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Abstract—Constant folding reduces area and enables greater 
parallelism, but requires circuits with constant inputs. In this 
work, we extend constant folding to support pseudo-constants, 
which are values that change with low frequency. We present a 
method of pseudo-constant logic optimization based on 
dynamically reconfigurable capabilities of FPGAs, which 
optimizes logic for different pseudo-constant values and then 
reconfigures the logic whenever the pseudo-constant changes. 
Although not beneficial for all logic, we show this optimization 
achieves up to a 1.25x increase in functional density on Xilinx 
Virtex 5 FPGAs. 
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I.  INTRODUCTION 
Constant folding [5] is a widely studied logic-

minimization strategy for FPGAs. Unfortunately, circuit 
designers often avoid constants to enable as many use cases 
as possible, limiting constant-folding applicability.  

However, circuits often use signals that exhibit near-
constant behavior where the value is rarely changed, which 
we define as pseudo-constant. For example, many signal-
processing applications initially set a pseudo-constant 
convolution kernel, which remains the same for the duration 
of the application. Alternatively, each frame of a low frame-
rate video may also be considered pseudo-constant. These 
pseudo-constants are often inputs to highly replicated logic 
components such as adders, multipliers, comparators, and 
muxes (e.g., [2][8]), which could benefit from constant 
folding to reduce area and/or increase replication.  

In this paper, we introduce pseudo-constant logic 
optimization. To account for invalidated logic resulting from 
changes in a pseudo-constant value, we exploit lookup-table 
(LUT) reconfigurability to dynamically modify the logic. We 
show that for common types of logic, pseudo-constant logic 
optimizations can achieve area savings from 27%-50% on 
Xilinx Virtex 5 FPGAs. Additionally, we show that pseudo-
constant optimized multiplexers match the functional density 
of traditional synthesis in as few as 128 operations per 
invalidation, and approach up to 1.25x greater functional 
density for infrequent invalidations.  

II. PREVIOUS WORK 
Previous studies have demonstrated a concept similar to 

pseudo-constants by using partial reconfiguration for run-

time logic minimization [4][7][9][11]. Previous work also 
showed that partial reconfiguration can have prohibitive 
reconfiguration times, implementation complexity, and 
limitations on reconfiguration granularity [3][10][11]. This 
past work examined trade-offs between area and 
reconfiguration time when using run-time logic optimization, 
and included a functional density metric to quantify the 
trade-offs. We extend past work by reducing reconfiguration 
times and implementation complexity via the LUT-based 
RAM primitives provided by most FPGAs. 

III. PSEUDO-CONSTANT LOGIC OPTIMIZATION 

A. Overview 
Pseudo-constant and traditionally optimized circuits are 

identical after elaboration but differ significantly after 
technology mapping. Consider a 4:1 multiplexer with a 
constant or pseudo-constant select input. Traditional constant 
folding would replace the multiplexer with a direct 
connection. However, pseudo-constant mapping requires 
more resources to enable changes due to invalidations. 

To allow for changes, technology mapping for pseudo-
constant logic is restricted to FPGA primitives that support 
runtime reconfiguration. In this paper we focus on common 
primitives in existing Xilinx Virtex 5 devices: LUT RAM and 
LUT shift registers. Pseudo-constants are also possible on 
Altera devices but are outside the scope of this paper. 

After technology mapping, the resulting circuit requires a 
small bitfile that implements the logic for each pseudo-
constant value. In the case of LUT primitives, this bitfile is 
simply the truth table stored in the LUT. We currently focus 
on offline bitfile creation as overcoming the complexity and 
overhead of online creation is beyond the scope of this paper. 
Offline creation is possible when a synthesis tool can pre-
compute the bitfiles for all possible pseudo-constant values. 
At runtime, the circuit loads the correct bitfile upon a 
pseudo-constant invalidation. For a 4:1 mux with a pseudo-
constant select, a synthesis tool could statically determine 
four separate bitfiles and store them in a block RAM. As 
another example, one input to a 32-bit comparator may only 
have two different possible values (e.g., runtime-specified 
thresholds), requiring only two separate bitfiles.  

B. Pseudo-Constants Primitives for  Xilinx Virtex 5  
General-purpose logic resources in Xilinx Virtex 5 devices 

are composed of columns of configurable logic blocks 
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(CLB). Each CLB is composed of two SLICEs, each of 
which contains four LUTs (A, B, C, and D). Paired with each 
LUT is dedicated carry-chain logic and a flip-flop. Figure 1 
shows the simplified functional architecture of the Virtex 5’s 
six-input, two-output LUT. 

1) Distributed LUT RAM 
To implement the LUT RAM pseudo-constant primitive, 

we use Xilinx Distributed RAM. Each Xilinx LUT allows 
read and write access to the 64 SRAM bits in either 64x1-bit 
or 32x2-bit configurations. Multiple LUTs per slice can be 
grouped together to create wider or deeper memories. The 
write addresses for all four LUTs are driven by LUT D’s six 
logic and read inputs, placing significant limitations on the 
efficiency of LUT RAM structures. For example, a dual-
ported 64x1 RAM requires two LUTs (50% area penalty).  

To achieve maximum area efficiency, a LUT RAM 
primitive using Virtex 5 distributed RAM should use all four 
LUTs in a single SLICE. Inputs D[1:6] drive the common 
write address and are used to configure LUTS A, B and C, 
which can then be used as three independent LUTs, while 
LUT D’s inputs are consumed by serving as the write-
address for LUTs A, B, and C. Using LUT RAM, each 
SLICE yields either three 6-input, 1-output functions, or 
three 5-input, 2-output functions. If inputs D[1:6] could be 
driven by both logic during normal operation and 
configuration hardware during reconfiguration, then four 6:1 
or 5:2 functions could be realized per SLICE. 

2) Shift Register  
LUT shift-register primitives can be implemented using 

Xilinx SRL primitives. When configuring LUTs as shift 
registers, configuration bits for many LUTs can be shifted 
serially in a single configuration chain. 

Using the SRL32, a single LUT can be configured as a 
five-input, one-output function. Configured as two SRL16s, 
each LUT can be configured as a four-input, two-output 
function. Unlike SRL32, each SRL16 must be driven by an 
independent configuration input; multiple SRL16 primitives 
cannot be combined to form a longer configuration chain.  

C. Architectural Extensions 
The pseudo-constant primitives for the Virtex 5, 

described above, show that the number of inputs and outputs 
to an FPGA’s LUTs are a key limitation of pseudo-constant 
logic packing and place an upper bound on the achievable 
area reduction. 

For example, in the design of an adder circuit, described 
in the next section, the key design limitation was the number 
of outputs from a LUT. While all inputs needed to produce 
up to five sum outputs and a carry could drive a single LUT, 
at most two outputs per LUT could be generated. The 
availability of only one set of fast carry logic and flip-flop 
per LUT limits the achievable maximum clock speed when 
using two outputs per LUT. Using LUT RAM primitives, 
one LUT per SLICE is consumed solely by the use of its 

address pins by the RAM write address, and cannot be used 
for logic.  

To improve amenability for pseudo-constant 
optimization, we also evaluate a hypothetical FPGA 
architecture that is augmented to improve efficiency of 
wider-output functions, such as those found in many 
arithmetic operations. Additional outputs per LUT and fast 
carry logic and flip-flop pairs for each LUT output could 
greatly improve the efficiency of wide-output functions. An 
extra set of address pins per SLICE to serve as the common 
write address input would prevent the 25 percent loss of 
functional density in LUT RAM based designs. 

IV. EXPERIMENTS 
To evaluate pseudo-constant logic optimization, we 

manually technology mapped commonly replicated functions 
onto pseudo-constant primitives for Xilinx Virtex 5 FPGAs. 
Because Virtex 5, Virtex 6, and Virtex 7 devices all employ 
an identical CLB architecture, the results also apply to those 
devices. To determine benefits, we also synthesize each 
circuit without the proposed optimization to a Xilinx Virtex 
5 LX50 FPGA using Xilinx ISE 14.2. 

We evaluate the same circuits on a theoretical device 
incorporating the modifications proposed in Section III.C. 
This device’s SLICEs are composed of four six-input, two-
output LUTs identical to those of a Virtex 5. We added 
carry-logic and flip-flop stages to both outputs of each LUT. 
An additional set of common write-address inputs for LUT 
RAM primitives was also added. We assume Virtex 5 timing 
and switching characteristics [12]. Further design tradeoffs 
of such a device are outside the scope of this study.  

A. Case Studies 
In this section, we evaluate logic that is commonly 

replicated in large numbers by many FPGA applications, 
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Figure 1: Functional architecture of a Xilinx Virtex 5 LUT. Each LUT 

can be configured as a 64x1 dual-ported RAM, a single variable-length shift 
register up to 32-bits long, or two independent variable-length shift registers 

up to 16-bits long each. 



including an adder, a comparator, and a multiplexer.  Figure 
2 summarizes the results. 

1) 32-bit Full Adder 
When synthesized into FPGA LUTs, adder circuits are 

output-bound. Synthesis in Xilinx ISE for a Virtex 5 uses the 
dedicated fast carry logic to create ripple-carry adders. Each 
LUT adds the ith bit of each input A and B, generating a sum 
and carry output to drive the carry logic, which combines 
these signals with Ci-1 to generate a Si and Ci. 

If the add operation had one pseudo-constant input and 
one variable input, the pseudo-constant value can be folded 
into each full adder. Suppose three bits of the non-constant 
input, [Ai,,Ai-2], along with a carry input Ci-3, were connected 
to two LUTs. The four available outputs from this structure 
can then implement outputs [Si, Si-2] and Ci. This structure 
allows the internal carry values to be calculated without 
consuming LUT outputs and implements a 3-bit adder using 
only two LUTs, yielding a 33% area savings. Using the 
SRL16-based four-input, two-output pseudo-constant LUT 
primitive, many such pseudo-constant 3-bit adders can be 
chained together. When synthesized using the pseudo-
constant based design, a 32-bit adder consumes only 22 
LUTs—an area savings of 31%. Because the Virtex 5 CLB’s 
fast carry logic is accessible by only one output from each 
LUT, the optimized design cannot benefit from the fast carry 
logic. Despite a shorter overall combinational path, 11 logic 
stages rather than 32, the longer path between neighboring 
LUTs increases the circuit’s combinational delay by 5x, from 
2.515 ns for traditional logic to 10.377 ns using the pseudo-
constant design. 

 When the pseudo-constant design is instead mapped 
onto the modified architecture from Section III.C, a 32-bit 
ripple carry adder can be mapped to the modified 
architecture using 22 LUTs with a combinational delay of 
1.343 ns. This delay for the pseudo-constant-optimized adder 
is 47% faster than a traditionally synthesized adder. 

2) Multiplexer 
Using traditional synthesis methods, a four-input mux 

requires one LUT on a Virtex 5. Multiple four-input muxes 
can be combined using dedicated SLICE mux hardware to 
create up to one 16-input mux per SLICE.  

If the select input to a mux were found to be pseudo-
constant, using the SRL32 five-input, one-output LUT 
primitive, a five-input mux consumes only one LUT, and a 
20-input mux can be created in each SLICE, yielding a 25 
percent increase in functional density. Additionally, a four-
input, two-output mux can be designed using the SRL16 
four-input, two-output LUT primitive consuming only one 
LUT, yielding up to 50 percent LUT savings. 

Using the LUT RAM-based primitive in the modified 
architectures, a six-input, one-output mux uses just one LUT, 
with up to a 24-input mux per SLICE. There is no difference 
in timing performance between each design. 

 

3) 32-bit Comparator 
Suppose a circuit must compare two 32-bit numbers, A 

and B. When synthesized to the Virtex 5 architecture, this 
circuit requires 11 LUTs, with a delay of 4.658 ns.  

If input B was pseudo-constant, its value can be folded 
into the function implemented by the circuit’s LUTs using 
the SRL32-based five-input, one-output LUT primitive 
described above. The inputs to each LUT are comprised of 
four consecutive bits of the variable input, along with a 
“carry-out” from the previous group. The outputs from these 
groups are cascaded together to create a 32-bit wide 
comparator using only 8 LUTs for an area savings of 27%, 
with an increased in propagation delay of 6.556 ns. 

B. Functional Density 
In [11], Wirthlin et al. present a functional density metric, 

D, defined as the inverse of the product of a circuit’s area, A, 
and operating time, T. Additionally, [11] presents a 
specialized form of this metric for use with run-time 
reconfigurable circuits. By adding reconfiguration time, 
tconfig, divided by operations per reconfiguration, n, to the 
operating time term, the metric accounts for the performance 
effects of reconfiguration at a given invalidation frequency.  

Figure 3 plots functional density for each of the three 
adder circuits as the number of operations between 
invalidations (i.e., the inverse of invalidation frequency) 
increases logarithmically. This figure shows that while the 
combinational delay overhead on the Virtex 5 architecture 
prevents the pseudo-constant circuit from matching the 
functional density of the traditional adder, on the modified 
architecture the pseudo-constant circuit surpasses the 
functional density of the traditional adder after only 19 
operations between reconfigurations. Reconfiguration 
overhead per operation reaches nearly zero after only 214 
operations, a small figure considering FPGA clock 
frequencies in the hundreds of megahertz. For infrequent 
invalidations, the functional density of the pseudo-constant 
adder on the modified architecture approached 2.7x. 

Circuit Method
LUTs Delay(ns)

Traditional 32 2.515
PC Virtex 5 22 10.377

PC Modified Arch 22 1.343
LUTs Delay(ns)

Traditional 11 4.658
PC Virtex 5 8 6.556

PC Modified Arch 6 4.783

Per LUT Per Slice
Traditional 4 16
PC Virtex 5 5 20

PC Modified Arch 6 24

Adder

Comp

Mux N:1 

Max N
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Figure 2: Comparison of LUT utilization for each evaluated circuit 

with traditional synthesis and pseudo-constants (PC). 



In any pseudo-constant design using LUT RAM or shift-
register LUTs, reconfiguration can load the pseudo-constant 
bitfile into each LUT either in serial (one LUT at a time) or 
in parallel (all LUTs at once). Serial reconfiguration yields 
the largest performance penalty while parallel 
reconfiguration requires more reconfiguration resources. The 
degree of parallelism can be adjusted to find an appropriate 
Pareto-optimal design point for each design.  

Figure 4 compares the functional density of each pseudo-
constant 32-input mux to traditional muxes using either fully 
parallel or fully serial reconfiguration. The results show that 
pseudo-constant muxes approach a functional density of 
1.25x on the Virtex 5 architecture, and 1.5x on the modified 
architecture, when compared to traditional synthesis. 
Additionally, the graph shows that the break-even point, at 
which functional density of the pseudo-constant optimized 
and traditional circuits are equal, is approximately 128 
operations per invalidation using fully parallel 
reconfiguration, and fewer than 900 operations using fully 
serial reconfiguration.  

V. CONCLUSIONS 
In this paper, we showed that pseudo-constant 

optimizations can increase functional density of common 
logic structures. While initial results indicate up to 1.25x 
improvement in functional density on off-the-shelf FPGAs, 
the experiments also show the difficulty of implementing 
pseudo-constant designs on modern FPGAs. In particular, 
restrictions on dynamic reconfigurability and narrow-output 
functional units limit the effectiveness of pseudo-constant 
optimizations. If future FPGA designs address these 
concerns, pseudo-constant optimizations could be a viable 
method of increasing functional density in FPGA designs, 
with improvements as high as 2.7x density vs traditionally 
synthesized designs. 
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Figure 3: Functional density of a pseudo-constant adder compared to 

a traditional adder as the invalidation frequency increases. Results are 
shown for both the Virtex 5 and modified architectures. 
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Figure 4: Functional density for each mux design is shown for both 

fully parallel and fully serial reconfiguration. 


