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ABSTRACT 
Field-programmable gate arrays (FPGAs) have been widely 
shown to have significant performance and power advantages 
compared to microprocessors and graphics-processing units 
(GPUs), but remain a niche technology due in part to productivity 
challenges. Although such challenges have numerous causes, 
previous work has shown two significant contributing factors: 1) 
prohibitive place-and-route times preventing mainstream design 
methodologies, and 2) limited application portability preventing 
design reuse. Virtual reconfigurable architectures, referred to as 
intermediate fabrics (IFs), were recently introduced as a potential 
solution to these problems, providing 100x-1000x place-and-route 
speedup, while also enabling application portability across 
potentially any physical FPGA. However, one significant 
limitation of existing intermediate fabrics is area overhead 
incurred from virtualized interconnect resources. In this paper, we 
perform design-space exploration of virtual interconnect 
architectures and introduce an optimized virtual interconnect that 
reduces area overhead by 48% to 54% compared to previous 
work, while also improving clock frequencies by 24% with a 
modest routability overhead of 16%.  

Categories and Subject Descriptors 
J.6 [Computer-Aided Enginering]: Computer-aided Design 

General Terms 
Performance, Design 

Keywords 
FPGA, intermediate fabrics, overlay networks, placement and 
routing, virtualization  
 

1. INTRODUCTION 
Field-programmable gate arrays (FPGAs) are reconfigurable 
devices capable of implementing application-specific circuits that 
can provide orders of magnitude improvements in performance, 
power, and energy compared to mainstream microprocessors and 
graphics-processing units (GPUs) [2][9][12][27]. Although these 

advantages potentially advance the state-of-the-art for many 
applications, application designers often only use FPGAs when 
mainstream technologies cannot meet power and size constraints.  

This mainstream resistance to FPGAs has resulted in part from 
low designer productivity, which previous work has shown to be 
an order of magnitude worse than other devices [24]. Although 
the main contributor to low FPGA productivity is an ASIC-
prototyping-focused design methodology [24], advances in high-
level synthesis from mainstream languages such as CUDA [26] 
and OpenCL [25] have enabled design flows similar to other 
devices. However, even with perfect compilers and synthesis 
tools (hereafter referred to collectively as compilation), FPGA 
productivity still suffers from prohibitive compilation times, often 
requiring many hours or even days for place-and-route [8], which 
prevents mainstream design methodologies. Furthermore, the lack 
of FPGA application portability prevents design reuse that is a 
common source of improved productivity on other devices. 

To address these problems, previous work introduced application-
specialized virtual devices, referred to as intermediate fabrics 
(IFs) [8][31]. Through abstraction of fine-grained resources, 
intermediate fabrics speed up place-and-route by several orders of 
magnitude while also enabling application portability across any 
physical FPGA that can implement the virtual fabric. Figure 1 
illustrates a simple example of an intermediate fabric specialized 
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Figure 1: Intermediate fabrics (IFs) are virtual application-
specialized fabrics implemented atop FPGAs that hide  

physical device complexity to achieve fast place-and-route and 
application portability. 



for frequency-domain signal processing by providing coarse-
grained, floating-point Fast-Fourier Transforms (FFTs) and 
arithmetic resources. By compiling a circuit to this intermediate 
fabric, the compiler avoids decomposing the circuit into tens-of-
thousands of lookup tables (LUTs), enabling fast compilation on 
commercial FPGAs. 

Although intermediate fabrics provide significant productivity 
improvements, previous fabric implementations have limited 
applicability due to area overhead incurred by the virtual 
interconnect, which prohibits many usage cases. Although this 
overhead can be reduced via specialization [8], previous 
intermediate fabrics can still use 2.5x the area of a circuit directly 
implemented on a physical FPGA [31]. 

To address the limitations of previous intermediate fabrics, in this 
paper we perform design-space exploration of virtual interconnect 
architectures to determine tradeoffs between area overhead, clock 
overhead, place-and-route time, bit file size, and reconfiguration 
time, among others. Such issues have been widely studied for 
FPGAs over the past two decades [4][28], but conclusions drawn 
for physical FPGAs are not necessarily applicable to virtual, 
application-specialized fabrics. Therefore, we revisit fundamental 
exploration in the context of virtual fabrics to identify key 
tradeoffs. Based on this exploration, we present an optimized 
virtual fabric that reduces LUT requirements by 48%-54% and 
flip-flop requirements by 46%-59%, while improving clock 
frequencies by an average of 24%. To achieve these 
improvements, the new interconnect has a modest routability 
overhead of 16%, which could be addressed by sacrificing a small 
amount of area savings to include more virtual routing resources. 

The paper is organized as follows. Section 2 discusses related 
work. Section 3 provides an overview of previous intermediate 
fabrics and their interconnect. Section 4 describes the optimized 
virtual interconnect. Section 5 presents experimental results. 

2. PREVIOUS WORK 
Numerous previous studies have focused on overlay networks, 
which are conceptually similar to intermediate fabrics and 
implement a virtual network atop a physical FPGA. For example, 
Kapre et al. [15] compared tradeoffs between packet-switched and 
time-multiplexed overlay networks implemented on an FPGA. 
Intermediate fabrics differ from these overlay networks by 
providing a virtual interconnect capable of implementing register-
transfer-level (RTL) circuits at different levels of granularity as 
opposed to arbitrary communication between abstract processing 
elements. By this definition, an intermediate fabric is an overlay 
network, but an overlay network is not necessarily an 
intermediate fabric. 

Previous work has also investigated fine-grained overlay 
networks for virtual FPGAs [5][18]. Virtual FPGAs are 
conceptually similar to intermediate fabrics, which also provide 
virtual reconfigurable fabrics for implementing digital circuits. 
However, overlays for virtual FPGAs closely imitate fine-grained 
FPGA architectures [5][18] (e.g. LUTs as resources). Intermediate 
fabrics can also implement LUT-based architectures, but instead 
are usually specialized for specific domains and even individual 
applications using a resource granularity uncommon to FPGAs, 
which provides fast place-and-route. Previous virtual FPGAs can 
be viewed as specific, low-level instances of an intermediate 
fabric. One key difference is that because intermediate fabrics can 
be specialized, interconnect requirements differ from fine-grained 
virtual FPGAs, and also vary between specializations. 

Numerous previous studies have introduced reconfigurable, 
coarse-grained physical devices for different application domains 
[3][7][10][13][14][21][29][30][32]. Although those devices 
provide good performance for their targeted applications, the 
disadvantage of such an approach is that specialized physical 
devices generally have high costs due to limited economy of 
scale. Intermediate fabrics can provide the same architectures 
implemented virtually atop common commercial-off-the-shelf 
FPGAs, which has significant cost advantages and an acceptable 
overhead for some use cases. 

Several studies have also considered virtual coarse-grained 
architectures for specific domains [30][34]. These approaches are 
complementary and represent individual instances of intermediate 
fabrics. 

Much previous work has also focused on fast place-and-route 
using both coarse-grained architectures [6][16][30][35] and 
specialized algorithms  [1][17][23], in some cases combined with 
a place-and-route-amenable fabric [19][20][33]. Intermediate 
fabrics are complementary to these approaches and could 
potentially use these algorithms for place-and-route.  

3. INTERMEDIATE FABRICS 
This section overviews intermediate fabrics in Section 3.1 and 
then discusses the virtual interconnect architecture used by 
previous intermediate fabrics in Section 3.2. 

3.1 Overview 
As shown in Figure 1, an intermediate fabric is a virtual 
reconfigurable device, implemented atop a physical FPGA, which 
implements circuits from HDL or high-level code via synthesis, 
placement, and routing. Intermediate fabrics, like overlay 
networks [15] and virtual FPGAs [5][18], provide a fabric capable 
of implementing numerous circuits. However, unlike those 
techniques, intermediate fabrics tend to be specialized for the 
requirements of a specific set of applications, while providing 
enough routability to support similar applications or different 
functions in the same domain.  

The example in Figure 1 illustrates an intermediate fabric 
specialized for a frequency-domain signal-processing circuit, and 
provides corresponding floating-point resources for FFTs and 
arithmetic computation. When directly compiling this circuit to an 
FPGA, place-and-route is likely to require hours due to the 
compiler decomposing the circuit into tens-of-thousands of LUTs. 
However, when targeting the intermediate fabric, the compiler 
decomposes the circuit into several coarse-grained resources, 
which reduces the place-and-route input size by orders of 
magnitude and provides 100x to 1000x place-and-route speedup 
[8][31]. 

A complete discussion of intermediate fabric usage models and 
their implementations is outside the scope of this paper; we 
instead summarize two basic models. The library model provides 
a large, pre-implemented set of intermediate fabrics that a 
designer or synthesis tool can choose from based on the 
requirements of the application. For the example in Figure 1, a 
designer or tool could choose the selected fabric from one of 
many fabrics that provide different fabric sizes, different 
combinations of resources, different precisions, etc. An 
alternative is the synthesis model, during which the synthesis tool 
creates a specialized fabric based on the application requirements. 
The advantage to the synthesis model is reduced area overhead. 
However, the disadvantage is that the application designer must 



wait for place-and-route to implement the intermediate fabric on 
the physical FPGA. Although such place-and-route may require 
hours, the compilation time is amortized over the lifetime of the 
fabric because the physical place-and-route is only needed once. 

3.2 Previous Interconnect Architecture 
Figure 2(a) illustrates the basic island-style fabric used in 
previous intermediate fabrics [8][31]. Such a fabric closely 
imitates the widely studied structure of physical FPGAs 
consisting of switch boxes, connection boxes, and bidirectional 
routing tracks, but replaces LUTs with application-specific 
resources (e.g., floating-point units, FFTs) referred to as 
computational units (CUs). Note that because intermediate fabrics 
can be specialized, the CUs and virtual routing tracks can 
potentially be any width. For example, a fabric with floating-point 
CUs might provide 32-bit routing tracks. Intermediate fabrics also 
contain specialized regions for control and memory operations. 
However, in this paper, we focus on the areas of a circuit that 
contribute the most to long place-and-route, which for many 
applications are coarse-grained, pipelined datapath operations 
(e.g., FFTs). 

The main limitation of previous intermediate fabrics is area 
overhead incurred by implementing the virtual fabric atop a 
physical FPGA (i.e., synthesized VHDL for the virtual fabric). 
Such overhead results from several sources. The largest source of 
overhead comes from mux logic in the virtual interconnect. 
Previous intermediate fabrics use virtual bidirectional routing 
tracks [8][31], whose register-transfer-level (RTL) 
implementation is shown in Figure 2(b) and (c). For an m-bit track 
with n possible sources, the RTL implementation uses an m-bit, 

n:1 mux, in some cases with a register or latch on the mux output. 
For example, Figure 2(b) shows a common configuration of a 
bidirectional track with four sources: two switch boxes and two 
CUs, with the corresponding RTL implementation shown in 
Figure 2(c) as a 4:1 mux, with a select value stored in a 2-bit 
virtual configuration register. Considering the large number of 
tracks found in most fabrics, this mux-based implementation of 
virtual tracks uses numerous LUT resources in the physical 
FPGA, and is responsible for over 50% of the total LUT usage in 
many intermediate fabrics. 

Similarly, virtual switch boxes and connection boxes implement 
various topologies using additional muxes between virtual tracks. 
The exact percentage of LUT usage for switch/connection boxes 
varies depending on the box topology and flexibility, but is also a 
significant contributor to area overhead. When combining all 
interconnect resources (tracks, switch boxes, and connection 
boxes), we determined that the virtual interconnect is commonly 
responsible for over 90% of LUT requirements. 

In addition to the mux overhead, intermediate fabrics also require 
physical flip-flop resources for any storage. Virtual registers are 
technically not overhead because synthesis tools can directly 
implement virtual registers on physical flip-flops in the FPGA. 
However, virtual configuration flip-flops and any pipelined 
interconnect is overhead because the resulting physical flip-flops 
would not be used by a circuit directly targeting the FPGA. 

4. OPTIMIZED INTERCONNECT 
Based on the significant overhead caused by the virtual 
interconnect described in the previous section, in this paper we 
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Figure 2: (a) Previous intermediate fabric interconnect architecture, where (b) routing tracks between resources were implemented as (c) 
multiplexors based on the number of track sources. 

 

Figure 3: (a) A virtual-track implementation to reduce routing redundancy, which eliminates muxes when (b) tracks have two sources.  



focus on virtual interconnect optimizations to reduce muxes, with 
the goal of retaining high routability. 

During an initial attempt at optimizing virtual tracks, we observed 
that the RTL implementation shown in Figure 2(c) contains some 
redundancy that could potentially be removed. Specifically, a 
physical track would never have a common source and sink, 
which results in an unnecessary input to the mux. For example, a 
physical FPGA would never route a signal out of a switch box 
and back into the same switch box using the same track. 
Therefore, we can eliminate the redundant routes and replace the 
n:1 mux with n different, n-1:1 muxes, where each mux defines 
one of the possible track destinations. Figure 3(a) shows an 
example for the previous track in Figure 2(c), where n=4. Despite 
eliminating routing redundancy, such an approach does not save 
area because in most cases, n separate n-1:1 muxes require more 
LUTs than a single n:1 mux. 

However, we have observed there is a special case where the 
track implementation in Figure 3(a) can achieve reduced area. For 
any virtual track with exactly two possible sources, this 
implementation simplifies into two directional wires as shown in 
Figure 3(b). In other words, a 2-source virtual track requires two 

separate 1:1 muxes, but a 1:1 mux is just a wire.  

Therefore, by using only 2-source virtual tracks throughout the 
entire intermediate fabric, we can potentially replace all mux 
logic and wires in Figure 3(a) with two wires for each track. Such 
an optimization has significant potential due to virtual tracks 
contributing to over 50% of area overhead. Furthermore, this 
optimization saves a significant amount of wires per track, while 
simultaneously improving routability by enabling routing in two 
directions. An additional advantage is that by reducing muxes, the 
fabric requires less configuration registers to store the 
corresponding select values, which reduces flip-flop overhead 
while also improving reconfiguration times. 

Although using 2-source virtual tracks reduces area, replacing the 
3- and 4-source tracks used in previous fabrics is a significant 
challenge. In a traditional island-style architecture, a track 
typically has 3-4 possible sources: 2 switch boxes and 1-2 CUs. If 
we eliminate the switch box connections, the track can only route 
between adjacent resources, which significantly limits routability. 
Similarly, if we remove the CU connections, then there is no way 
for routing to reach CUs. 

To address this problem, we considered several significant 
modifications to traditional fabrics. First, we started with 2-source 
tracks between adjacent switch boxes, with each switch box as a 
possible source. However, that interconnect configuration does 
not provide a mechanism for connecting CUs to the routing 
tracks. We could have added connection boxes, but that would 
violate the 2-source restriction. Therefore, we considered adding 
additional channels to each switch box with direct connections to 
the CU I/O. The overall fabric layout for this optimized virtual 
interconnect is shown in Figure 4. As illustrated, in this 
unconventional fabric, no virtual track has more than 2 sources, 
which eliminates all muxes previously needed to implement 
tracks. 

One challenge in designing this optimized interconnect is that 
although we eliminated track muxes, we added additional muxes 
inside of the switch boxes to support the additional CU channels. 
Unless the switch boxes add fewer muxes than we removed from 
the tracks, this optimization does not reduce area.  

To ensure that the optimized interconnect reduces LUT usage, we 
exploit the internal characteristics of the switch box to handle the 
additional routing requirements with minimal logic. Previous 

 

Figure 4: Layout of intermediate fabric using optimized 
interconnect with CU I/O connected directly  

to adjacent switch boxes.  
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Figure 5: Switch box topology for (a) previous intermediate fabric interconnect and  
(b) the presented interconnect with diagonal CU channels. 



intermediate fabric switch boxes use a planar topology, where 
each output from the switch box uses a 3:1 mux that selects an 
input from one of the three other channels, as shown in Figure 
5(a). For the new interconnect, these multiplexors could 
potentially require four more inputs to handle routing of the four 
adjacent CUs, which would significantly outweigh track savings. 
However, we can exploit the fact that increasing mux inputs does 
not always increase LUT requirements. As shown in Figure 6, 
FPGAs have different area “plateaus” where additional mux 
inputs have the same LUT requirements as lesser inputs (e.g., 3-4 
inputs and 6-8 inputs). The optimized interconnect exploits this 
characteristic by adding CU I/O connections to the muxes until 
reaching the largest input size of a plateau, which maximizes 
routability without any increase in area. Interestingly, the 
presented interconnect can be specialized for different physical 
FPGAs, which have different mux plateaus due to varying LUT 
sizes.  

Although the optimized interconnect switch boxes are not 
restricted to a specific topology, we choose a planar-like topology 
for evaluation and target the mux plateaus for 4-input muxes. 
Therefore, the switch boxes increase 3-input muxes to 4 inputs 
wherever possible. The switch boxes also use 5-input muxes, but 
do not increase the inputs to 6 or more, despite the plateau 
between 6 and 8 inputs. Increasing the mux inputs to 8 may 
improve routability with additional overhead, but we defer such 
analysis to future work. An example topology is shown in Figure 
5(b), where the switch box provides a planar topology for the 
north, east, south, and west channels, which correspond to virtual 
tracks. In this example, the CU channels (southeast, southwest, 
northwest, northeast) connect to the other channels in 
customizable ways. Note that we are not proposing a specific 
switch box topology for the optimized interconnect. Instead, like 
any intermediate fabric, we expect the topology to change based 
on application and routability requirements. For the applications 
we evaluated, using a highly directional fabric was beneficial due 
to pipelined, feed-forward datapaths. However, the switch box 
can easily be customized for other topologies. In the experiments, 
we use a fabric generation tool that allows specification of the 
exact switch box topology in a fabric description file. 

5. EXPERIMENTS 
In this section, we compare intermediate fabrics using the 
presented virtual interconnect with previous work [8][31]. Section 
5.1 describes the experimental setup. Section 5.2 compares area 

requirements, clock speedups, and routability of both approaches 
for unspecialized, uniform fabrics. Section 5.3 presents similar 
experiments for application-specialized fabrics.  

5.1 Experimental Setup 
This section describes the intermediate fabric tool flow used for 
the experiments (Section 5.1.1), along with the routability 
measurements (Section 5.1.2), and the tools used for evaluating 
the different interconnects (Section 5.1.3). 

5.1.1 Tool flow 
To implement applications on the intermediate fabrics, we 
manually synthesize circuits by creating technology-mapped 
netlists. We plan to convert open-source synthesis tools to target 
intermediate fabrics, including OpenCL high-level synthesis, but 
such a project is outside the scope of this paper. For place-and-
route, we use the algorithm previously described in [8] to ensure 
that the comparison between the new and previous interconnect is 
not unfairly skewed by improved placement. In fact, the place-
and-route results for the new interconnect are likely pessimistic 
because we did not modify the placer cost function for the new 
interconnect. The place-and-route algorithm is a variation of VPR 
[4], and uses simulated annealing for placement with a cost 
function that minimizes bounding box size. Routing uses the well-
known PathFinder [22] negotiated-congestion algorithm. Both the 
new and previous interconnect have varying amounts of 
pipelining in switch boxes or on tracks. Instead of using pipelined 
routing algorithms (e.g., [11]), both approaches use realignment 
registers in front of each CU to balance the routing delays of all 
inputs. Because this pipelining strategy only works for pipelined 
datapaths that can be retimed without affecting correctness, we 
limit the evaluation to fabrics with coarse-grained resources 
commonly needed by datapaths in signal processing.  

To configure the intermediate fabric for different applications, the 
place-and-route tool outputs a configuration bit file that we store 
in a block RAM on the targeted FPGA. Each intermediate fabric 
includes a programmer which loads the bitfile from the block 
RAM by shifting bits into virtual configuration registers that 
control the CUs and virtual switch boxes. 

5.1.2 Routability Metric 
To fairly compare tradeoffs between interconnects, it is necessary 
to measure routability. To perform these measurements for a 
given intermediate fabric, we place-and-route a large number of 
randomly generated netlists of varying sizes, and determine the 
‘routability score’ of the interconnect based on the percentage of 
netlists that route successfully. Due to the fast place-and-route 
time for intermediate fabrics we were able to test 1,000 netlists 
for each fabric to obtain a high-precision metric. 

The random netlist generator creates directed acyclic graph 
structures representative of pipelined datapaths. Based on the CU 
composition of each individual fabric tested, the generator creates 
a random number of datapath stages, each consisting of a random 
number of technology-mapped cells, and creates random 
connections between each stage. Each stage contains at minimum 
enough cells, and enough connections are made between stages, 
such that each cell has at least one path to the next stage. This 
method results in netlists containing one or more disjoint 
pipelines of one or more stages each. 
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5.1.3 Interconnect Evaluation 
To evaluate different interconnects, we developed a tool capable 
of generating VHDL for intermediate fabrics using the new 
interconnect. The tool takes as inputs a fabric-description file that 
defines the parameters of the fabric, such as size, aspect ratio, bit-
width and the makeup of the fabric, including CU composition, 
and row and column channel descriptions. Channel descriptions 
include number of tracks, direction of each track, and switchbox 
topology.  

To obtain physical FPGA utilization and timing results, we 
synthesized the intermediate fabric VHDL using Xilinx ISE 10.1, 
Synopsys Synplify Pro 2012, and Altera Quartus II 10.1, 
depending on the targeted FPGA. To evaluate the effects of 
FPGA variation on each virtual interconnect, we implemented 
intermediate fabrics on Xilinx Virtex 4 LX100 and LX200, Xilinx 
Virtex 5 LX330, and Altera Stratix IV E530 FPGAs. The 
intermediate fabric HDL synthesized for each test case uses the 
fixed-logic multipliers available on each physical device for all 
CUs (Xilinx DSP48s and Altera 18x18 Multipliers); therefore all 
device utilization represents the LUT and flip-flop overhead of 
implementing the target application via an intermediate fabric 
rather than a direct HDL implementation.  

5.2 Interconnect Comparison for Uniform  
Intermediate Fabrics 

In this section we compare area, routability, and maximum clock 
speed of intermediate fabrics using the presented interconnect to 
intermediate fabrics using interconnect previously presented in [8] 
and [31]. We evaluate each interconnect using different fabric 
sizes, implemented on several different physical FPGAs. 
Although intermediate fabrics can be specialized to an 
application, in this section we evaluate fabrics independently of 
targeted applications by using a uniform fabric consisting of 16-
bit DSP CUs with various dimensions (e.g., 5x5 = 5 rows and 5 
columns of I/O and CUs).  

Table 1 compares LUT and flip-flop utilization (as a % of total 
device resources), routability of 1000 randomly generated netlists, 
and maximum clock speed for identical intermediate fabrics using 
the new and previous interconnects. We implemented fabric sizes 
between 3x3 and 12x8 on a Virtex 4 LX200, where an NxM 
fabric is composed of one row of M inputs, N-2 rows of M CUs, 
and one row of M outputs. We evaluated larger fabric sizes of 

13x13 and 14x14 on a Virtex 5 LX330, and sizes 15x15 and 
16x16 on a large Stratix IV E530. For fabrics using the previous 
interconnect, we used 3 16-bit tracks per channel with specialized 
connection boxes from [8], as previous work indicated this 
configuration to be an effective tradeoff between routability and 
overhead. For fabrics using the new interconnect, we used 2 16-
bit tracks per row and 4 tracks per column with the switch box 
topology described in Section 4 optimized for 4-input muxes. 

These results show the LUT and flip-flop utilizations of the new 
interconnect are significantly less than the previous interconnect, 
with an average LUT savings of 54% and flip-flop savings of 
59% for the fabrics evaluated. Note that we were unable to 
synthesize the old interconnect on the Stratix IV device. We tried 
three different version of Quartus, but the old interconnect would 
cause a crash during the retiming stage of synthesis. For this 
reason, we exclude the Stratix IV results from the averages. 

Additionally, the new interconnect showed significant maximum 
clock frequency speedup for larger fabrics. When implemented on 
the Virtex 4, new interconnect clock speeds decreased only 6.3% 
between fabrics of size 3x3 to 12x8, whereas the previous 
interconnect suffered from a 34.7% decrease in clock speed over 
the same range. Overall, the new interconnect averaged 167 MHz 
compared to 136 MHz. 

The new interconnect did incur a routability penalty, with a 
average decrease of 16% compared to the previous interconnect. 
While this overhead is a potential limitation of the new 
interconnect, especially when applied to a general-purpose fabric, 
we believe this overhead to be an acceptable tradeoff when 
compared to the significant area savings provided by the new 
interconnect. Routability overhead can also be easily 
compensated for when designing the CU composition of a fabric. 
Because the placer algorithm used in these experiments is 
unchanged from that used for the old fabric, it is likely that an 
appropriately customized placer cost function would significantly 
improve the routability of the new interconnect. Similarly, fabrics 
using the new interconnect could account for decreased 
routability by including many more routing resources while still 
saving area. Routability decreased monotonically with increased 
fabric size due to the increased difficulty of routing larger netlists. 
The one exception was the 3x3 fabric with the new interconnect, 
which had lower routability than the larger fabrics. We identified 
the source of this problem as limited connections between I/O and 

Table 1: A comparison between the presented virtual interconnect (New) and previous uniform virtual interconnect (Prev). The 
presented interconnect had significant area savings and a clock speedup of 24%, with a modest 16% decrease in routability.  

 

FPGA

Fabric Size 
(# of CUs) Prev New Savings Prev New Savings Prev New Overhead Prev New Speedup

3x3 2% 1% 71% 1% 0.2% 72% 100% 78% 22% 173 MHz 175 MHz 1%
4x4 5% 2% 64% 1% 0.4% 65% 100% 95% 5% 163 MHz 172 MHz 6%
5x5 8% 3% 60% 2% 1% 62% 100% 87% 13% 152 MHz 172 MHz 13%
6x6 12% 5% 55% 3% 1% 59% 100% 85% 15% 144 MHz 171 MHz 19%
7x7 17% 8% 53% 5% 2% 57% 100% 84% 16% 123 MHz 170 MHz 38%
8x8 23% 11% 52% 6% 3% 56% 100% 85% 16% 125 MHz 170 MHz 36%
9x9 30% 15% 51% 8% 4% 55% 99.7% 84% 16% 115 MHz 168 MHz 46%
12x8 36% 20% 46% 10% 5% 55% 99.2% 79% 20% 113 MHz 160 MHz 42%

13x13 37% 20% 46% 18% 9% 53% 98% 80% 18% 125 MHz 162 MHz 30%
14x14 44% 24% 46% 21% 10% 52% 94% 83% 12% 131 MHz 148 MHz 13%

15x15 n/a* 14% n/a* n/a* 18% n/a* 90% 71% 21% n/a* 175 MHz n/a*

16x16 n/a* 16% n/a* n/a* 21% n/a* 90% 70% 22% n/a* 177 MHz n/a*

Average 21% 11% 54% 8% 3% 59% 98% 82% 16% 136 MHz 167 MHz 24%

Clock

Xilinx V4LX200

Xilinx V5LX330

Altera S4E530

LUT Usage Flip-Flop Usage Routability

 
*n/a corresponds to examples that failed to synthesize for the corresponding device, which are excluded from the averages



CUs for very small fabrics using the new interconnect. Because 
we expect 3x3 to be an unusually small size for actual usage, this 
overhead is not a significant limitation. 

These results also show decreased LUT overhead savings of only 
46% in fabrics implemented on the Virtex 5 device. This smaller 
improvement is likely due to different CLB configuration used by 
that device, with slightly altered mux-area plateau characteristics, 
whereas the optimizations used by the evaluated interconnect 
were optimized for 4-input muxes. Despite being optimized for a 
different LUT configuration, the new interconnect still had 
significant savings. 

Flip-flop usage on the Altera device was significantly higher than 
both Xilinx devices, which resulted from the Xilinx FPGAs 
implementing the realignment registers as SRL16 primitives, in 
contrast to the Altera FPGA which used flip-flops. As future 
work, we will investigate optimizations for Altera FPGAs. 

One additional advantage of reducing muxes throughout the 
interconnect is the corresponding elimination of configuration 
registers to store the select values. The fewer registers reduce flip-
flops, which was shown in Table 1, but also reduces configuration 
bitfile size, which correspondingly reduces configuration times 
and block RAM overhead of the fabric. For the examples in this 
section, the new interconnect improved configuration times by an 
average of 55% compared to the previous interconnect.    

5.3 Interconnect Comparison for Specialized     
Intermediate Fabrics 

One advantage of intermediate fabrics is that a designer or tool 
can specialize the architecture and interconnect for a given 
domain or even an individual application. In this section, we 
compare intermediate fabrics using application-specialized 
interconnect presented in [8] with the new interconnect.  To 
enable a fair comparison, we evaluate the same application 
circuits from [8] using the same specialized fabrics as previous 
experiments. Specialization used in the previous experiments 
included varying fabric sizes and non-uniform interconnects. For 
the new interconnect, we limit specialization to fabric sizes, 
making the results pessimistic. For all specialized fabrics, we used 
the smallest fabric and interconnect that could successfully route 
the target application netlist. For these experiments, the physical 
FPGA is a Virtex 4 LX100, which we chose to match the previous 
experiments. 

To perform the comparison, we used the twelve applications from 
[8], seven of which were implemented using both 16-bit fixed 
point arithmetic and 32-bit floating point arithmetic, indicated 
with a FXD or FLT suffix respectively. All track widths matched 
the CU widths. All circuits without a suffix used 16-bit fixed-
point CUs. We briefly summarize the previous applications as 
follows. Matrix multiply performs the kernel of a matrix 

Table 2: A comparison between intermediate fabrics (IFs) with the presented virtual interconnect (IF New) and previous application-
specialized interconnect (IF Prev). The results show 1350x place-and-route speedup compared to an FPGA, and 2.4x speedup 

compared to previous IFs. Average area savings were 48%, with little effect on average clock speed or routability. Two examples had 
significantly higher routability on the new interconnect. 

 

IF  
P re v

IF  
N e w

F P GA S pe e dup 
P re v

S pe e dup 
N e w

LUT 
S a v ing s

F lip-F lo p  
S a v ing s

R o uta bility 
Ov e rhe a d

IF  P re v IF  N e w C lo c k 
Ov e rhe a d

M atrix m ultiply FXD 0.6s 0.6s 1min 08s 112 x 112 x 5 6 % 6 0 % 1% 170 MHz 186 MHz -9 %

M atrix m ultiply FLT 0.6s 0.6s 6min 06s 6 0 2 x 6 0 2 x 5 9 % 5 9 % 1% 184 MHz 222 MHz -2 1%

FIR  FXD 0.6s 0.6s 0min 33s 5 4 x 5 8 x 4 5 % 4 1% 5% 174 MHz 158 MHz 9 %

FIR  FLT 0.6s 0.6s 4min 36s 4 5 4 x 4 8 4 x 3 5 % 3 5 % 5% 203 MHz 215 MHz -6 %

N-bo dy FXD 0.5s 0.2s 0min 57s 12 6 x 3 0 0 x 4 0 % 3 2 % 1% 185 MHz 165 MHz 11%

N-bo dy FLT 0.5s 0.2s 3min 42s 4 9 1x 116 8 x 3 7 % 2 6 % 1% 218 MHz 200 MHz 8 %

A ccum FXD 0.1s 0.02s 0min 26s 2 8 0 x 17 3 3 x 5 2 % 5 3 % 0% 186 MHz 187 MHz -1%

A ccum  FLT 0.1s 0.02s 0min 30s 3 2 3 x 2 0 0 0 x 5 2 % 5 0 % 0% 225 MHz 241 MHz -7 %

No rm alize  FXD 0.2s 0.3s 1min 10s 2 9 9 x 2 4 1x 6 6 % 7 1% -63% 178 MHz 162 MHz 9 %

No rm alize  FLT 0.2s 0.3s 6min 44s 17 2 6 x 13 9 3 x 4 3 % 5 4 % -63% 197 MHz 222 MHz -13 %

B ilinear FXD 0.3s 0.3s 1min 08s 2 3 0 x 2 13 x 5 1% 4 7 % 0% 184 MHz 165 MHz 10 %

B ilinear FLT 0.3s 0.3s 8min 48s 17 8 4 x 16 5 0 x 4 1% 4 2 % 0% 206 MHz 200 MHz 3 %

Flo yd-S te inberg FXD 0.1s 0.1s 1min 27s 6 2 1x 9 2 6 x 5 3 % 5 0 % 2% 182 MHz 169 MHz 7 %

Flo yd-S te inberg FLT 0.1s 0.1s 5min 37s 2 4 0 7 x 3 5 8 5 x 4 8 % 4 4 % 2% 196 MHz 179 MHz 9 %

Thres ho lding 1.4s 1.3s 0min 33s 2 4 x 2 6 x 4 4 % 3 6 % 5% 167 MHz 181 MHz -8 %

S o bel 0.3s 0.4s 2min 28s 5 0 0 x 3 4 4 x 4 4 % 3 1% 2% 181 MHz 162 MHz 10 %

Gaus s ian B lur 3.3s 2.2s 3min 19s 6 0 x 9 0 x 3 9 % 4 1% -42% 170 MHz 181 MHz -6 %

M ax Filter 0.2s 0.03s 1min 16s 4 4 4 x 2 5 3 3 x 4 8 % 4 1% 0% 186 MHz 176 MHz 5 %

M ean Filter 3x3 0.2s 0.01s 2min 30s 9 6 2 x 10 7 14 x 5 2 % 5 2 % 10% 185 MHz 187 MHz -1%

M ean Filter 5x5 1.9s 1.9s 3min 25s 110 x 10 8 x 6 4 % 6 5 % -1% 169 MHz 161 MHz 5 %

M ean Filter 7x7 8.9s 4.7s 5min 03s 3 4 x 6 4 x 3 9 % 4 0 % -38% 157 MHz 183 MHz -17 %

Average 1.0s 0.7s 2min 56s 5 5 4 x 13 5 0 x 48% 4 6 % -8% 186 MHz 186 MHz 0 %

A re a  a nd  R o uta bility C lo c k S pe e dP la c e -a nd-R o ute  Tim e

 



multiplication, calculating the inner product of two 8-element 
vectors using 7 adders and 8 multipliers. FIR implements a 12-tap 
finite impulse response filter in transpose form with symmetric 
coefficients using 11 adders and 12 multipliers. N-body, 
representing the kernel of an N-body simulation, calculates the 
gravitational force exerted on a particle due to other particles in 
two-dimensional space using 13 adders, multipliers, and a divider. 
Accum monitors a stream, counting the number of times the value 
is less than a threshold. It is the smallest netlist, consisting of 4 
comparators and 3 adders. Normalize normalizes an input stream 
using 8 multipliers and 8 adders. Bilinear performs bilinear 
interpolation on an image, requiring 8 multipliers and 3 adders. 
Floyd-Steinberg performs image dithering using 6 adders and 4 
multipliers. Thresholding performs automatic image thresholding 
using 8 comparators and 14 adders. Sobel uses a 3x3 convolution 
to perform Sobel edge detection with 2 multipliers and 11 adders. 
Gaussian blur uses a 5x5 convolution to perform noise reduction 
using 25 multipliers and 24 adders. Max filter performs a 3x3 
sliding-window image filter with 8 comparators. Mean filter 
similarly calculates the average of a sliding window, which we 
vary from 3x3 to 7x7, requiring a maximum of 48 adders and 1 
multiplier. 

Table 2 compares the interconnects for each case study. The first 
major column, Place-and-Route Time, compares place-and-route 
execution times for an intermediate fabric with the previous 
interconnect (IF Prev), an intermediate fabric with the new 
interconnect (IF New), and when synthesizing VHDL for each 
example directly to the FPGA. The table also shows the resulting 
place-and-route speedup for the new and previous interconnects. 
The results show comparable place-and-route times for both the 
old and new interconnect. However, because the previous 
interconnect already achieves a place-and-route speedup of 554x 
compared to an FPGA, the further improvement by the new 
interconnect provided a 1350x place-and-route speedup. The 
place-and-route speedup was larger for the floating-point 
examples due to longer place-and-route times for the physical 
FPGA. Furthermore, these place-and-route speedups are highly 
pessimistic because the specialized examples from [8] do not 
include common board logic such as PCIe and memory 
controllers. Other studies have shown that including these 
controllers with tight timing constraints can add up to 20 minutes 
to FPGA place-and-route time, but have no effect on intermediate 
fabric place-and-route time [31].  

The second major column in Table 2 reports area savings of the 
new interconnect in terms of FPGA LUTs and flip-flops, along 
with the routability overhead incurred to achieve these savings. 
On average, the new interconnect significantly reduced LUT 
usage by 48% and flip-flop usage by 46%, despite the significant 
specialization by the previous fabrics. On average, routability 
slightly improved by 8% with the new interconnect. However, 
this average is skewed by three outliers, normalize, Gaussian, and 
mean7x7, which had very low routability due to significant 
specialization in the previous fabrics. Excluding these outliers, the 
new interconnect had a 2% routability overhead. The smaller 
routability overhead compared to the previous section is due to 
the specialized versions of the previous interconnect, which used 
just enough routing resources to route the targeted application, 
and therefore lowered general routability. 

The final column of table 2 compares the maximum clock speed 
of the specialized fabrics using both the new and old interconnect. 
For specialized fabrics, these experiments show a negligible 

average impact on clock speed, with both interconnects showing 
an average clock frequency of 186 MHz. However, there was 
significant variation as high as 21% between specialized fabrics. 
It should be noted that these results are contrary to the results for 
larger fabrics presented in the previous section, which showed a 
clear trend of faster clock speeds for larger fabrics using the new 
interconnect. The reason for the smaller clock improvement 
compared to the previous section is due to the higher 
specialization of the previous interconnect, as opposed to using a 
uniform interconnect. 

6. LIMITATIONS AND FUTURE WORK 
Even with a 50% reduction in LUT utilization, intermediate 
fabrics will still have prohibitive overhead for use cases where an 
FPGA is close to being fully utilized. Fortunately, the trends 
towards multi-million-LUT FPGAs will lessen this problem over 
time. In addition, we plan to investigate virtual interconnect that 
directly targets the physical FPGA interconnect without using 
muxes. Such an approach could map virtual switch boxes directly 
onto physical switch boxes, potentially eliminating much of the 
remaining overhead. However, such an approach requires 
knowledge of proprietary routing architectures, and is therefore 
deferred to future work. 

7. CONCLUSIONS 
Previous work introduced intermediate fabrics to address FPGA 
problems related to lengthy place-and-route times and a lack of 
application portability. Although previous intermediate fabric 
approaches achieve both application portability and significant 
place-and-route speedup, the area overhead of those approaches 
prohibits important use cases. To address this problem, we 
identified the virtual interconnect as the main source of the 
overhead, and performed design-space exploration to identify 
unconventional alternatives that could achieve effective Pareto-
optimal tradeoffs between overhead and routability. Based on this 
analysis, we introduced an optimized virtual interconnect 
architecture that reduces area requirements by approximately 50% 
and improves clock frequencies by 24%, with a modest 16% 
reduction in routability. 
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