876.

We have encountered the challenges of creating custom
CAD tools for commercial FPGAs first hand in previous work
[2]. The goal of our previous work was to demonstrate the
potential of rapid FPGA compilation techniques that could
enable speedups of an order of magnitude or more for rapid
prototyping purposes. At the onset of our previous work, we
found commercial FPGA vendor tools to be insufficient to
carry out our new ideas and techniques. Due to the lack of
flexibility in vendor tools, we realized the necessity of creating
custom CAD tools to accomplish our goal. At the time, no
open tool or framework existed to create custom CAD tools
for commercial FPGAs. With the lack of such a potentially
useful tool, we undertook the initiative to create one ourselves
in order to accomplish our goal.

The purpose of this work is to formally introduce Rapid-
Smith, a new set of tools and APIs which enable FPGA CAD
researchers to create and test new algorithms on current Xilinx
FPGAs with unprecedented detail. RapidSmith is written in
Java and has been released as an open source project. It is
based on the Xilinx Design Language (XDL) and heavily
leverages the Xilinx tool xdl. and the xdl tool enable:
Unfortunately, XDL is not well understood by many and its
full potential is often not realized. RapidSmith is able to
overcome several of the challenges of using XDL which have
likely hampered its use in the past. Although RapidSmith has
been previewed in the past [3], this paper demonstrates its
efficient device database structure and how RapidSmith makes
it easy to create and customize tools such as placers and routers
for Xilinx devices, further enabling and accelerating several
branches of FPGA CAD research.

II. XDL: THE XILINX DESIGN LANGUAGE

RapidSmith is based on the interface provided by Xilinx
called the Xilinx Design Language (XDL). The Xilinx tool
xdl provides three important capabilities (options) to enable
open FPGA CAD tools for Xilinx FPGAs:

1) -report: Generates complete FPGA device reports de-
tailing placement sites and an exhaustive routing graph
(without timing data)

2011 21st International Conference on Field Programmable Logic and Applications

978-0-7695-4529-5/11 $26.00 © 2011 IEEE

DOI 10.1109/FPL.2011.69

349

2) -ncd2xdl: Performs NCD to XDL conversion (allow-
ing conventional Xilinx designs to be converted to the
open XDL format)

3) -xdl2ncd: Performs XDL to NCD conversion (al-
lowing XDL-manipulated designs to be re-injected into
several locations within the Xilinx design flow)

With these options, the xdl tool provides detailed device
information and can import and export designs to and from
the Xilinx flow. This section serves as a short reference for
XDL as it is no longer fully documented by Xilinx and a
correct understanding of XDL is necessary in order to fully
understand the value and capabilities of RapidSmith.

A. Detailed FPGA Descriptions in XDLRC Reports

The first option supplied by xdl is the -report option.
This option takes a Xilinx part name as input and outputs an
XDLRC report file which details all of the tiles, primitive sites
and routing resources (without timing data) that are available
in the given part1.

1) Tiles: XDLRC report files abstract the FPGA fabric into
a two dimensional array of sections called “tiles” which are
conceptually laid out edge to edge in a checker board fashion.
Each tile is specified with a name and a type. Tiles are mainly
used as a reference to specify locations of certain resources.
Tiles contain declarations of FPGA resources such as primitive
sites, wires, and PIPs.

2) Primitive Sites: A primitive site is a location where
an instance of an FPGA primitive can reside. Each primitive
site has a type that is compatible with one or more primitive
instance types. For example, a SLICEL is a type of primitive
available in Virtex 4 parts. Half of all slice primitive sites
in Virtex 4 parts are type SLICEL and the other half are
type SLICEM. A SLICEL primitive can be placed on either a
SLICEL or SLICEM site, however, the converse is not true.
A list of primitive definitions is included at the end of every
XDLRC report file which define all of the inputs, outputs and
configurable internals of a primitive.

3) Wires: Wires declared in XDLRC reports refer to
wires which traverse tile boundaries. A wire is simply un-
programmable metal that exists on the FPGA fabric as part of
the routing graph. A wire always begins in a tile and can span
one or more tiles. One of the peculiar attributes of XDLRC is
that even though a wire represents a continuous piece of metal
in the FPGA fabric, a separate name is given to each segment
of the wire for each tile it occupies. Thus, a wire which spans
3 tiles will have three separate names attached to it depending
on which tile is being referenced.

4) PIPs: Programmable interconnect points, or PIPs, are
the configurable part of the FPGA routing graph. PIPs are
completely contained within a tile (they do not straddle a tile)
and define a potential connection that can exist between two
wire segments. In most cases, thousands of PIPs are defined

1It should be noted that Altera provides an interface called QUIP [4] that
enables replacement of parts of the CAD flow with custom tools. However,
QUIP does not provide the detail necessary to construct a detailed router as
XDL does.

in the switch matrix tiles of an FPGA, most of which allow a
certain wire segment to connect to one of many different wire
segments.

B. Designs in XDL

The second and third options provided by xdl are the
XDL/NCD conversion functions which enable proprietary
Xilinx NCD files (native netlists for Xilinx FPGAs) to be
converted to and from the open XDL format. A design in XDL
is equivalent in most respects to Xilinx NCD files except that
it is an ASCII file format that is human readable and it also
is directly incompatible with other Xilinx tools in the flow.

XDL design files contain four types of declarations: design,
module, instance and net. The first statement found in XDL
designs is the design statement and occurs only once in each
design file. It specifies the design name and part that the design
is targeting. The module declaration is discussed in detail in
Section IV-A2. The majority of the contents of an XDL design
exist in the instances and nets.

1) Instances and Placement: All logic elements of a design
are contained within the instances declared in the XDL file.
An instance is an instantiation of a particular primitive type
(SLICEL, SLICEM, etc.) that has a unique name, a type, an
optional primitive site assigned to it and a list of attributes
and values which configure the instance. Since assignment to
a primitive site is optional, XDL files can represent designs
that are unplaced, partially placed or fully placed. Placement
of a design takes place when instances are assigned specific
primitive site locations in the final implementation.

2) Nets and Routing: In order to specify connections be-
tween instances, the net declaration is used. A net has a unique
name, a type, a list of input/output pins and optionally, a list
of PIPs. Each net has one outpin (source) and one or more
inpins (sinks). Pins are declared by using the unique instance
name and pin on the instance. PIPs define how a net is routed
and the presence of PIPs in a net indicate that the net is at
least partially routed if not fully routed. Therefore, the task
of a router is simply to assign a list of PIPs to a net. Nets
cannot be routed if a design is not placed (PIPs require placed
instances to make connections), however, XDL can represent
designs that are un-routed, partially-routed or fully routed.

III. RAPIDSMITH: LEVERAGING XDL FOR RAPID
CREATION OF FPGA CAD TOOLS

There are several challenges that exist to successfully use
XDL to build new CAD tools and leverage it as a design
exchange method. Although XDLRC report files are extensive
and provide a complete view of an FPGA architecture, they
are extremely verbose text files that can exceed 70 gigabytes in
size. This makes directly using XDLRC report files infeasible
for creating design tools. Another challenge exists due to lack-
ing information in the XDLRC report files that is necessary for
efficient placement and routing. An open source XDL parser
and data structure is not provided with the xdl tool making
XDL manipulation often delegated to customized Perl scripts
for every specific task.

350

(a) (b)

Design

Instance

PrimitiveType

Attribute (List)

PrimitiveSite

Net

NetType

Pin (List)

PIP (List)

Module

Port
(List)

Instance
(List)

Net (List)

ModuleInstance

Instance (List)

Net (List)

Device Device

Tile[][] Tile[][]

PrimitiveSite[] PrimitiveSite[]

PrimitiveType PrimitiveType

Tile Tile

TileType TileType

WireHashMap WireHashMap

Fig. 1: RapidSmith abstractions for (a) devices and (b) designs.

RapidSmith provides two core packages to deal with the
challenges of using XDL. First, RapidSmith provides a com-
pact XDLRC-equivalent database file format and correspond-
ing data structure (pictured in Figure 1a) that is fast loading
and suitable for all kinds of applications. RapidSmith also
includes the lacking information that can aid in making more
effective placement and routing tools.

Second, RapidSmith provides a complete XDL parser and
corresponding data structure (pictured in Figure 1b) to easily
facilitate manipulating XDL designs and enable researchers to
build highly customized CAD tools for Xilinx FPGAs.

A. Xilinx FPGA Database Files in RapidSmith

A very important attribute of an FPGA CAD database is
its size and consequently, its load time from disk. RapidSmith
employs three major strategies in order to control its device
database size and load time; (1) aggressive wire and object
reuse, (2) careful pruning of unnecessary wires, and (3)
customized serialization with compression.

1) Wire and Object Reuse: Wires are the major reason
for the gigantic size of the XDLRC report files. FPGAs
are generally very regular replicated structures and the same
wires can appear identically all over the chip. Efficiently
accommodating the infrequent irregularities that occur in the
routing structure is key to creating an efficient and much
smaller device database. Therefore, rather than define a wire
object for every wire in every tile, RapidSmith employs a
unique set of wires that are specified by a name and a set
of tile offsets that remove reference to any particular tile
in the chip, making them reusable. This reusability factor is
able to dramatically reduce the size required to represent wire
connections on the device.

2) Wire Graph Pruning for Efficiency: The XDLRC report
contains wires that are present simply for the sake of com-
pleteness, but, do not contribute more useful information to
the actual routing structure. For example, in a HEX wire (a
wire which spans 7 switch matrices), connections to the wire
can only be made in 3 of 7 tiles which it spans. The 4 wire
segments in tiles that do not connect to other wires are implied
by the overall structure and thus, removed by RapidSmith. By
removing these wires, significant memory savings are obtained
as well as faster routing times as the removed wires are no
longer examined when expanding connection searches.

3) Serialization and Compression: RapidSmith uses cus-
tom serialization to store only the essential data needed to
reconstruct the device databases. The default Java serialization
routines were considered, but were later abandoned as they

TABLE I: RapidSmith Device Files Performance1

Xilinx Part XDLRC Compressed Java Heap Load Time
Name Report Size File Size Usage From Disk

V4 SX55 3.5GB 539KB 34MB 0.299s
V4 FX140 8.0GB 1546KB 70MB 0.616s
V4 LX200 10.0GB 1010KB 61MB 0.602s

V5 FX200T 9.4GB 1227KB 60MB 0.585s
V5 TX240T 10.0GB 1111KB 56MB 0.620s
V5 SX240T 11.9GB 1135KB 61MB 0.630s
V5 LX330 12.5GB 1069KB 69MB 0.622s

V6 CX240T 8.5GB 937KB 35MB 0.460s
V6 SX475T 17.7GB 1506KB 61MB 0.814s
V6 LX760 22.8GB 1758KB 77MB 1.068s
V7 855T 32.0GB 2634KB 115MB 1.408s

V7 1500T 53.0GB 4985KB 263MB 2.653s
V7 2000T 73.6GB 5956KB 301MB 3.339s

1Measurements were recorded on a Windows 7 64-bit workstation with a Core i7-860
processor, 8GB of DDR3 RAM and 1TB 7200RPM SATA hard disk. The 32-bit Oracle

JVM ver. 1.6.0 22 was used for Java bytecode execution.

turned out to be inefficient and caused files to load more
slowly. RapidSmith uses the Hessian 2.0 serialization compres-
sion protocol [5] to further reduce the size of the device file.
The Hessian protocol provides low-level serialization APIs and
also compresses/decompresses the data found in the device
files with minimal impact on load time.

4) Overall Performance: Using all of the techniques men-
tioned, RapidSmith database files are able to achieve a file size
compression of over 10,000× when compared to the original
XDLRC report files and all but the largest files can be loaded
in less than a few seconds. A summary of large parts and their
corresponding device file statistics are shown in Table I.

B. Augmented XDLRC Information in RapidSmith

The XDLRC report neglects to inform the user about
primitive sites that can support more than one primitive type.
The lack of this information provides two inefficiencies or
challenges: (1) placements produced without this information
may not be complete or may result in inefficient placements
and (2) certain primitives do not have native sites of their own
and therefore must reside on sites of a different type. When a
primitive resides on a site of a different type, there can be pin
name mis-matchings that can cause problems for a router.

Using RapidSmith, we have built special programs to
automatically compile a complete listing of primitive site
compatibilities and pin name mappings. This information is
included with the RapidSmith distribution and integrated into
the APIs to provide a seamless solution.

C. XDL Design Representation in RapidSmith

As already shown, Figure 1 illustrates how RapidSmith data
structures represent the data contained in XDL. Each class
in RapidSmith will often represent a one-to-one relationship
with XDL/XDLRC constructs that make using RapidSmith
intuitive to use with XDL designs and XDLRC reports. A
fully optimized XDL parser and export method are included
with RapidSmith to populate its data structures and produce
Xilinx-compatible XDL for re-injection into the Xilinx flow.
RapidSmith also includes graphical tools to browse and ex-
plore devices and designs as shown in Figure 2. The Device

351

(a)

(b)

Fig. 2: Graphical tools provided with RapidSmith to browse
(a) devices or (b) designs.

Browser, shown in Figure 2a, illustrates how the user can
explore the resources and wires available in a device in
RapidSmith and demonstrates the framework which can be
used by researchers to create custom graphical CAD tools
that interact with the FPGA fabric. The Device Browser lever-
ages the classes outlined in Figure 1a. The Design Explorer
application, shown in Figure 2b, allows the user to load
XDL designs and, optionally, timing reports to rapidly search
through the different constructs and leverages the classes found
in Figure 1b.

The APIs available in the design package of RapidSmith are
particularly rich with over 700 documented methods for design
manipulation. These methods include functionality such as
placement/un-placement of instances, creating new instances
from scratch, determining the type of nets (wire, VCC, GND,
CLK, etc), changing the source of a net, un-routing a net,
manually routing a net (adding PIPs), and hundreds of other
useful design transformations.

IV. DEVELOPING CAD TOOLS WITH RAPIDSMITH

RapidSmith’s capabilities are best illustrated through exam-
ples. This section presents several detailed coding examples
that demonstrate how to create placers and routers with Rapid-
Smith. In addition, this section will suggest other research
areas where RapidSmith can be used to make contributions.

A. Placement
In order to create a placer, three basic capabilities are

needed. First, an understanding of the objects or resources

to be placed such as their connectivity, size, shape and classi-
fication is required. Second, a complete set of valid placement
locations on which to place resources on the FPGA is needed.
Finally, an infrastructure that allows a placer to quickly make
small changes to a placement and evaluate its current state
is an essential feature for many placement algorithms. Rapid-
Smith provides all three of these capabilities and additionally
includes frameworks to build graphical placement debugging
tools to help in placer creation.

1) Instances: The basic building block found in an XDL
design is the primitive instance. Instances are instantiations of
a primitive type (such as a SLICEL, SLICEM, DSP48, etc.)
and contain all logic and memory components of a design.
Placement of instances is straightforward: simply assign the in-
stance to a compatible primitive site. For example, consider the
source code in Listing 1 which illustrates the basics of creating
a new design, creating an instance, obtaining a list of valid
placement sites and placing the instance in a site using Rapid-
Smith. Note the method getAllCompatibleSites()
which returns a complete list of all primitive sites for which
a particular primitive type can be placed.

Listing 1: Simple Design Creation
// Create new design, set name and part
Design d = new Design("example", "xc5vlx30tff324");
PrimitiveType type = PrimitiveType.SLICEL;
Instance i = new Instance("foo", type);
d.addInstance(i); // Add the instance to the design
PrimitiveSite[] sites;
sites = d.getDevice().getAllCompatibleSites(type);
i.place(sites[0]); // Now, place the instance

2) Hard Macros, Modules and Module Instances: Rapid-
Smith supports a core definition construct in XDL called a
module. A module is a grouping of instances, nets and I/O
connections called ports. Modules are useful in that they can
represent hard macros (a circuit that was previously placed
and routed and that can be placed as a single unit) in XDL
and present a level of hierarchy in the design. A given module
can be replicated multiple times in an XDL design. However,
unlike conventional netlists, each module copy has its contents
flattened into the XDL design (XDL designs are not truly
hierarchical). These module contents, however, are tagged in
a way that identifies from which module instantiation they
came. To help preserve the hierarchy implied by the use of
modules, RapidSmith introduces a ModuleInstance class
that collects and encapsulates the flattened module contents
into an object, facilitating their placement and manipulation.

A module instance may contain dozens (or even hundreds)
of instances and routed nets that all must be checked when
attempting placement. A module instance contains a specific
instance that acts as a reference point to all other instances and
nets in the module instance, this instance is called the anchor.
Relative offsets are calculated from the anchor to ensure all the
components of a module instance are placed in their correct
relative positions. All of the complicated operations involved
in placing module instances are encapsulated in just a few
simple RapidSmith methods which are shown in Listing 2 to

352

create and place a module instance. Ultimately, these methods
saved enough complexity that the hard macro placer used in
[2] uses less than 350 lines of code.

Listing 2: Module Instance Creation and Placement
// Load an XDL file into RapidSmith
Design d = new Design("moduleContainingDesign.xdl");
// Get the 1024-FFT module definition by name
Module m = d.getModule("fft1024");
// Create an instance of the FFT module called "f0"
ModuleInstance mi = d.createModuleInstance("f0",m);
// Find all compatible sites with the anchor
PrimitiveType type = mi.getAnchor().getType();
PrimitiveSite[] sites;
sites = d.getDevice().getAllCompatibleSites(type);
int i = 0;
while(!mi.place(sites[i++], d.getDevice()))
if(i >= sites.length)

error(mi.getName()+" has no valid placement!");

3) A Hard Macro (Module Instance) Placer: Placers typ-
ically need to determine the degree of connectivity between
primitive instances and modules so that highly-connected mod-
ules can be placed more closely together. The placer developed
in [2] used code similar to that shown in Listing 3 which
quickly computes the relative connectivity between modules.

Listing 3: Calculating Connectivity for Module Instance
for(Net net : design.getNets()){
String n1=net.getSource().getModuleInstanceName();
if(n1 == null) continue; //src is not hard macro
InstanceBlock source = instanceBlockMap.get(n1);
for(Pin pin : net.getPins()){

if(pin.isOutPin()) continue; // skip the src
String n2 = pin.getModuleInstanceName();
if(n2 == null) continue; //snk is not hard macro
InstanceBlock sink = instanceBlockMap.get(n2);
source.connectionCount[sink.getIndex()]++;
sink.connectionCount[source.getIndex()]++;

}
}

Each module instance in the design is assigned an index
and wrapped in a special class built specifically for the placer
called an InstanceBlock. This special class contains an
array that keeps track of its connection count to every other
module instance in the design. The code in Listing 3 makes a
single pass over all the nets in order to tabulate connection
counts between all module instances. This information is
calculated once during initialization of the placer and used
throughout the placement process to find a good placement.

4) An Interactive Hard Macro Placer: A good visualizer
tool can be a great help when debugging and optimizing a
placer. A visualizer for viewing hard macro placement was
developed early on in our hard macro project. It proved to
be invaluable for debugging and optimizing our hard macro
placer. The device and design packages made it simple to
draw an FPGA layout and corresponding hard macro shapes as
pictured in Figure 3. The graphical tool also allows the user to
interactively move the module instances around the chip and
receive placement feedback in the form of colors to locate
valid placements. Ultimately, the productivity provided by the
manual hard macro placer was quite valuable in accelerating

Fig. 3: Screen shot of interactive hard macro placer in Rapid-
Smith; shows a hard macro illegally placed (red/top left),
overlapping hard macros (orange/bottom), and an expanded
hard macro to show utilized tiles (fragmented green/top right).

development. The tool also illustrates the customization ca-
pable with RapidSmith as the interactive placer has no other
corresponding tool (Xilinx’s FPGA Editor is unable to provide
interactive real-time feedback for placing hard macros).

B. Routing

To create a router for Xilinx devices, a user must have a
reasonable understanding of (1) the routing graph available
in Xilinx parts, (2) wire connection types and representation,
(3) power and ground distribution issues, and (4) various
architectural nuances. RapidSmith aids the user in many of
the difficult aspects of writing a router by providing a compact
and efficient routing graph, significant functionality through its
APIs and framework, and examples in order to make writing
a custom router feasible.

1) RapidSmith Routing Graph: A wire, as presented in
XDLRC reports, has a name which is unique in the tile where
it resides. However, multiple copies of a wire with the same
name can be found in several different tiles due to the regular
replicated structure of Xilinx FPGAs. Therefore, to reference
a specific routing resource on a device, both the wire name
and tile are needed to eliminate ambiguity.

In order to provide a small, yet, high performance routing
graph, RapidSmith uses an efficient technique to store and
retrieve routing resources (nodes) and routing connections
(edges). RapidSmith represents specific routing resources in
the Node class which contains a tile and wire reference (stored
as an int) as well as other routing aids such as a cost variable
and parent reference.

Routing connections, or edges in the routing graph are rep-
resented in the WireConnection class in conjunction with
a hash map found in each tile. Each wire in a tile is a key in the
tile’s hash map and the key’s corresponding value is an array of
WireConnection instances. The WireConnection class
contains a wire and relative offsets from the key wire’s tile.
RapidSmith uses a relative set of tile offsets instead of absolute
offsets for the memory savings gained by reusing identical
WireConnection instances all throughout the device.

In order to traverse the routing graph, Node instances are
created for each routing resource visited in the graph. This is

353

readily apparent in Listing 4 which shows a very basic method
of routing a source to a sink.

Listing 4: Basic Routing Method
public ArrayList<Node> route(Pin src, Pin snk){
Device dev = Device.getInstance("xc4vfx12ff668");
PriorityQueue<Node> pq=new PriorityQueue<Node>();
Node snkNode = dev.getNodeFromPin(snk);
Node currNode = dev.getNodeFromPin(src);
// Loop on queue output nodes to find the sink
while(!currNode.equals(snkNode)){

WireConnection[] conns=currNode.getConnections();
if(conns != null)
for(WireConnection w : conns){
// create a new node, n.parent=currNode
Node n = w.createNode(currNode);
n.setCost(n.getManhattanDistance(snkNode));
if(!pq.contains(n)) pq.add(n);

}
if(pq.isEmpty()) return null;
currNode = pq.remove();

}
// When we have found the sink, reconstruct path
ArrayList<Node> path = new ArrayList<Node>();
while(currNode.getParent() != null){

path.add(currNode);
currNode = currNode.getParent();

}
return path;
}

The method starts by creating nodes for the source and sink
pins as the wire names used in pins require mapping to PIP
wire names. This pin mapping was previously identified in
Section III as one of the areas where XDLRC reports fall
short of providing sufficient information to make all necessary
mappings. As can be seen from Listing 4, RapidSmith provides
methods to handle the mapping automatically.

A priority queue orders nodes for processing by the router.
The cost function used to prioritize the nodes is a very simple
Manhattan distance of the current node’s tile to the sink node’s
tile. The algorithm continues to poll the queue looking for new
connections and adding them to the queue until the sink node
is found. Once the sink node is found, the parent references
of the nodes are followed back to the original source to create
the routed path. A separate method (not shown) could easily
convert the list of nodes into PIPs for the final routed net.

2) Power/Ground Net Accommodations in RapidSmith:
Power and ground net routing is handled in two steps. First, an
un-routed design contains one net which contains all ground
sink pins and one net which contains all power sink pins.
These two nets must be partitioned into local neighborhood
nets based on switch box power/ground posts called TIEOFFs.
Second, although TIEOFFs are conveniently located in each
switch matrix, there often exist input pins that require power
or ground that cannot be supplied by the TIEOFFs in certain
cases or due to routing congestion. In those situations, LUTs
are configured nearby to provide the needed source.

RapidSmith provides functionality in the form of the
StaticSourceHandler class that automates this two step
process of partitioning ground and power nets and creating
LUTs when needed. Because this functionality is included
in RapidSmith, prospective router writers do not have to

implement the tedious ground and power distribution process,
but can focus on their unique algorithm at hand.

3) Design Analysis for Router Congestion Avoidance: One
example which demonstrates the flexibility of RapidSmith in
router construction can be found in our previous work [2]. Our
attempt to write a very fast router prompted us to abandon the
traditional PathFinder algorithm [6] for a simple maze router.
Since a maze router only makes a single pass over the nets
of a design, it has no mechanisms to deal with congestion.
This can cause the router to fail when areas of a chip are
heavily congested and nets cannot be routed due to a lack of
coordinated resource allocation.

Because RapidSmith is able to provide a flexible platform
for creating the router, we were able to introduce the idea
of reserving specific routing resources for nets which could
be threatened by congestion. The congestion avoidance tech-
niques were highly architecture specific but provided insights
into the routing structure that helped us understand which
resources were often in demand.

C. Applying RapidSmith to Other Areas of FPGA Research

1) Post-PAR Design Analysis: RapidSmith provides support
for the creation of a variety of powerful custom post-PAR
analysis tools not possible using other means. One such
example arises in FPGA reliability where high energy particle
strikes can upset a design’s behavior. Known techniques such
as circuit triplication with voters and bitstream scrubbing can
mitigate against particle strikes in the bitstream. However,
half-latches (weak keepers) inserted by the Xilinx flow to
prevent unspecified signals from floating (such as clock enable
signals to flip flops) [7], are still vulnerable to such strikes as
half-latches are not controlled by the bitstream. Since the user
has no control over half-latch insertion into circuits produced
by the normal PAR process, the identification of half-latches
and their removal must be done on post-PAR designs.

The detection of half-latches on flip flop clock enable wires
using RapidSmith is trivial and is shown in Listing 5. The
basic steps are: (1) loop across all instances in the design and
identify the slices, (2) for each such slice, see if the slice
contains configured flip flops (by examining the instance’s
“FFX” and “FFY” attributes), (3) for all such slices, examine
the slice’s “CEUSED” attribute — if its value is “OFF”, then
a half-latch exists in the slice.

Listing 5: Half-Latch Detection
for(Instance i : design.getInstances())
if(i.getType().equals(PrimitiveType.SLICEL) ||

i.getType().equals(PrimitiveType.SLICEM))
if(i.testAttributeValue("FFX", "FF") ||

i.testAttributeValue("FFY", "FF"))
if(i.testAttributeValue("CEUSED", "OFF"))
System.out.println("Instance: "+i.getName()

+ " has a half-latch on CE pin");

2) FPGA Security: A growing area of FPGA research is
the vulnerability of FPGAs to hackers and security holes.
RapidSmith enables very detailed experiments that allows
researchers to conduct “what-if” experiments to see how

354

difficult it might be to perform a certain kind of attack. For
example, Tavaragiri et al. [8] demonstrate (using specialized
XDL tools) usable antennas constructed from the configurable
routing on a device to radiate information off-chip. Although
RapidSmith was not used for these experiments, RapidSmith
is capable of creating the same kinds of structures in designs.

Others have demonstrated the ability to modulate the power
rail voltage in FPGAs in order to communicate information
outside the device [9]. Performing side-channel attacks require
very specialized FPGA design structures which can only be
created with very careful, low level manipulation. In general,
RapidSmith opens up new research avenues by providing
support that makes it feasible to create a variety of special-
purpose tools that go well beyond the typical placer or router.

V. RELATED WORK

The Xilinx Design Language is not new. XDL and the
accompanying xdl tool in the Xilinx ISE design suite have
been present for over 10 years [10]. Others have also realized
the potential of XDL as several papers have been published
that demonstrate its use in ideas such as a bus macro generator
[11], C-slow re-timing [12], power estimation [13], floor
planning tools [14], routing constraints [15][16] and run-
time reconfiguration [17]. Despite these and several other
efforts which leverage XDL, a unified open source solution to
facilitate the use of XDL has never materialized until recently.
Steiner [18] and Kepa et al. [19] both demonstrate functional
XDLRC-derived device databases, however they have not (at
the time of writing) been openly released.

Recently, our colleagues at USC-ISI have released Torc
[20], an open source tool that shares the vision of doing
research on commercial FPGAs. RapidSmith and Torc differ
in target audience (Torc is written in C++ while RapidSmith
is in Java), but do have similar functionality in that Torc also
leverages XDL and builds device databases that enable CAD
tool creation. Torc has been used as the foundation of OpenPR
[15] an open source partial reconfiguration tool.

VI. CONCLUSION

In this work we have introduced RapidSmith, an open
source platform for rapidly creating FPGA CAD tools. Rapid-
Smith is written in Java and provides FPGA researchers with
a common platform to implement new ideas and algorithms
on Xilinx FPGAs. We have also illustrated the successful
implementation of placers and routers using RapidSmith as
well as its use in several other areas of FPGA research.

RapidSmith supports all modern Xilinx devices: Virtex,
Virtex{E, 2, 2-Pro, 4, 5, 6, 7}, Spartan{2, 2E, 3, 3A, 3ADSP,
3E, 6} and Kintex 7 families. RapidSmith includes several ex-
amples, Javadocs, documentation and source code to get users
started and can be downloaded at http://rapidsmith.sf.net.

REFERENCES

[1] V. Betz and J. Rose, “VPR: A New Packing, Placement And Routing
Tool For FPGA Research,” in Proceedings of the 7th International
Workshop on Field-Programmable Logic and Applications. Springer-
Verlag London, UK, 1997, pp. 213–222.

[2] C. Lavin, M. Padilla, J. Lamprecht, P. Lundrigan, B. Nelson, and
B. Hutchings, “HMFlow: Accelerating FPGA Compilation with Hard
Macros for Rapid Prototyping,” in Field-Programmable Custom Com-
puting Machines (FCCM), 2011 IEEE 19th Annual International Sym-
posium on, May 2011, pp. 117–124.

[3] C. Lavin, M. Padilla, P. Lundrigan, B. Nelson, and B. Hutchings,
“Rapid Prototyping Tools for FPGA Designs: RapidSmith,” in Field-
Programmable Technology (FPT’10). International Conference on, De-
cember 2010.

[4] S. Malhotra, T. Borer, D. Singh, and S. Brown, “The Quartus Uni-
versity Interface Program: enabling advanced FPGA research,” in Field-
Programmable Technology, 2004. Proceedings. 2004 IEEE International
Conference on, December 2004, pp. 225–230.

[5] S. Ferguson and E. Ong, “Hessian 2.0 Serialization Protocol,”
http://hessian.caucho.com/doc/hessian-serialization.html, August 2007.

[6] L. McMurchie and C. Ebeling, “PathFinder: a Negotiation-based
Performance-driven Router for FPGAs,” in Proceedings of the 1995
ACM Third International Symposium on Field-programmable Gate Ar-
rays, ser. FPGA ’95. New York, NY, USA: ACM, 1995, pp. 111–117.

[7] H. Quinn, G. Allen, G. Swift, C. W. Tseng, P. Graham, K. Morgan, and
P. Ostler, “SEU-Susceptibility of Logical Constants in Xilinx FPGA
Designs,” Nuclear Science, IEEE Transactions on, vol. 56, no. 6, pp.
3527 –3533, December 2009.

[8] A. Tavaragiri, J. Couch, and P. Athanas, “Exploration of FPGA Inter-
connect for the Design of Unconventional Antennas,” in Proceedings of
the 19th ACM/SIGDA international symposium on Field programmable
gate arrays, ser. FPGA ’11, 2011, pp. 219–226.

[9] D. Ziener, F. Baueregger, and J. Teich, “Using the Power Side Chan-
nel of FPGAs for Communication,” in Field-Programmable Custom
Computing Machines (FCCM), 2010 18th IEEE Annual International
Symposium on, May 2010, pp. 237 –244.

[10] Xilinx Design Language Version 1.6, Xilinx, Inc., Xilinx ISE 6.1i
Documentation in ise6.1i/help/data/xdl, July 2000.

[11] C. Claus, B. Zhang, M. Huebner, C. Schmutzler, J. Becker, and
W. Stechele, “An XDL-based Busmacro Generator for Customizable
Communication Interfaces for Dynamically and Partially Reconfigurable
Systems,” in Workshop on Reconfigurable Computing Education at
ISVLSI 2007, Porto Alegre, Brazil, May 2007.

[12] N. Weaver, Y. Markovskiy, Y. Patel, and J. Wawrzynek, “Post-placement
C-slow Retiming for the Xilinx Virtex FPGA,” in Proceedings of the
2003 ACM/SIGDA Eleventh International Symposium on Field Pro-
grammable Gate Arrays, ser. FPGA ’03, 2003, pp. 185–194.

[13] V. Degalahal and T. Tuan, “Methodology for High Level Estimation of
FPGA Power Consumption,” in Design Automation Conference, 2005.
Proceedings of the ASP-DAC 2005. Asia and South Pacific, vol. 1,
January 2005, pp. 657 – 660 Vol. 1.

[14] D. Koch, C. Beckhoff, and J. Teich, “ReCoBus-Builder A Novel Tool
and Technique to Build Statically and Dynamically Reconfigurable
Systems for FPGAs,” in Field Programmable Logic and Applications
(FPL’08). International Conference on, September 2008, pp. 119–124.

[15] A. Sohanghpurwala, P. Athanas, T. Frangieh, and A. Wood, “OpenPR:
An Open-Source Partial-Reconfiguration Toolkit for Xilinx FPGAs,” in
18th Reconfigurable Architectures Workshop (RAW 2011), May 2011.

[16] D. Koch and J. Torresen, “Routing Optimizations for Component-based
System Design and Partial Run-time Reconfiguration on FPGAs,” in
Field-Programmable Technology (FPT’10). International Conference
on, December 2010.

[17] K. Puttegowda, W. Worek, N. Pappas, A. Dandapani, P. Athanas, and
A. Dickerman, “A Run-time Reconfigurable System for Gene-sequence
Searching,” in VLSI Design, 2003. Proceedings. 16th International
Conference on, January 2003, pp. 561 – 566.

[18] N. Steiner, “A Standalone Wire Database for Routing and Tracing in
Xilinx Virtex, Virtex-E, and Virtex-II FPGAs,” Master’s thesis, Virginia
Polytechnic Institute and State University, 2002.

[19] K. Kepa, F. Morgan, K. Kosciuszkiewicz, L. Braun, M. Hubner, and
J. Becker, “FPGA Analysis Tool: High-Level Flows for Low-Level De-
sign Analysis in Reconfigurable Computing,” in Proceedings of the 5th
International Workshop on Reconfigurable Computing: Architectures,
Tools and Applications, ser. ARC ’09, 2009, pp. 62–73.

[20] N. Steiner, A. Wood, H. Shojaei, J. Couch, P. Athanas, and M. French,
“Torc: Towards an Open-Source Tool Flow,” in Proceedings of the 19th
Annual ACM/SIGDA International Symposium on Field Programmable
Gate Arrays, ser. FPGA ’11. New York, NY, USA: ACM, 2011.

355

