
A Low-Overhead Interconnect Architecture for Virtual
Reconfigurable Fabrics

Aaron Landy, Dr. Greg Stitt
University of Florida

Department of Electrical & Computer Engineering
Gainesville, FL, USA

landy@hcs.ufl.edu, gstitt@ece.ufl.edu

ABSTRACT
Field-programmable gate arrays (FPGAs) have been widely
shown to have significant performance and power advantages
compared to microprocessors and graphics-processing units
(GPUs), but remain a niche technology due in part to productivity
challenges. Although such challenges have numerous causes,
previous work has shown two significant contributing factors: 1)
prohibitive place-and-route times preventing mainstream design
methodologies, and 2) limited application portability preventing
design reuse. Virtual reconfigurable architectures, referred to as
intermediate fabrics (IFs), were recently introduced as a potential
solution to these problems, providing 100x-1000x place-and-route
speedup, while also enabling application portability across
potentially any physical FPGA. However, one significant
limitation of existing intermediate fabrics is area overhead
incurred from virtualized interconnect resources. In this paper, we
perform design-space exploration of virtual interconnect
architectures and introduce an optimized virtual interconnect that
reduces area overhead by 48% to 54% compared to previous
work, while also improving clock frequencies by 24% with a
modest routability overhead of 16%.

Categories and Subject Descriptors
J.6 [Computer-Aided Enginering]: Computer-aided Design

General Terms
Performance, Design

Keywords
FPGA, intermediate fabrics, overlay networks, placement and
routing, virtualization

1. INTRODUCTION
Field-programmable gate arrays (FPGAs) are reconfigurable
devices capable of implementing application-specific circuits that
can provide orders of magnitude improvements in performance,
power, and energy compared to mainstream microprocessors and
graphics-processing units (GPUs) [2][9][12][27]. Although these

advantages potentially advance the state-of-the-art for many
applications, application designers often only use FPGAs when
mainstream technologies cannot meet power and size constraints.

This mainstream resistance to FPGAs has resulted in part from
low designer productivity, which previous work has shown to be
an order of magnitude worse than other devices [24]. Although
the main contributor to low FPGA productivity is an ASIC-
prototyping-focused design methodology [24], advances in high-
level synthesis from mainstream languages such as CUDA [26]
and OpenCL [25] have enabled design flows similar to other
devices. However, even with perfect compilers and synthesis
tools (hereafter referred to collectively as compilation), FPGA
productivity still suffers from prohibitive compilation times, often
requiring many hours or even days for place-and-route [8], which
prevents mainstream design methodologies. Furthermore, the lack
of FPGA application portability prevents design reuse that is a
common source of improved productivity on other devices.

To address these problems, previous work introduced application-
specialized virtual devices, referred to as intermediate fabrics
(IFs) [8][31]. Through abstraction of fine-grained resources,
intermediate fabrics speed up place-and-route by several orders of
magnitude while also enabling application portability across any
physical FPGA that can implement the virtual fabric. Figure 1
illustrates a simple example of an intermediate fabric specialized

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’12, October 7–12, 2012, Tampere, Finland.
Copyright 2012 ACM 978-1-4503-1424-4/12/09…$15.00.

Figure 1: Intermediate fabrics (IFs) are virtual application-
specialized fabrics implemented atop FPGAs that hide

physical device complexity to achieve fast place-and-route and
application portability.

for frequency-domain signal processing by providing coarse-
grained, floating-point Fast-Fourier Transforms (FFTs) and
arithmetic resources. By compiling a circuit to this intermediate
fabric, the compiler avoids decomposing the circuit into tens-of-
thousands of lookup tables (LUTs), enabling fast compilation on
commercial FPGAs.

Although intermediate fabrics provide significant productivity
improvements, previous fabric implementations have limited
applicability due to area overhead incurred by the virtual
interconnect, which prohibits many usage cases. Although this
overhead can be reduced via specialization [8], previous
intermediate fabrics can still use 2.5x the area of a circuit directly
implemented on a physical FPGA [31].

To address the limitations of previous intermediate fabrics, in this
paper we perform design-space exploration of virtual interconnect
architectures to determine tradeoffs between area overhead, clock
overhead, place-and-route time, bit file size, and reconfiguration
time, among others. Such issues have been widely studied for
FPGAs over the past two decades [4][28], but conclusions drawn
for physical FPGAs are not necessarily applicable to virtual,
application-specialized fabrics. Therefore, we revisit fundamental
exploration in the context of virtual fabrics to identify key
tradeoffs. Based on this exploration, we present an optimized
virtual fabric that reduces LUT requirements by 48%-54% and
flip-flop requirements by 46%-59%, while improving clock
frequencies by an average of 24%. To achieve these
improvements, the new interconnect has a modest routability
overhead of 16%, which could be addressed by sacrificing a small
amount of area savings to include more virtual routing resources.

The paper is organized as follows. Section 2 discusses related
work. Section 3 provides an overview of previous intermediate
fabrics and their interconnect. Section 4 describes the optimized
virtual interconnect. Section 5 presents experimental results.

2. PREVIOUS WORK
Numerous previous studies have focused on overlay networks,
which are conceptually similar to intermediate fabrics and
implement a virtual network atop a physical FPGA. For example,
Kapre et al. [15] compared tradeoffs between packet-switched and
time-multiplexed overlay networks implemented on an FPGA.
Intermediate fabrics differ from these overlay networks by
providing a virtual interconnect capable of implementing register-
transfer-level (RTL) circuits at different levels of granularity as
opposed to arbitrary communication between abstract processing
elements. By this definition, an intermediate fabric is an overlay
network, but an overlay network is not necessarily an
intermediate fabric.

Previous work has also investigated fine-grained overlay
networks for virtual FPGAs [5][18]. Virtual FPGAs are
conceptually similar to intermediate fabrics, which also provide
virtual reconfigurable fabrics for implementing digital circuits.
However, overlays for virtual FPGAs closely imitate fine-grained
FPGA architectures [5][18] (e.g. LUTs as resources). Intermediate
fabrics can also implement LUT-based architectures, but instead
are usually specialized for specific domains and even individual
applications using a resource granularity uncommon to FPGAs,
which provides fast place-and-route. Previous virtual FPGAs can
be viewed as specific, low-level instances of an intermediate
fabric. One key difference is that because intermediate fabrics can
be specialized, interconnect requirements differ from fine-grained
virtual FPGAs, and also vary between specializations.

Numerous previous studies have introduced reconfigurable,
coarse-grained physical devices for different application domains
[3][7][10][13][14][21][29][30][32]. Although those devices
provide good performance for their targeted applications, the
disadvantage of such an approach is that specialized physical
devices generally have high costs due to limited economy of
scale. Intermediate fabrics can provide the same architectures
implemented virtually atop common commercial-off-the-shelf
FPGAs, which has significant cost advantages and an acceptable
overhead for some use cases.

Several studies have also considered virtual coarse-grained
architectures for specific domains [30][34]. These approaches are
complementary and represent individual instances of intermediate
fabrics.

Much previous work has also focused on fast place-and-route
using both coarse-grained architectures [6][16][30][35] and
specialized algorithms [1][17][23], in some cases combined with
a place-and-route-amenable fabric [19][20][33]. Intermediate
fabrics are complementary to these approaches and could
potentially use these algorithms for place-and-route.

3. INTERMEDIATE FABRICS
This section overviews intermediate fabrics in Section 3.1 and
then discusses the virtual interconnect architecture used by
previous intermediate fabrics in Section 3.2.

3.1 Overview
As shown in Figure 1, an intermediate fabric is a virtual
reconfigurable device, implemented atop a physical FPGA, which
implements circuits from HDL or high-level code via synthesis,
placement, and routing. Intermediate fabrics, like overlay
networks [15] and virtual FPGAs [5][18], provide a fabric capable
of implementing numerous circuits. However, unlike those
techniques, intermediate fabrics tend to be specialized for the
requirements of a specific set of applications, while providing
enough routability to support similar applications or different
functions in the same domain.

The example in Figure 1 illustrates an intermediate fabric
specialized for a frequency-domain signal-processing circuit, and
provides corresponding floating-point resources for FFTs and
arithmetic computation. When directly compiling this circuit to an
FPGA, place-and-route is likely to require hours due to the
compiler decomposing the circuit into tens-of-thousands of LUTs.
However, when targeting the intermediate fabric, the compiler
decomposes the circuit into several coarse-grained resources,
which reduces the place-and-route input size by orders of
magnitude and provides 100x to 1000x place-and-route speedup
[8][31].

A complete discussion of intermediate fabric usage models and
their implementations is outside the scope of this paper; we
instead summarize two basic models. The library model provides
a large, pre-implemented set of intermediate fabrics that a
designer or synthesis tool can choose from based on the
requirements of the application. For the example in Figure 1, a
designer or tool could choose the selected fabric from one of
many fabrics that provide different fabric sizes, different
combinations of resources, different precisions, etc. An
alternative is the synthesis model, during which the synthesis tool
creates a specialized fabric based on the application requirements.
The advantage to the synthesis model is reduced area overhead.
However, the disadvantage is that the application designer must

wait for place-and-route to implement the intermediate fabric on
the physical FPGA. Although such place-and-route may require
hours, the compilation time is amortized over the lifetime of the
fabric because the physical place-and-route is only needed once.

3.2 Previous Interconnect Architecture
Figure 2(a) illustrates the basic island-style fabric used in
previous intermediate fabrics [8][31]. Such a fabric closely
imitates the widely studied structure of physical FPGAs
consisting of switch boxes, connection boxes, and bidirectional
routing tracks, but replaces LUTs with application-specific
resources (e.g., floating-point units, FFTs) referred to as
computational units (CUs). Note that because intermediate fabrics
can be specialized, the CUs and virtual routing tracks can
potentially be any width. For example, a fabric with floating-point
CUs might provide 32-bit routing tracks. Intermediate fabrics also
contain specialized regions for control and memory operations.
However, in this paper, we focus on the areas of a circuit that
contribute the most to long place-and-route, which for many
applications are coarse-grained, pipelined datapath operations
(e.g., FFTs).

The main limitation of previous intermediate fabrics is area
overhead incurred by implementing the virtual fabric atop a
physical FPGA (i.e., synthesized VHDL for the virtual fabric).
Such overhead results from several sources. The largest source of
overhead comes from mux logic in the virtual interconnect.
Previous intermediate fabrics use virtual bidirectional routing
tracks [8][31], whose register-transfer-level (RTL)
implementation is shown in Figure 2(b) and (c). For an m-bit track
with n possible sources, the RTL implementation uses an m-bit,

n:1 mux, in some cases with a register or latch on the mux output.
For example, Figure 2(b) shows a common configuration of a
bidirectional track with four sources: two switch boxes and two
CUs, with the corresponding RTL implementation shown in
Figure 2(c) as a 4:1 mux, with a select value stored in a 2-bit
virtual configuration register. Considering the large number of
tracks found in most fabrics, this mux-based implementation of
virtual tracks uses numerous LUT resources in the physical
FPGA, and is responsible for over 50% of the total LUT usage in
many intermediate fabrics.

Similarly, virtual switch boxes and connection boxes implement
various topologies using additional muxes between virtual tracks.
The exact percentage of LUT usage for switch/connection boxes
varies depending on the box topology and flexibility, but is also a
significant contributor to area overhead. When combining all
interconnect resources (tracks, switch boxes, and connection
boxes), we determined that the virtual interconnect is commonly
responsible for over 90% of LUT requirements.

In addition to the mux overhead, intermediate fabrics also require
physical flip-flop resources for any storage. Virtual registers are
technically not overhead because synthesis tools can directly
implement virtual registers on physical flip-flops in the FPGA.
However, virtual configuration flip-flops and any pipelined
interconnect is overhead because the resulting physical flip-flops
would not be used by a circuit directly targeting the FPGA.

4. OPTIMIZED INTERCONNECT
Based on the significant overhead caused by the virtual
interconnect described in the previous section, in this paper we

Computational Unit
(CU)

Switch
Box
(SB)

Switch
Box
(SB)

Connection
Box (CB)

Connection
Box (CB)

Connection
Box (CB)

Switch
Box
(SB)

Switch
Box
(SB)

Connection
Box (CB)

Connection

Box

Switch
Box
East

CU North
OutputInput

CU
North

Output

Switch
Box
East

Source

Switch
Box
West

Source

CU
South

Output

CU
North

Input

Switch
Box
East

Sink

Switch
Box
West

Sink

CU
South

Input

CU South

InputOutput

a) b) c)

Switch
Box
West

Routing
Track

Routing
Track

Track Sinks

Track Sources

mux select

Configuration bits

Figure 2: (a) Previous intermediate fabric interconnect architecture, where (b) routing tracks between resources were implemented as (c)
multiplexors based on the number of track sources.

Figure 3: (a) A virtual-track implementation to reduce routing redundancy, which eliminates muxes when (b) tracks have two sources.

focus on virtual interconnect optimizations to reduce muxes, with
the goal of retaining high routability.

During an initial attempt at optimizing virtual tracks, we observed
that the RTL implementation shown in Figure 2(c) contains some
redundancy that could potentially be removed. Specifically, a
physical track would never have a common source and sink,
which results in an unnecessary input to the mux. For example, a
physical FPGA would never route a signal out of a switch box
and back into the same switch box using the same track.
Therefore, we can eliminate the redundant routes and replace the
n:1 mux with n different, n-1:1 muxes, where each mux defines
one of the possible track destinations. Figure 3(a) shows an
example for the previous track in Figure 2(c), where n=4. Despite
eliminating routing redundancy, such an approach does not save
area because in most cases, n separate n-1:1 muxes require more
LUTs than a single n:1 mux.

However, we have observed there is a special case where the
track implementation in Figure 3(a) can achieve reduced area. For
any virtual track with exactly two possible sources, this
implementation simplifies into two directional wires as shown in
Figure 3(b). In other words, a 2-source virtual track requires two

separate 1:1 muxes, but a 1:1 mux is just a wire.

Therefore, by using only 2-source virtual tracks throughout the
entire intermediate fabric, we can potentially replace all mux
logic and wires in Figure 3(a) with two wires for each track. Such
an optimization has significant potential due to virtual tracks
contributing to over 50% of area overhead. Furthermore, this
optimization saves a significant amount of wires per track, while
simultaneously improving routability by enabling routing in two
directions. An additional advantage is that by reducing muxes, the
fabric requires less configuration registers to store the
corresponding select values, which reduces flip-flop overhead
while also improving reconfiguration times.

Although using 2-source virtual tracks reduces area, replacing the
3- and 4-source tracks used in previous fabrics is a significant
challenge. In a traditional island-style architecture, a track
typically has 3-4 possible sources: 2 switch boxes and 1-2 CUs. If
we eliminate the switch box connections, the track can only route
between adjacent resources, which significantly limits routability.
Similarly, if we remove the CU connections, then there is no way
for routing to reach CUs.

To address this problem, we considered several significant
modifications to traditional fabrics. First, we started with 2-source
tracks between adjacent switch boxes, with each switch box as a
possible source. However, that interconnect configuration does
not provide a mechanism for connecting CUs to the routing
tracks. We could have added connection boxes, but that would
violate the 2-source restriction. Therefore, we considered adding
additional channels to each switch box with direct connections to
the CU I/O. The overall fabric layout for this optimized virtual
interconnect is shown in Figure 4. As illustrated, in this
unconventional fabric, no virtual track has more than 2 sources,
which eliminates all muxes previously needed to implement
tracks.

One challenge in designing this optimized interconnect is that
although we eliminated track muxes, we added additional muxes
inside of the switch boxes to support the additional CU channels.
Unless the switch boxes add fewer muxes than we removed from
the tracks, this optimization does not reduce area.

To ensure that the optimized interconnect reduces LUT usage, we
exploit the internal characteristics of the switch box to handle the
additional routing requirements with minimal logic. Previous

Figure 4: Layout of intermediate fabric using optimized
interconnect with CU I/O connected directly

to adjacent switch boxes.

NE O
ut

Reg

NW
 Out

Reg

SW
 In

pu
t

SE Input

SW

N
WE

S
SE

N
S

Figure 5: Switch box topology for (a) previous intermediate fabric interconnect and
(b) the presented interconnect with diagonal CU channels.

intermediate fabric switch boxes use a planar topology, where
each output from the switch box uses a 3:1 mux that selects an
input from one of the three other channels, as shown in Figure
5(a). For the new interconnect, these multiplexors could
potentially require four more inputs to handle routing of the four
adjacent CUs, which would significantly outweigh track savings.
However, we can exploit the fact that increasing mux inputs does
not always increase LUT requirements. As shown in Figure 6,
FPGAs have different area “plateaus” where additional mux
inputs have the same LUT requirements as lesser inputs (e.g., 3-4
inputs and 6-8 inputs). The optimized interconnect exploits this
characteristic by adding CU I/O connections to the muxes until
reaching the largest input size of a plateau, which maximizes
routability without any increase in area. Interestingly, the
presented interconnect can be specialized for different physical
FPGAs, which have different mux plateaus due to varying LUT
sizes.

Although the optimized interconnect switch boxes are not
restricted to a specific topology, we choose a planar-like topology
for evaluation and target the mux plateaus for 4-input muxes.
Therefore, the switch boxes increase 3-input muxes to 4 inputs
wherever possible. The switch boxes also use 5-input muxes, but
do not increase the inputs to 6 or more, despite the plateau
between 6 and 8 inputs. Increasing the mux inputs to 8 may
improve routability with additional overhead, but we defer such
analysis to future work. An example topology is shown in Figure
5(b), where the switch box provides a planar topology for the
north, east, south, and west channels, which correspond to virtual
tracks. In this example, the CU channels (southeast, southwest,
northwest, northeast) connect to the other channels in
customizable ways. Note that we are not proposing a specific
switch box topology for the optimized interconnect. Instead, like
any intermediate fabric, we expect the topology to change based
on application and routability requirements. For the applications
we evaluated, using a highly directional fabric was beneficial due
to pipelined, feed-forward datapaths. However, the switch box
can easily be customized for other topologies. In the experiments,
we use a fabric generation tool that allows specification of the
exact switch box topology in a fabric description file.

5. EXPERIMENTS
In this section, we compare intermediate fabrics using the
presented virtual interconnect with previous work [8][31]. Section
5.1 describes the experimental setup. Section 5.2 compares area

requirements, clock speedups, and routability of both approaches
for unspecialized, uniform fabrics. Section 5.3 presents similar
experiments for application-specialized fabrics.

5.1 Experimental Setup
This section describes the intermediate fabric tool flow used for
the experiments (Section 5.1.1), along with the routability
measurements (Section 5.1.2), and the tools used for evaluating
the different interconnects (Section 5.1.3).

5.1.1 Tool flow
To implement applications on the intermediate fabrics, we
manually synthesize circuits by creating technology-mapped
netlists. We plan to convert open-source synthesis tools to target
intermediate fabrics, including OpenCL high-level synthesis, but
such a project is outside the scope of this paper. For place-and-
route, we use the algorithm previously described in [8] to ensure
that the comparison between the new and previous interconnect is
not unfairly skewed by improved placement. In fact, the place-
and-route results for the new interconnect are likely pessimistic
because we did not modify the placer cost function for the new
interconnect. The place-and-route algorithm is a variation of VPR
[4], and uses simulated annealing for placement with a cost
function that minimizes bounding box size. Routing uses the well-
known PathFinder [22] negotiated-congestion algorithm. Both the
new and previous interconnect have varying amounts of
pipelining in switch boxes or on tracks. Instead of using pipelined
routing algorithms (e.g., [11]), both approaches use realignment
registers in front of each CU to balance the routing delays of all
inputs. Because this pipelining strategy only works for pipelined
datapaths that can be retimed without affecting correctness, we
limit the evaluation to fabrics with coarse-grained resources
commonly needed by datapaths in signal processing.

To configure the intermediate fabric for different applications, the
place-and-route tool outputs a configuration bit file that we store
in a block RAM on the targeted FPGA. Each intermediate fabric
includes a programmer which loads the bitfile from the block
RAM by shifting bits into virtual configuration registers that
control the CUs and virtual switch boxes.

5.1.2 Routability Metric
To fairly compare tradeoffs between interconnects, it is necessary
to measure routability. To perform these measurements for a
given intermediate fabric, we place-and-route a large number of
randomly generated netlists of varying sizes, and determine the
‘routability score’ of the interconnect based on the percentage of
netlists that route successfully. Due to the fast place-and-route
time for intermediate fabrics we were able to test 1,000 netlists
for each fabric to obtain a high-precision metric.

The random netlist generator creates directed acyclic graph
structures representative of pipelined datapaths. Based on the CU
composition of each individual fabric tested, the generator creates
a random number of datapath stages, each consisting of a random
number of technology-mapped cells, and creates random
connections between each stage. Each stage contains at minimum
enough cells, and enough connections are made between stages,
such that each cell has at least one path to the next stage. This
method results in netlists containing one or more disjoint
pipelines of one or more stages each.

8

16

32

64

128

256

512

2 3 4 5 6 7 8

o

f
4-

In
p

u
t

L
U

Ts
 -

(l
o

g
2

sc
al

e)

of Mux Inputs

16-bit

32-bit

64-bit

Data
Width

Figure 6: Virtex 4 LX100 LUT usage for different MUX input
amounts. The plateaus provide opportunities for switch boxes to

add more connections without an area penalty.

5.1.3 Interconnect Evaluation
To evaluate different interconnects, we developed a tool capable
of generating VHDL for intermediate fabrics using the new
interconnect. The tool takes as inputs a fabric-description file that
defines the parameters of the fabric, such as size, aspect ratio, bit-
width and the makeup of the fabric, including CU composition,
and row and column channel descriptions. Channel descriptions
include number of tracks, direction of each track, and switchbox
topology.

To obtain physical FPGA utilization and timing results, we
synthesized the intermediate fabric VHDL using Xilinx ISE 10.1,
Synopsys Synplify Pro 2012, and Altera Quartus II 10.1,
depending on the targeted FPGA. To evaluate the effects of
FPGA variation on each virtual interconnect, we implemented
intermediate fabrics on Xilinx Virtex 4 LX100 and LX200, Xilinx
Virtex 5 LX330, and Altera Stratix IV E530 FPGAs. The
intermediate fabric HDL synthesized for each test case uses the
fixed-logic multipliers available on each physical device for all
CUs (Xilinx DSP48s and Altera 18x18 Multipliers); therefore all
device utilization represents the LUT and flip-flop overhead of
implementing the target application via an intermediate fabric
rather than a direct HDL implementation.

5.2 Interconnect Comparison for Uniform
Intermediate Fabrics

In this section we compare area, routability, and maximum clock
speed of intermediate fabrics using the presented interconnect to
intermediate fabrics using interconnect previously presented in [8]
and [31]. We evaluate each interconnect using different fabric
sizes, implemented on several different physical FPGAs.
Although intermediate fabrics can be specialized to an
application, in this section we evaluate fabrics independently of
targeted applications by using a uniform fabric consisting of 16-
bit DSP CUs with various dimensions (e.g., 5x5 = 5 rows and 5
columns of I/O and CUs).

Table 1 compares LUT and flip-flop utilization (as a % of total
device resources), routability of 1000 randomly generated netlists,
and maximum clock speed for identical intermediate fabrics using
the new and previous interconnects. We implemented fabric sizes
between 3x3 and 12x8 on a Virtex 4 LX200, where an NxM
fabric is composed of one row of M inputs, N-2 rows of M CUs,
and one row of M outputs. We evaluated larger fabric sizes of

13x13 and 14x14 on a Virtex 5 LX330, and sizes 15x15 and
16x16 on a large Stratix IV E530. For fabrics using the previous
interconnect, we used 3 16-bit tracks per channel with specialized
connection boxes from [8], as previous work indicated this
configuration to be an effective tradeoff between routability and
overhead. For fabrics using the new interconnect, we used 2 16-
bit tracks per row and 4 tracks per column with the switch box
topology described in Section 4 optimized for 4-input muxes.

These results show the LUT and flip-flop utilizations of the new
interconnect are significantly less than the previous interconnect,
with an average LUT savings of 54% and flip-flop savings of
59% for the fabrics evaluated. Note that we were unable to
synthesize the old interconnect on the Stratix IV device. We tried
three different version of Quartus, but the old interconnect would
cause a crash during the retiming stage of synthesis. For this
reason, we exclude the Stratix IV results from the averages.

Additionally, the new interconnect showed significant maximum
clock frequency speedup for larger fabrics. When implemented on
the Virtex 4, new interconnect clock speeds decreased only 6.3%
between fabrics of size 3x3 to 12x8, whereas the previous
interconnect suffered from a 34.7% decrease in clock speed over
the same range. Overall, the new interconnect averaged 167 MHz
compared to 136 MHz.

The new interconnect did incur a routability penalty, with a
average decrease of 16% compared to the previous interconnect.
While this overhead is a potential limitation of the new
interconnect, especially when applied to a general-purpose fabric,
we believe this overhead to be an acceptable tradeoff when
compared to the significant area savings provided by the new
interconnect. Routability overhead can also be easily
compensated for when designing the CU composition of a fabric.
Because the placer algorithm used in these experiments is
unchanged from that used for the old fabric, it is likely that an
appropriately customized placer cost function would significantly
improve the routability of the new interconnect. Similarly, fabrics
using the new interconnect could account for decreased
routability by including many more routing resources while still
saving area. Routability decreased monotonically with increased
fabric size due to the increased difficulty of routing larger netlists.
The one exception was the 3x3 fabric with the new interconnect,
which had lower routability than the larger fabrics. We identified
the source of this problem as limited connections between I/O and

Table 1: A comparison between the presented virtual interconnect (New) and previous uniform virtual interconnect (Prev). The
presented interconnect had significant area savings and a clock speedup of 24%, with a modest 16% decrease in routability.

FPGA

Fabric Size
(# of CUs) Prev New Savings Prev New Savings Prev New Overhead Prev New Speedup

3x3 2% 1% 71% 1% 0.2% 72% 100% 78% 22% 173 MHz 175 MHz 1%
4x4 5% 2% 64% 1% 0.4% 65% 100% 95% 5% 163 MHz 172 MHz 6%
5x5 8% 3% 60% 2% 1% 62% 100% 87% 13% 152 MHz 172 MHz 13%
6x6 12% 5% 55% 3% 1% 59% 100% 85% 15% 144 MHz 171 MHz 19%
7x7 17% 8% 53% 5% 2% 57% 100% 84% 16% 123 MHz 170 MHz 38%
8x8 23% 11% 52% 6% 3% 56% 100% 85% 16% 125 MHz 170 MHz 36%
9x9 30% 15% 51% 8% 4% 55% 99.7% 84% 16% 115 MHz 168 MHz 46%
12x8 36% 20% 46% 10% 5% 55% 99.2% 79% 20% 113 MHz 160 MHz 42%

13x13 37% 20% 46% 18% 9% 53% 98% 80% 18% 125 MHz 162 MHz 30%
14x14 44% 24% 46% 21% 10% 52% 94% 83% 12% 131 MHz 148 MHz 13%

15x15 n/a* 14% n/a* n/a* 18% n/a* 90% 71% 21% n/a* 175 MHz n/a*

16x16 n/a* 16% n/a* n/a* 21% n/a* 90% 70% 22% n/a* 177 MHz n/a*

Average 21% 11% 54% 8% 3% 59% 98% 82% 16% 136 MHz 167 MHz 24%

Clock

Xilinx V4LX200

Xilinx V5LX330

Altera S4E530

LUT Usage Flip-Flop Usage Routability

*n/a corresponds to examples that failed to synthesize for the corresponding device, which are excluded from the averages

CUs for very small fabrics using the new interconnect. Because
we expect 3x3 to be an unusually small size for actual usage, this
overhead is not a significant limitation.

These results also show decreased LUT overhead savings of only
46% in fabrics implemented on the Virtex 5 device. This smaller
improvement is likely due to different CLB configuration used by
that device, with slightly altered mux-area plateau characteristics,
whereas the optimizations used by the evaluated interconnect
were optimized for 4-input muxes. Despite being optimized for a
different LUT configuration, the new interconnect still had
significant savings.

Flip-flop usage on the Altera device was significantly higher than
both Xilinx devices, which resulted from the Xilinx FPGAs
implementing the realignment registers as SRL16 primitives, in
contrast to the Altera FPGA which used flip-flops. As future
work, we will investigate optimizations for Altera FPGAs.

One additional advantage of reducing muxes throughout the
interconnect is the corresponding elimination of configuration
registers to store the select values. The fewer registers reduce flip-
flops, which was shown in Table 1, but also reduces configuration
bitfile size, which correspondingly reduces configuration times
and block RAM overhead of the fabric. For the examples in this
section, the new interconnect improved configuration times by an
average of 55% compared to the previous interconnect.

5.3 Interconnect Comparison for Specialized
Intermediate Fabrics

One advantage of intermediate fabrics is that a designer or tool
can specialize the architecture and interconnect for a given
domain or even an individual application. In this section, we
compare intermediate fabrics using application-specialized
interconnect presented in [8] with the new interconnect. To
enable a fair comparison, we evaluate the same application
circuits from [8] using the same specialized fabrics as previous
experiments. Specialization used in the previous experiments
included varying fabric sizes and non-uniform interconnects. For
the new interconnect, we limit specialization to fabric sizes,
making the results pessimistic. For all specialized fabrics, we used
the smallest fabric and interconnect that could successfully route
the target application netlist. For these experiments, the physical
FPGA is a Virtex 4 LX100, which we chose to match the previous
experiments.

To perform the comparison, we used the twelve applications from
[8], seven of which were implemented using both 16-bit fixed
point arithmetic and 32-bit floating point arithmetic, indicated
with a FXD or FLT suffix respectively. All track widths matched
the CU widths. All circuits without a suffix used 16-bit fixed-
point CUs. We briefly summarize the previous applications as
follows. Matrix multiply performs the kernel of a matrix

Table 2: A comparison between intermediate fabrics (IFs) with the presented virtual interconnect (IF New) and previous application-
specialized interconnect (IF Prev). The results show 1350x place-and-route speedup compared to an FPGA, and 2.4x speedup

compared to previous IFs. Average area savings were 48%, with little effect on average clock speed or routability. Two examples had
significantly higher routability on the new interconnect.

IF
P re v

IF
N e w

F P GA S pe e dup
P re v

S pe e dup
N e w

LUT
S a v ing s

F lip-F lo p
S a v ing s

R o uta bility
Ov e rhe a d

IF P re v IF N e w C lo c k
Ov e rhe a d

M atrix m ultiply FXD 0.6s 0.6s 1min 08s 112 x 112 x 5 6 % 6 0 % 1% 170 MHz 186 MHz -9 %

M atrix m ultiply FLT 0.6s 0.6s 6min 06s 6 0 2 x 6 0 2 x 5 9 % 5 9 % 1% 184 MHz 222 MHz -2 1%

FIR FXD 0.6s 0.6s 0min 33s 5 4 x 5 8 x 4 5 % 4 1% 5% 174 MHz 158 MHz 9 %

FIR FLT 0.6s 0.6s 4min 36s 4 5 4 x 4 8 4 x 3 5 % 3 5 % 5% 203 MHz 215 MHz -6 %

N-bo dy FXD 0.5s 0.2s 0min 57s 12 6 x 3 0 0 x 4 0 % 3 2 % 1% 185 MHz 165 MHz 11%

N-bo dy FLT 0.5s 0.2s 3min 42s 4 9 1x 116 8 x 3 7 % 2 6 % 1% 218 MHz 200 MHz 8 %

A ccum FXD 0.1s 0.02s 0min 26s 2 8 0 x 17 3 3 x 5 2 % 5 3 % 0% 186 MHz 187 MHz -1%

A ccum FLT 0.1s 0.02s 0min 30s 3 2 3 x 2 0 0 0 x 5 2 % 5 0 % 0% 225 MHz 241 MHz -7 %

No rm alize FXD 0.2s 0.3s 1min 10s 2 9 9 x 2 4 1x 6 6 % 7 1% -63% 178 MHz 162 MHz 9 %

No rm alize FLT 0.2s 0.3s 6min 44s 17 2 6 x 13 9 3 x 4 3 % 5 4 % -63% 197 MHz 222 MHz -13 %

B ilinear FXD 0.3s 0.3s 1min 08s 2 3 0 x 2 13 x 5 1% 4 7 % 0% 184 MHz 165 MHz 10 %

B ilinear FLT 0.3s 0.3s 8min 48s 17 8 4 x 16 5 0 x 4 1% 4 2 % 0% 206 MHz 200 MHz 3 %

Flo yd-S te inberg FXD 0.1s 0.1s 1min 27s 6 2 1x 9 2 6 x 5 3 % 5 0 % 2% 182 MHz 169 MHz 7 %

Flo yd-S te inberg FLT 0.1s 0.1s 5min 37s 2 4 0 7 x 3 5 8 5 x 4 8 % 4 4 % 2% 196 MHz 179 MHz 9 %

Thres ho lding 1.4s 1.3s 0min 33s 2 4 x 2 6 x 4 4 % 3 6 % 5% 167 MHz 181 MHz -8 %

S o bel 0.3s 0.4s 2min 28s 5 0 0 x 3 4 4 x 4 4 % 3 1% 2% 181 MHz 162 MHz 10 %

Gaus s ian B lur 3.3s 2.2s 3min 19s 6 0 x 9 0 x 3 9 % 4 1% -42% 170 MHz 181 MHz -6 %

M ax Filter 0.2s 0.03s 1min 16s 4 4 4 x 2 5 3 3 x 4 8 % 4 1% 0% 186 MHz 176 MHz 5 %

M ean Filter 3x3 0.2s 0.01s 2min 30s 9 6 2 x 10 7 14 x 5 2 % 5 2 % 10% 185 MHz 187 MHz -1%

M ean Filter 5x5 1.9s 1.9s 3min 25s 110 x 10 8 x 6 4 % 6 5 % -1% 169 MHz 161 MHz 5 %

M ean Filter 7x7 8.9s 4.7s 5min 03s 3 4 x 6 4 x 3 9 % 4 0 % -38% 157 MHz 183 MHz -17 %

Average 1.0s 0.7s 2min 56s 5 5 4 x 13 5 0 x 48% 4 6 % -8% 186 MHz 186 MHz 0 %

A re a a nd R o uta bility C lo c k S pe e dP la c e -a nd-R o ute Tim e

multiplication, calculating the inner product of two 8-element
vectors using 7 adders and 8 multipliers. FIR implements a 12-tap
finite impulse response filter in transpose form with symmetric
coefficients using 11 adders and 12 multipliers. N-body,
representing the kernel of an N-body simulation, calculates the
gravitational force exerted on a particle due to other particles in
two-dimensional space using 13 adders, multipliers, and a divider.
Accum monitors a stream, counting the number of times the value
is less than a threshold. It is the smallest netlist, consisting of 4
comparators and 3 adders. Normalize normalizes an input stream
using 8 multipliers and 8 adders. Bilinear performs bilinear
interpolation on an image, requiring 8 multipliers and 3 adders.
Floyd-Steinberg performs image dithering using 6 adders and 4
multipliers. Thresholding performs automatic image thresholding
using 8 comparators and 14 adders. Sobel uses a 3x3 convolution
to perform Sobel edge detection with 2 multipliers and 11 adders.
Gaussian blur uses a 5x5 convolution to perform noise reduction
using 25 multipliers and 24 adders. Max filter performs a 3x3
sliding-window image filter with 8 comparators. Mean filter
similarly calculates the average of a sliding window, which we
vary from 3x3 to 7x7, requiring a maximum of 48 adders and 1
multiplier.

Table 2 compares the interconnects for each case study. The first
major column, Place-and-Route Time, compares place-and-route
execution times for an intermediate fabric with the previous
interconnect (IF Prev), an intermediate fabric with the new
interconnect (IF New), and when synthesizing VHDL for each
example directly to the FPGA. The table also shows the resulting
place-and-route speedup for the new and previous interconnects.
The results show comparable place-and-route times for both the
old and new interconnect. However, because the previous
interconnect already achieves a place-and-route speedup of 554x
compared to an FPGA, the further improvement by the new
interconnect provided a 1350x place-and-route speedup. The
place-and-route speedup was larger for the floating-point
examples due to longer place-and-route times for the physical
FPGA. Furthermore, these place-and-route speedups are highly
pessimistic because the specialized examples from [8] do not
include common board logic such as PCIe and memory
controllers. Other studies have shown that including these
controllers with tight timing constraints can add up to 20 minutes
to FPGA place-and-route time, but have no effect on intermediate
fabric place-and-route time [31].

The second major column in Table 2 reports area savings of the
new interconnect in terms of FPGA LUTs and flip-flops, along
with the routability overhead incurred to achieve these savings.
On average, the new interconnect significantly reduced LUT
usage by 48% and flip-flop usage by 46%, despite the significant
specialization by the previous fabrics. On average, routability
slightly improved by 8% with the new interconnect. However,
this average is skewed by three outliers, normalize, Gaussian, and
mean7x7, which had very low routability due to significant
specialization in the previous fabrics. Excluding these outliers, the
new interconnect had a 2% routability overhead. The smaller
routability overhead compared to the previous section is due to
the specialized versions of the previous interconnect, which used
just enough routing resources to route the targeted application,
and therefore lowered general routability.

The final column of table 2 compares the maximum clock speed
of the specialized fabrics using both the new and old interconnect.
For specialized fabrics, these experiments show a negligible

average impact on clock speed, with both interconnects showing
an average clock frequency of 186 MHz. However, there was
significant variation as high as 21% between specialized fabrics.
It should be noted that these results are contrary to the results for
larger fabrics presented in the previous section, which showed a
clear trend of faster clock speeds for larger fabrics using the new
interconnect. The reason for the smaller clock improvement
compared to the previous section is due to the higher
specialization of the previous interconnect, as opposed to using a
uniform interconnect.

6. LIMITATIONS AND FUTURE WORK
Even with a 50% reduction in LUT utilization, intermediate
fabrics will still have prohibitive overhead for use cases where an
FPGA is close to being fully utilized. Fortunately, the trends
towards multi-million-LUT FPGAs will lessen this problem over
time. In addition, we plan to investigate virtual interconnect that
directly targets the physical FPGA interconnect without using
muxes. Such an approach could map virtual switch boxes directly
onto physical switch boxes, potentially eliminating much of the
remaining overhead. However, such an approach requires
knowledge of proprietary routing architectures, and is therefore
deferred to future work.

7. CONCLUSIONS
Previous work introduced intermediate fabrics to address FPGA
problems related to lengthy place-and-route times and a lack of
application portability. Although previous intermediate fabric
approaches achieve both application portability and significant
place-and-route speedup, the area overhead of those approaches
prohibits important use cases. To address this problem, we
identified the virtual interconnect as the main source of the
overhead, and performed design-space exploration to identify
unconventional alternatives that could achieve effective Pareto-
optimal tradeoffs between overhead and routability. Based on this
analysis, we introduced an optimized virtual interconnect
architecture that reduces area requirements by approximately 50%
and improves clock frequencies by 24%, with a modest 16%
reduction in routability.

8. ACKNOWLEDGMENTS
This work was supported in part by the I/UCRC Program of the
National Science Foundation under Grant No. EEC-0642422 and
IIP-1161022. The authors gratefully acknowledge vendor
equipment and/or tools provided by Altera and Xilinx.

9. REFERENCES
[1] P. Athanas, J. Bowen, T. Dunham, C. Patterson, J. Rice, M.

Shelburne, J. Suris, M. Bucciero, and J. Graf, “Wires on demand:
Run-time communication synthesis for reconfigurable computing,”
in FPL ’07: International Conference on Field Programmable Logic
and Applications, Aug. 2007, pp. 513–516.

[2] Z. Baker, M. Gokhale, and J. Tripp. “Matched filter computation on
fpga, cell and gpu,” In Field-Programmable Custom Computing
Machines, 2007. FCCM 2007. 15th Annual IEEE Symposium on,
2007, pp. 207–218.

[3] J. Becker, T. Pionteck, C. Habermann, and M. Glesner, “Design and
implementation of a coarse-grained dynamically reconfigurable
hardware architecture,” in VLSI ’01: Proceedings of IEEE Computer
Society Workshop on VLSI, May 2001, pp. 41–46.

[4] V. Betz and J. Rose, “VPR: A new packing, placement and routing
tool for FPGA research,” in FPL ’97: Proceedings of the 7th
International Workshop on Field-Programmable Logic and
Applications. London, UK: Springer-Verlag, 1997, pp. 213–222.

[5] A. Brant and G. Lemieux. "XUMA: An open FPGA overlay
architecture", In FCCM ’12: Proceedings of the IEEE Symposium on
Field-Programmable Custom Computing Machines, 2012.

[6] T. J. Callahan, P. Chong, A. DeHon, and J. Wawrzynek, “Fast
module mapping and placement for datapaths in FPGAs,” in FPGA
’98: Proceedings of the 1998 ACM/SIGDA sixth international
symposium on Field programmable gate arrays. New York, NY,
USA: ACM, 1998, pp. 123–132.

[7] K. Compton and S. Hauck, “Totem: Custom reconfigurable array
generation,” in FCCM’01: Proceedings of the the 9th Annual IEEE
Symposium on Field-Programmable Custom Computing Machines
2001, pp. 111–119.

[8] J. Coole and G. Stitt. "Intermediate fabrics: Virtual architectures for
circuit portability and fast placement and routing." In CODES/ISSS
’10: Proceedings of the IEEE/ACM/IFIP international conference on
Hardware/Software codesign and system synthesis, 2010, pp. 13–22.

[9] A. DeHon, “The density advantage of configurable computing,”
Computer, vol. 33, no. 4, pp. 41–49, 2000.

[10] C. Ebeling, D. C. Cronquist, and P. Franklin, “Rapid - reconfigurable
pipelined datapath,” in FPL ’96: Proceedings of the 6th
International Workshop on Field-Programmable Logic,Smart
Applications, New Paradigms and Compilers. London, UK:
Springer-Verlag, 1996, pp. 126–135.

[11] K. Eguro and S. Hauck, “Armada: timing-driven pipeline-aware
routing for FPGAs,” in FPGA ’06: Proceedings of the 2006
ACM/SIGDA 14th international symposium on Field programmable
gate arrays, 2006, pp. 169–178.

[12] J. Fowers, G. Brown, P. Cooke, and G. Stitt. "A performance and
energy comparison of FPGAs, GPUs, and multicores for sliding-
window applications", In FPGA ’12: Proceedings of the
ACM/SIGDA international symposium on Field Programmable Gate
Arrays, FPGA’12, 2012, pp. 47–56.

[13] D. Grant, C. Wang, and G. G. Lemieux. “A CAD framework for
Malibu: an FPGA with time-multiplexed coarse-grained elements”,
In Proceedings of the 19th ACM/SIGDA international symposium on
Field programmable gate arrays, FPGA ’11, 2011, pp. 123–132.

[14] M. Hammerquist and R. Lysecky, “Design space exploration for
application specific FPGAs in system-on-a-chip designs,” in SOC
’08: Proceedings of the IEEE International SOC Conference, Sept.
2008, pp. 279–282.

[15] N. Kapre, N. Mehta, M. deLorimier, R. Rubin, H. Barnor, M. J.
Wilson, M. Wrighton, and A. DeHon, “Packet-switched vs. time-
multiplexed FPGA overlay networks,” in Proceedings of the IEEE
Symposium on Field-Programmable Custom Computing Machines,
2006.

[16] A. Koch, “Structured design implementation: a strategy for
implementing regular datapaths on FPGAs,” in FPGA ’96:
Proceedings of the 1996 ACM fourth international symposium on
Field-programmable gate arrays, 1996, pp. 151–157.

[17] C. Lavin, M. Padilla, J. Lamprecht, P. Lundrigan, B. Nelson, and B.
Hutchings. "HMFlow: Accelerating FPGA compilation with hard
macros for rapid prototyping", In Field-Programmable Custom
Computing Machines (FCCM), 2011 IEEE 19th Annual
International Symposium on, 2011, pp. 117 –124.

[18] R. Lysecky, K. Miller, F. Vahid, and K. Vissers. “Firm-core virtual
fpga for just-in-time fpga compilation”, In Proceedings of the 2005
ACM/SIGDA 13th international symposium on Field-programmable
gate arrays, FPGA ’05, 2005, pp. 271–271.

[19] R. Lysecky, F. Vahid, and S. X.-D. Tan, “Dynamic fpga routing for
just-in-time FPGA compilation,” in DAC ’04: Proceedings of the
41st Annual Conference on Design Automation, 2004, pp. 954–959.

[20] R. Lysecky, F. Vahid, and S. X. D. Tan, “A study of the scalability
of on-chip routing for just-in-time FPGA compilation,” in FCCM

’05: Proceedings of the 13th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines, 2005, pp. 57–62.

[21] A. Marshall, T. Stansfield, I. Kostarnov, J. Vuillemin, and B.
Hutchings, “A reconfigurable arithmetic array for multimedia
applications,” in FPGA ’99: Proceedings of the 1999 ACM/SIGDA
Seventh International Symposium on Field Programmable Gate
Arrays, 1999, pp. 135–143.

[22] L. McMurchie and C. Ebeling, “Pathfinder: a negotiation-based
performance-driven router for FPGAs,” in FPGA ’95: Proceedings
of the 1995 ACM Third International Symposium on Field
Programmable Gate Arrays, 1995, pp. 111–117.

[23] C. Mulpuri and S. Hauck, “Runtime and quality tradeoffs in FPGA
placement and routing,” in FPGA ’01: Proceedings of the 2001
ACM/SIGDA Ninth International Symposium on Field
Programmable Gate Arrays, 2001, pp. 29–36.

[24] B. E. Nelson, M. J. Wirthlin, B. L. Hutchings, P. M. Athanas, and S.
Bohner, “Design productivity for configurable computing,” in ERSA
’08: Proceedings of the International Conference on Engineering of
Reconfigurable Systems and Algorithms, 2008, pp. 57–66.

[25] M. Owaida, N. Bellas, K. Daloukas, and C. Antonopoulos.
"Synthesis of platform architectures from opencl programs", In
Field-Programmable Custom Computing Machines (FCCM), 2011
IEEE 19th Annual International Symposium on, 2011, pp. 186–193.

[26] A. Papakonstantinou, K. Gururaj, J. Stratton, D. Chen, J. Cong, and
W.-M. Hwu. "FCUDA: Enabling efficient compilation of cuda
kernels onto fpgas", In Application Specific Processors, 2009. SASP
’09. IEEE 7th Symposium on, 2009, pp. 35–42.

[27] K. Pauwels, M. Tomasi, J. Diaz Alonso, E. Ros, and M. Van Hulle.
"A comparison of fpga and gpu for real-time phase-based optical
flow, stereo, and local image features", Computers, IEEE
Transactions on, PP(99):1, 2011.

[28] J. Rose, J. Luu, C. W. Yu, O. Densmore, J. Goeders, A. Somerville,
K. B. Kent, P. Jamieson, and J. Anderson. "The VTR project:
architecture and cad for fpgas from verilog to routing", In
Proceedings of the ACM/SIGDA international symposium on Field
Programmable Gate Arrays, FPGA ’12, 2012, pp. 77–86.

[29] L. Sekanina, Evolvable Systems: From Biology to Hardware.
Springer Berlin / Heidelberg, 2003, ch. Virtual Reconfigurable
Circuits for Real-World Applications of Evolvable Hardware, pp.
116–137.

[30] S. Shukla, N. W. Bergmann, and J. Becker, “Quku: A two-level
reconfigurable architecture,” in ISVLSI ’06: Proceedings of the IEEE
Computer Society Annual Symposium on Emerging VLSI
Technologies and Architectures, 2006, p. 109.

[31] G. Stitt and J. Coole. "Intermediate fabrics: Virtual architectures for
near-instant FPGA compilation", Embedded Systems Letters, IEEE,
3(3):81 –84, sept. 2011.

[32] W. Tsu, K. Macy, A. Joshi, R. Huang, N. Walker, T. Tung, O.
Rowhani, V. George, J. Wawrzynek, and A. DeHon, “HSRA: high-
speed, hierarchical synchronous reconfigurable array,” in FPGA ’99:
Proceedings of the 1999 ACM/SIGDA seventh international
symposium on Field programmable gate arrays, 1999, pp. 125–134.

[33] F. Vahid, G. Stitt, and R. Lysecky, “Warp processing: Dynamic
translation of binaries to FPGA circuits,” Computer, vol. 41, no. 7,
pp. 40–46, July 2008.

[34] J. Wang, Q. Chen, and C. Lee, “Design and implementation of a
virtual reconfigurable architecture for different applications of
intrinsic evolvable hardware,” Computers & Digital Techniques,
IET, vol. 2, no. 5, pp. 386–400, September 2008.

[35] P. Yiannacouras, J. G. Steffan, and J. Rose. Vespa: portable,
scalable, and flexible fpga-based vector processors. In Proceedings
of the 2008 international conference on Compilers, architectures
and synthesis for embedded systems, CASES ’08, 2008, pp. 61–70.

