
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2015; 27:5288–5310
Published online 25 June 2015 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cpe.3569

Low-level PGAS computing on many-core processors
with TSHMEM�

Bryant C. Lam*,†, Alan D. George, Herman Lam and Vikas Aggarwal�

NSF Center for High-Performance Reconfigurable Computing (CHREC), Department of Electrical and Computer
Engineering, University of Florida, Gainesville, FL 32611, USA

SUMMARY

Diminishing returns from increased clock frequencies and instruction-level parallelism have forced com-
puter architects to adopt architectures that exploit wider parallelism through multiple processor cores. While
emerging many-core architectures have progressed at a remarkable rate, concerns arise regarding the perfor-
mance and productivity of numerous parallel-programming tools for application development. Development
of parallel applications on many-core processors often requires developers to familiarize themselves with
unique characteristics of a target platform while attempting to maximize performance and maintain cor-
rectness of their applications. The family of partitioned global address space (PGAS) programming models
comprises the current state of the art in balancing performance and programmability. One such PGAS
approach is SHMEM, a lightweight, shared-memory programming library that has demonstrated high per-
formance and productivity potential for parallel-computing systems with distributed-memory architectures.
In the paper, we present research, design, and analysis of a new SHMEM infrastructure specifically crafted
for low-level PGAS on modern and emerging many-core processors featuring dozens of cores and more.
Our approach (with a new library known as TSHMEM) is investigated and evaluated atop two genera-
tions of Tilera architectures, which are among the most sophisticated and scalable many-core processors
to date, and is intended to enable similar libraries atop other architectures now emerging. In developing
TSHMEM, we explore design decisions and their impact on parallel performance for the Tilera TILE-Gx and
TILEPro many-core architectures, and then evaluate the designs and algorithms within TSHMEM through
microbenchmarking and applications studies with other communication libraries. Our results with barrier
primitives provided by the Tilera libraries show dissimilar performance between the TILE-Gx and TILEPro;
therefore, TSHMEM’s barrier design takes an alternative approach and leverages the on-chip mesh network
to provide consistent low-latency performance. In addition, our experiments with TSHMEM show that naive
collective algorithms consistently outperformed linear distributed collective algorithms when executed in an
SMP-centric environment. In leveraging these insights for the design of TSHMEM, our approach outper-
forms the OpenSHMEM reference implementation, achieves similar to positive performance over OpenMP
and OSHMPI atop MPICH, and supports similar libraries in delivering high-performance parallel computing
to emerging many-core systems. Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Parallel programming is experiencing explosive growth in demand because of processor archi-
tectures shifting toward many processing cores in an effort to maintain performance progression,
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especially in the face of technological and physical limitations. With the emergence of many-core
processors into the high-performance computing (HPC) scene, there is strong interest in evaluating
and evolving existing parallel-programming models, tools, and libraries. This evolution is necessary
to best exploit the increasing single-device parallelism from multi-core and many-core processors,
especially in a field focused on massively distributed supercomputers.

High-performance computing has traditionally focused on models such as message passing with
MPI [3] or shared memory with OpenMP [4], but interest is rising for a partitioned global address
space (PGAS) abstraction with its potential to provide high-performing libraries and languages
around a straightforward memory and communication model. Notable members of the PGAS fam-
ily include SHMEM [5, 6], Unified Parallel C, Global Arrays, Co-Array Fortran, Titanium, GASPI,
MPI-3 RMA [7], X10, and Chapel.

In the paper, we present research, design, and analysis for a new SHMEM infrastructure for
low-level PGAS semantics on modern and emerging many-core processors. We approach our
investigation and evaluation with a new SHMEM library known as TSHMEM [1], based on the
OpenSHMEM version 1.0 specification, with the intended objective of exploring SHMEM and
PGAS semantics on many-core processors and enable similar libraries to fully leverage these
emerging devices. TSHMEM serves as the basis for our performance evaluation of communication
algorithms as they pertain to SHMEM functionality, with focus on design exploration and maximiz-
ing the capabilities of the Tilera TILE-Gx and TILEPro many-core architectures. While exploring
the design decisions that define TSHMEM, we strive to achieve high realizable performance via
microbenchmarking and application studies, comparing results with alternative libraries and pro-
gramming environments. In doing so, TSHMEM aims to deliver a high-performance, many-core
programming library that offers insights into performance for a variety of communication algorithms
in the context of highly parallel, many-core processors.

The remainder of the paper is organized as follows. Section 2 provides background on the
SHMEM library and standardization efforts via OpenSHMEM, our previous research with GSH-
MEM (i.e., SHMEM for clusters), a synopsis of OpenMP, and a brief introduction to Tilera’s many-
core architectures. Section 3 presents several microbenchmarking results on Tilera TILE-Gx8036
and TILEPro64 processors. Section 4 delves into the design of TSHMEM, with performance results
and analysis for functionality defined by the OpenSHMEM specification. Section 5 presents sev-
eral application studies with TSHMEM performance. Finally, Section 6 provides conclusions and
directions for future work.

2. BACKGROUND

The single-program, multiple-data (SPMD) programming style is highly amenable for tasks on large
parallel systems, enabling diverse programming models such as active message passing, distributed
shared memory, and PGAS. This section provides a brief background of SHMEM, GSHMEM,
and Tilera, which form the foundation of our experience and design for TSHMEM. A synopsis
of OpenMP is also provided, as it serves as one of the parallel-programming environments that
TSHMEM is compared with in Section 5.

2.1. SHMEM and OpenSHMEM

The SHMEM communication library adheres to a strict PGAS model whereby each cooperating
parallel process (also known as a processing element, or PE) consists of a shared symmetric partition
within the global address space. Each symmetric partition consists of symmetric objects (variables
or arrays) of the same size, type, and relative address on all PEs. Originally developed to provide
shared-memory semantics on the distributed-memory Cray T3D supercomputer, SHMEM closely
models SPMD via its symmetric, partitioned, global address space.

There are two types of symmetric objects that can reside in the symmetric partitions: static and
dynamic. Static variables reside in the heap segment of the program executable and are allocated
during link time. These static variables, when parallelized as multiple processes, appear at the same
virtual address to all processes running the same executable, thus ensuring its symmetry across
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all partitions. Dynamic symmetric variables, in contrast, are allocated at runtime on all PEs via
SHMEM’s dynamic memory allocation function shmalloc(). These dynamic variables, however,
may or may not be allocated at the same virtual address on all PEs, but are at the same offset relative
to the start of each symmetric partition.

SHMEM provides several routines for explicit communication between PEs, including one-
sided data transfers (puts and gets), blocking barrier synchronization, and collective operations, as
illustrated by the basic subset of available routines listed in Table I. In addition to being a high-
performance, lightweight library, SHMEM has historically provided for atomic memory operations
not available in popular library alternatives until recently (e.g., MPI 3.0).

Commercial SHMEM implementations have emerged from vendors such as Cray, SGI, and
Quadrics. Application portability between variants, however, proved difficult because of different
functional semantics, incompatible APIs, or system-specific implementations. This situation had
regrettably fragmented developer adoption in the HPC community. Fortunately, SHMEM has seen
renewed interest in the form of OpenSHMEM, a community-led effort to create a standard spec-
ification for SHMEM functions and semantics [8]. Version 1.0 of the OpenSHMEM specification
[9] has already seen research and industry adoption in various implementations: the Open-
SHMEM reference implementation [10], MVAPICH2-X [11], OSHMPI [12], Portals-SHMEM
[13], POSH (Paris-OpenSHMEM) [14], and through vendors such as SGI [5], Cray [15], and
Mellanox [16].

Table I. Basic subset of OpenSHMEM functions.

Category Example Functions

Environment

Setup and initialization start_pes()

Environment query shmem_my_pe()
shmem_n_pes()

Memory allocation shmalloc(), shfree()

Data transfer

Elemental put/get shmem_int_p()
shmem_int_g()

Block put/get shmem_putmem()
shmem_getmem()

Strided put/get shmem_int_iput()
shmem_int_iget()

Synchronization

Barrier shmem_barrier()
shmem_barrier_all()

Communications sync shmem_fence()
shmem_quiet()

Point-to-point sync shmem_wait()
shmem_wait_until()

Collective communication

Broadcast shmem_broadcast32()

Collection shmem_collect32()
shmem_fcollect32()

Reduction shmem_int_sum_to_all()
shmem_long_prod_to_all()

Atomic operations

Atomic Swap shmem_swap()

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:5288–5310
DOI: 10.1002/cpe



LOW-LEVEL PGAS COMPUTING ON MANY-CORE PROCESSORS WITH TSHMEM 5291

2.2. GASNet and the OpenSHMEM reference implementation

The OpenSHMEM community has a reference implementation of their library with primary
source-code contributions from the University of Houston and Oak Ridge National Labora-
tory [10]. This reference implementation is compliant with version 1.0 of the OpenSHMEM
specification and is implemented atop GASNet [17], a low-level networking layer and com-
munications middleware for supporting SPMD parallel-programming models such as PGAS.
GASNet defines a core and an extended networking API that are implemented via conduits. These
conduits enable support for numerous networking technologies and systems. By leveraging GAS-
Net’s conduit abstraction, the OpenSHMEM reference implementation is portable to numerous
cluster-based systems.

2.3. GSHMEM

Our prior work with SHMEM involved the design and evaluation of an OpenSHMEM library
called GatorSHMEM (GSHMEM) [18] atop GASNet [17]. GSHMEM targeted a draft version of
the OpenSHMEM v1.0 specification in order to evaluate its existing functionality and propose
several new additions for future revisions. Built for x86_64-based cluster systems, experimen-
tal results via microbenchmarking showed that GSHMEM performance is comparable with that
of a proprietary Quadrics implementation of SHMEM and an MPI library (MVAPICH) over
InfiniBand. Additionally, two application case studies with GSHMEM demonstrated the library’s
portability across two distinct systems with vastly disparate interconnection technologies. GSH-
MEM proved that, by leveraging GASNet, SHMEM implementations can be made modern and
portable over different architectures and system hierarchies without sacrificing high-performance or
developer productivity.

2.4. OSHMPI: OpenSHMEM using MPI-3

The MPI 3.0 represents a significant revision to the MPI standard by including support for
one-sided communication and introducing new semantics for memory consistency and ordering
[7]. Hammond, et al. developed an OpenSHMEM library [12] using MPI-3’s one-sided, remote-
memory-access (RMA) operations and demonstrated comparable results against other SHMEM
implementations such as the OpenSHMEM reference implementation, MVAPICH2-X, and Portals-
SHMEM. Of note, OSHMPI was able to outperform its competitors in the SMP intranode
configuration, suggesting its suitability for platforms such as the TILE-Gx.

2.5. OpenMP

The OpenMP (Open Multi-Processing) specification defines a collection of library routines, com-
piler directives, and environment variables that enable application parallelization via multiple
threads of execution [4]. Standardized in 1997, OpenMP has been widely adopted and is portable
across multiple platforms.

OpenMP commonly exploits symmetric-multiprocessing (SMP) architectures by enabling both
data-level and thread-level parallelism. Parallelization is typically achieved via a fork-and-join
approach controlled by compiler directives whereby a master thread will fork several child threads
when encountering an OpenMP parallelization section. The child threads may be assigned to dif-
ferent processing cores and operate independently, thereby sharing the computational load with the
master. Threads are also capable of accessing shared-memory variables and data structures to assist
computation. At the end of each parallel section, child threads are joined with the master thread
and the parallel section closes. The master thread continues on with sequential code execution until
another parallel section is encountered.

While other multi-threading APIs exist (e.g., POSIX threads), OpenMP is comparatively easier
to use for developers that desire an incremental path to application parallelization for their existing
sequential code. With the emergence of many-core processors such as Tilera’s TILE-Gx and Intel’s
Xeon Phi, OpenMP is evolving to become a viable choice for single-device supercomputing tasks.
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2.6. Tilera many-core processors

Tilera Corporation develops commercial many-core processors emphasizing high performance and
low power in the cloud-computing, general, and embedded markets. Each Tilera many-core proces-
sor is designed as a scalable 2D mesh of tiles, with each tile consisting of a processing core and
cache system attached to several on-chip networks via a non-blocking cut-through switch. Referred
to as the Tilera iMesh (intelligent Mesh), their scalable 2D mesh consists of networks that pro-
vide data routing between memory controllers, caches, and external I/O and enables developers to
explicitly transfer data between tiles via a low-level user-accessible dynamic network.

Our work focuses on the 36-core TILE-Gx8036 (Figure 1a) with its predecessor, the 64-core
TILEPro64 (Figure 1b), as a reference point for comparison. Their architectural characteristics are
detailed in Table II. The TILEPro is Tilera’s previous generation of many-core processors with 32-
bit processing cores interconnected via four dynamically dimension-order-routed networks and one
developer-defined statically routed network. In contrast, the TILE-Gx is Tilera’s current genera-
tion of 64-bit many-core processors. Differentiated by a substantially redesigned architecture, the
TILE-Gx family exhibits upgraded processing cores and improved iMesh interconnects attached to
five dynamic networks between the tiles and I/O. The TILE-Gx also includes hardware accelera-
tors not found on previous Tilera processors: mPIPE (multicore Programmable Intelligent Packet
Engine) for wire-speed packet classification, distribution, and load balancing; and MiCA (Multicore
iMesh Coprocessing Accelerator) for cryptographic and compression acceleration. Other mem-
bers of the TILE-Gx family include the 9-core TILE-Gx8009, 16-core TILE-Gx8016, and 72-core
TILE-Gx8072.

Figure 1. Architecture diagrams for (a) TILE-Gx8036 [19] and (b) TILEPro64 [20].

Table II. Architectural comparison for TILE-Gx8036 and TILEPro64.

TILE-Gx8036 TILEPro64

36 tiles of 64-bit VLIW processors 64 tiles of 32-bit VLIW processors
32K L1i, 32K L1d, 256K L2 cache per tile 16K L1i, 8K L1d, 64K L2 cache per tile
Up to 750 billion operations per second Up to 443 billion operations per second
60 Tbps of on-chip mesh interconnect 37 Tbps of on-chip mesh interconnect

500 Gbps (62.5 GB/s) of memory bandwidth 200 Gbps (25 GB/s) of memory bandwidth
1.0 to 1.5 GHz operating frequency 700 or 866 MHz operating frequency
10 to 55W (22W typical @ 1.0 GHz) 19 to 23W at 700 MHz
two DDR3 memory controllers four DDR2 memory controllers

mPIPE for wire-speed packet processing
MiCA for crypto and compression
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3. DEVICE PERFORMANCE STUDIES

Tilera provides the Tilera Multicore Components (TMC) library for general application develop-
ment, suitable for a variety of task models and featuring components that developers can leverage for
their routines. In addition, the gxio library provides programmability for features specific to TILE-
Gx devices, such as mPIPE and MiCA. For ease of development on their many-core devices, Tilera
provides a customized Eclipse IDE installation with numerous extensions, such as state trackers
for individual tiles. These libraries and development tools are packaged from Tilera in a Multi-
core Development Environment (MDE) distributable with the necessary drivers and boot images
for development on their platforms. Our work uses MDE version 4.2.2 on the TILE-Gx and MDE
version 3.0.3 for the TILEPro. The software versions packaged in our MDE releases are similar.
The main difference between major MDE releases is the target architecture supported (version 3
corresponding to TILEPro and version 4 for TILE-Gx).

Benchmarking these libraries is necessary to determine the upper bound on performance realiz-
able for any library design (e.g., TSHMEM) or application. Routines relevant to the functionality
required in TSHMEM are microbenchmarked to compare performance and overhead. Platforms
targeted by our research are the TILEmpower-Gx server with a single TILE-Gx8036 operating at
1.0 GHz, and the TILEncorePro-64 with a single TILEPro64 operating at 700 MHz. A host machine
is required for PCIe-card platforms such as the TILEncorePro-64, while it is an option for standalone
server platforms such as the TILEmpower-Gx.

In Sections 4 and 5, a performance analysis for the design of TSHMEM is conducted on the
TILE-Gx. While TSHMEM supports both the TILE-Gx and TILEPro architectures, TSHMEM
performance numbers on the TILEPro are not provided in later sections. Focus is emphasized
on the newer, current-generation TILE-Gx architecture because of its higher relevance for this
work and the decreased support for the older TILEPro. Instead, microbenchmarking results
in this section will provide general trends for expected performance with TSHMEM on the
TILEPro. Microbenchmark executions in this section are composed of an average of at least
1000 iterations.

3.1. Memory hierarchy

Before discussing the microbenchmarks, a brief synopsis of Tilera’s memory hierarchy is nec-
essary. Each physical tile on the TILE-Gx and TILEPro consists of a processor with L1i, L1d,
and L2 caches. Tilera employs several techniques to reduce latency for external memory oper-
ations, one of which is the Dynamic Distributed Cache (DDC). Tilera’s DDC presents a large
L3 unified cache that is the aggregation of L2 caches from all tiles. Each physical memory
address is dynamically assigned to a home tile to manage, allowing memory requests to be poten-
tially fulfilled from the caches of other tiles instead of memory, thereby maximizing on-chip
performance.

The method by which memory addresses are assigned to home tiles is memory homing. Tilera’s
memory hierarchy provides for three classes of homing: local homing; remote homing; and hash-
for-home. Local homing assigns a page of memory to the same tile accessing it. For memory regions
exhibiting high locality, this approach provides for a potentially faster hit latency. Unfortunately,
local homing loses the advantage of DDC as these pages cannot be distributed to other tiles’ L2
caches. As a result, local homing is most suitable in cases such as small private data that can entirely
reside in L2 cache, such as program stack data. Remote homing is the contra to local, whereby mem-
ory pages are homed on a tile other than the one currently accessing the data. This strategy is most
useful in producer-consumer relationships when the producer can set a page for remote homing and
write directly into the home tile’s cache, avoiding unnecessary access to its own cache. The home
tile as consumer can then directly consume the result from its own cache. Finally, hash-for-home
is similar to remote homing; however, instead of homing a page to a single tile, the page is hashed
and distributed across multiple tiles. This method allows for distributed memory accesses across the
entire L3 DDC, reducing bottlenecks at any individual tile’s cache. Hash-for-home is inappropri-
ate for private single-reader data that are more suitable for local or remote homing, but excels for
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memory shared between multiple threads or processes. By default, hash-for-home is used for a
majority of data and instruction memory as it provides excellent performance for shared memory
and good performance for private memory.

3.2. Tilera Multicore Components common memory

The TMC library provides routines for allocating shared memory between processes. Referred to
as common memory, it differentiates itself from traditional cross-process shared-memory mappings
in that all participating processes will map the shared-memory region at the same virtual address,
enabling processes to share pointers into common memory. Additionally, any process can create new
mappings which become visible to others, removing the restriction that all shared memory must be
created from a parent process. TSHMEM leverages common memory to provide the PGAS model
and shared-memory semantics of SHMEM. The bandwidth of memory-copy operations to and from
this shared memory is decisively important in determining TSHMEM’s overall performance because
of its significant use in one-sided data transfers.

Figure 2 shows microbenchmark results for memcpy() operations between shared-memory seg-
ments via TMC common memory. Effective bandwidth on the TILE-Gx36 is much higher than on
TILEPro64 for all transfer sizes. This performance difference can be attributed to several reasons.
The TILEPro’s iMesh consists of four dynamic networks, one of which is dedicated to memory
operations and another for cache coherency communication among tiles. The TILE-Gx’s iMesh,
however, has been redesigned to include five dynamic networks, two of which are now dedicated
for memory request and response operations and one for cache coherency. As a result, TILE-Gx
memory performance is substantially improved.

Effective bandwidth on TILE-Gx36 experiences three transitions in performance. The first two
transitions are attributed to and occur at the L1d (32 KB) and L2 (256 KB) cache sizes, indicating
representative performance for the cache system. The L1d cache performance tops out around 3.0
GB/s and the L2 cache performance reaches a peak around 2.87 GB/s. While the L1d and L2 cache
performances are similar in this situation, this result can be influenced by the MDE version of the
Tilera software installation and the performance optimizations introduced with newer MDE minor
releases. Our previous work [1] used MDE 4.0.0, while this work uses MDE 4.2.2, providing higher
realizable mesh bandwidth for cache and memory transfers.

The third performance transition on TILE-Gx36 is attributed to Tilera’s L3 DDC. Effective band-
width decreases steadily between the L2 cache size of 256 KB to the L3 DDC limit of 9 MB (for

Figure 2. Effective transfer bandwidth (cache and memory) for shared-memory copy operations on one core
of TILE-Gx36 and TILEPro64. Transfers are from Tilera’s common memory to another common mem-
ory region. From Table II, the TILE-Gx8036 provides up to 62.5 GB/s of aggregate, theoretical memory

bandwidth.
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TILE-Gx8036) as the L2 caches on the device are exhausted. The performance of memory-to-
memory transfers is approximately 1.1 GB/s for transfer sizes beyond 9 MB (projected aggregate
bandwidth of 40 GB/s) and remains constant as transfer size increases. The TILEPro64 follows
the same trends experienced with TILE-Gx36, but at a less-pronounced performance benefit. Per-
formance is stable at or near 0.50 GB/s through the L1d and L2 cache sizes and decreases into
memory-to-memory transfers (0.37 GB/s, projected aggregate of 23.7 GB/s). These results repre-
sent our practical experience in determining the realistically achievable memory bandwidths for
these architectures. As such, we make no claims to verify the theoretical aggregate bandwidths
provided by Tilera in Table II because of non-trivial variations with methods for empirically
measuring aggregate bandwidth as well as the result’s limited applicability in our experiments.
These memory-bandwidth results are revisited in Section 4 when TSHMEM one-sided put/get
performance is analyzed.

3.3. Tilera Multicore Components User Dynamic Network helper functions

Tilera provides access to the UDN (User Dynamic Network), a low-latency direction-order-routed
dynamic network on their iMesh. Developers attach a one-word header to each payload with
information about the destination tile and transfer the data packet via the UDN—at a rate of
one word per hop, per clock cycle—into one of four demultiplexing queues at the destination.
Each receiving queue on the UDN can accommodate up to a payload size of 127 words (8-byte
word on the TILE-Gx, 4-byte word on the TILEPro), making the UDN suitable for small-sized
explicit communication.

The TMC library provides UDN helper routines that facilitate these transfers via two-sided send-
and-receive calls. We microbenchmark the UDN’s latency performance of minimum-sized payloads
on the TILE-Gx36 and TILEPro64 between pairs of tiles with varying distances: neighbors for
transfers between adjacent tiles; sides for transfers horizontally or vertically across the test area;
and corners for diagonal transfers over the entire test area. The effective test area on both devices is
6 � 6 tiles, providing full coverage of the TILE-Gx36. Timing is performed on the sender tile as a
halved average between a one-word send and a one-word acknowledgment from the receiver.

Average one-way latencies are depicted in Figure 3. For each case, average latencies were
consistent with low variance of up to 1 ns, regardless of the message direction. Each case can
be broken down into two components: setup-and-teardown time and network-traversal time. The
clock frequency and packet-switching rate are known, allowing us to roughly determine the setup-
and-teardown time. Our TILE-Gx36 operates at 1 GHz, requiring 1 ns to route one word/hop. In
comparison, the TILEPro64 at 700 MHz requires 1.43 ns. The number of hops in a 6 � 6 mesh
network is 1, 5, and 10 for neighbor-to-neighbor, side-to-side, and corner-to-corner, respectively;

Figure 3. Average half round-trip latencies (100 million iterations) on User Dynamic Network between
adjacent tiles (neighbors), tiles across the area (sides), and tiles on opposite corners of the effective area
(corners). TILE-Gx36 has higher latency because of setup-and-teardown on a 64-bit switching fabric versus

TILEPro64’s 32-bit fabric.
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Figure 4. Latencies of Tilera Multicore Components spin and sync barriers. Spin barriers leverage spin
polling to outperform the sync barriers’ use of process preemption.

therefore, the estimated setup-and-teardown time is roughly 19.5 ns for the TILE-Gx and 18 ns for
the TILEPro. Because of the longer setup-and-teardown time, the TILE-Gx has a higher average
latency for the neighbor-to-neighbor case, but exhibits equal or lower average latency for side-to-
side and corner-to-corner as the number of hops increases. These latency tests have focused on
minimum-sized payloads, but actual data transferred are doubled on TILE-Gx because of a 64-bit
switching fabric compared with 32-bit on TILEPro.

3.4. Tilera Multicore Components spin and sync barriers

The TMC library provides two types of barriers for synchronization: spin and sync. True to its
name, the spin barrier will block processing and poll continuously until the correct number of tasks
has reached the barrier. This polling results in lower overhead but incurs significant performance
degradation if the currently blocking task is context-switched out for a new task. As such, spin
barriers should only be used when there is only one task per tile. In contrast, the sync barrier interacts
with the Linux scheduler and notifies it when the barrier begins to block. The scheduler can swap out
the task while it waits and replace it for another task to continue processing. The sync barrier incurs
a larger performance penalty than spin, but allows for additional use cases when the restrictions of
a spin barrier are inappropriate. The semantics for these two barrier types require a state variable
backed by shared memory, and therefore rely on the memory technology.

Latency results for spin and sync barriers are shown in Figure 4. As expected, spin barriers vastly
outperform sync barriers because of their polling nature, with latencies of 1.6 �s and 49.0 �s at 36
tiles for the TILE-Gx36 and TILEPro64, respectively, compared to 211�s and 754�s. Furthermore,
the barriers for the TILE-Gx significantly outperform the TILEPro’s because of different memory
technologies (DDR3 versus DDR2). Because SHMEM focuses on low-overhead, low-latency per-
formance, the TMC spin barrier for TILE-Gx is an appealing candidate for use in TSHMEM, but
its performance difference with the spin barrier on TILEPro poses a challenge in realizing the same
low-latency performance for the TILEPro.

4. DESIGN OVERVIEW OF TSHMEM

The software architecture of TSHMEM leverages the Tilera TMC libraries to provide an
OpenSHMEM-compliant high-performance library for Tilera many-core processors. TSHMEM tar-
gets the OpenSHMEM v1.0 specification and implements all functionality required by SHMEM
applications, with exception of support for static symmetric-variable transfers using SHMEM
atomic operations. All other SHMEM functionality, including collectives and atomic operations
with dynamic variables, is supported.
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The following subsections are ordered categorically according to Table I, each including design
description and performance results for the TILE-Gx8036. The performance of TSHMEM is com-
pared with the microbenchmark results for the TILE-Gx in Section 3 and with other OpenSHMEM
implementations: the OpenSHMEM reference implementation version 1.0f (referred to afterward as
simply OpenSHMEM or OSH), and OSHMPI (git commit 1f33a2735b on 20140819) atop MPICH
[21] version 3.1.3. The underlying functionality in the OpenSHMEM reference implementation is
provided by GASNet version 1.22.0, cross-compiled for the TILE-Gx architecture with GASNet’s
SMP conduit. In contrast to the GASNet middleware in the OpenSHMEM reference implementa-
tion, TSHMEM does not leverage any middleware, instead opting to design its functionality with
device primitives and algorithm exploration for higher device utilization and bare-metal perfor-
mance. Execution runs with MPICH use mpiexec -bind-to core:1 to set CPU affinity. All
compilations were carried out with the TILE-Gx compiler based on GCC version 4.4.7. Latency
benchmarks for put/get and collectives are provided by the OSU micro-benchmarks suite [22].

4.1. Environment setup and initialization

The SHMEM implementations typically consist of the library to which applications are linked and
an executable launcher that sets up the initial environment, forks the requested number of processes,
and executes the desired application. TSHMEM’s executable launcher initializes the environment
by setting up Tilera’s TMC common memory in order to create a globally shared space visible to
all processes, and setting up the UDN for explicit communication between the tiles participating in
SHMEM. After forking, each process uniquely binds to a tile, creating a one-to-one mapping. After
exec(), the application calls start_pes() to finish initialization. At this time, the globally
shared memory is partitioned symmetrically among participating tiles (providing the PGAS memory
model), and each tile reports its partition’s starting address to every other tile via the UDN.

Dynamic symmetric memory is managed via shmalloc() and shfree(). TSHMEM’s
design of shmalloc() consists of a doubly linked list tracking the memory segments being used
in the current tile’s symmetric partition. Memory is kept implicitly symmetric by the constraints
imposed when using shmalloc(), requiring applications to call the routine on all PEs with the
same size argument at the same location in the program execution path.

4.2. Point-to-point data transfers

OpenSHMEM specifies several categories of point-to-point, one-sided data transfers consisting
of elemental, bulk, and strided put/get operations. Elemental put/get functions operate on single-
element symmetric objects (e.g., short, int, float), whereas bulk functions operate on contiguous
data. Strided operations allow the transfer of data with strides between consecutive elements in
the source and/or target arrays. In the v1.0 specification, put operations will return from the func-
tion once the data transfer is in flight and the local buffer is available for reuse by the calling PE.
Get operations, in contrast, will block and not return until the requested memory is visible to the
local PE.

4.2.1. Dynamically allocated symmetric objects. At the startup of a SHMEM program, shared-
memory partitions are given to each tile. Because of the symmetry of each partition, a tile in
TSHMEM can determine the virtual address of any other tile’s dynamic symmetric object by calcu-
lating the offset of its own object from its partition’s start address and then adding the offset to the
target tile’s partition start address. The data transfer is then facilitated with a memcpy() operation
using the calculated virtual address into TMC common memory.

4.2.2. Statically allocated symmetric objects. Static symmetric objects are treated very differently
from their dynamic counterpart. These objects are allocated statically into the program’s heap space
at link time and are symmetric because the virtual addresses of the program heap are identical when
parallel processes are instantiated from the same executable. Unfortunately, the heap space resides
in private memory of a process and is not directly accessible to other processes.
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TSHMEM facilitates data transfer for static symmetric objects via UDN interrupts. The put/get
functions check the data target and source addresses to see if either address does not reside in the
globally partitioned shared space. If an address does not reside in the shared space, it is assumed to
be a static symmetric variable. The local tile will notify the remote tile over UDN, causing an inter-
rupt and forcing the remote tile to service the operation only when the local tile cannot. If one of the
addresses is dynamic, either the local or the remote tile will be able to directly access that dynamic
memory to service the request. For example, if the local tile cannot get from a remote tile’s static
symmetric variable, the remote tile can instead put into a dynamic symmetric variable on the local
tile. This scenario represents a static-to-dynamic or dynamic-to-static transfer and incurs a minimal
performance impact compared to dynamic-to-dynamic transfers. In the case when both target and
source addresses point to static symmetric variables, neither the local nor remote tile will be able
to completely service the operation. For these static-to-static transfers, a temporary shared-memory
buffer is created to assist in the transfer, but incurs an additional memory copy operation as over-
head. Unfortunately, static symmetric-variable transfers in TSHMEM are not currently supported
on the TILEPro architecture because of lack of support for UDN interrupts.

4.2.3. Performance of SHMEM put/get. Figure 5 shows the effective bandwidth for dynamic-to-
dynamic shmem_putmem() and shmem_getmem() transfers in TSHMEM, OpenSHMEM, and
OSHMPI. For TSHMEM, put performance closely aligns with get performance. The dynamic
put/get design in TSHMEM demonstrates low overhead as the realizable performance closely
matches the TILE-Gx performance from the common memory microbenchmark in Figure 2 using
the hash-for-home strategy described in Section 3.1.

Both put and get performances are higher in TSHMEM when comparing these results with Open-
SHMEM and OSHMPI. The results are illustrated in Figures 6a–6d with latency performance on
a logarithmic scale for dynamic and static transfers. Small-message dynamic put latencies (less
than 1 KB) with TSHMEM are three to four times faster than those in OpenSHMEM because
of TSHMEM’s bare-metal implementation with minimized overhead and an explicit memcpy()
operation. In contrast, OpenSHMEM incurs larger overhead when passing these put operations to
GASNet’s active-message interface and allowing its generalized SMP conduit to handle the mes-
sage transfers and acknowledgments. Likewise, TSHMEM small-message put operations are two to
three times faster than those from OSHMPI. TSHMEM also exhibits a slight performance benefit
of 0.1�s for small-message get operations over OpenSHMEM and OSHMPI.

With the case of static transfers, latency performances incur a penalty compared with dynamic
transfers. In TSHMEM, this behavior is expected because of the use of a temporary shared-space
buffer to aid in transfers between static symmetric variables. The performance of these static trans-
fers in TSHMEM, however, is consistently higher than that of OpenSHMEM and OSHMPI for
small to medium transfers, supporting the approach we have taken with the design of TSHMEM by
leveraging the UDN when appropriate.

Figure 5. Effective bandwidth of SHMEM put/get transfers on TILE-Gx36. (a) put and (b) get.
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Figure 6. Latencies of SHMEM put/get transfers on TILE-Gx36. (a) dynamic put; (b) dynamic get; (c) static
put; (d) static get; (e) dynamic-to-static put; (f) static-to-dynamic get.

Furthermore, TSHMEM includes optimizations for improved performance with dynamic-to-static
put operations and static-to-dynamic get operations as seen in Figures 6e and 6f. When the local
side of the transfer is represented by a dynamic symmetric variable, the remote tile is able to service
the operation with little overhead, instead of the alternative static-to-static case where intermediate
buffers are required. With these optimizations, TSHMEM latencies for these two cases are reduced
by more than half of the static-to-static latencies. In contrast, both OpenSHMEM and OSHMPI
over MPICH relegate these two cases to the static-to-static code path, with comparable performance
with the static transfers seen in Figures 6c and 6d. Interestingly, OSHMPI performs slightly worse
for transfers at and above 256 KB with these static-to-dynamic put operations compared with the
static-to-static case. Intuitively, OSHMPI should perform similar to the statics case, warranting fur-
ther investigation at possible non-optimal behavior. Note that, by definition, functional semantics
for the remaining two cases of static-to-dynamic put operations and dynamic-to-static get opera-
tions are equivalent to dynamic-to-dynamic transfers because the remote PE’s symmetric variable is
dynamically allocated in shared memory and can be directly accessed by the local tile.
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4.3. Synchronization

The OpenSHMEM specification provides several categories of synchronization: barrier sync;
communication sync with fence/quiet; and point-to-point sync (waiting until a variable’s value
has changed). TSHMEM includes these functions to provide computation and communication
synchronization for SHMEM processes.

4.3.1. Barrier synchronization. Barrier synchronization in SHMEM is provided by two routines:
shmem_barrier_all(), which blocks forward processing until all tiles reach the barrier, and
shmem_barrier(), which invokes a barrier on a subset of the tiles defined by an active-set triplet
of which tile to start at, the stride between consecutive tiles, and the number of tiles participating in
the barrier. The microbenchmark results for TMC spin and sync barriers in Figure 4 illustrate that
using sync barriers is not feasible because of their high latency, and the spin barrier on TILEPro is
significantly slower than the one on TILE-Gx.

Consequently, TSHMEM’s barrier design uses the UDN to synchronize between tiles. The start
tile in the active set generates an active-set identification for the barrier in order to prevent over-
lapping barrier calls from returning out-of-order or stalling. The active-set identification is encoded
with a wait signal and is sent to the next tile and resent linearly until the last tile sends it back to
the start, acknowledging that all participating tiles have reached the same execution point in the
program. The process is repeated with a release signal, allowing the blocking processes to linearly
forward the signal before resuming program execution. The number of messages transferred for this
operation is 2n, where n is the number of PEs in the barrier. Interestingly, another design was evalu-
ated whereby the start tile broadcasts the release signal instead of having each tile forward it linearly
in a chain. Barrier latencies, however, were two times slower for this method.

The performance of shmem_barrier_all() is shown in Figure 7 for TSHMEM, Open-
SHMEM, and OSHMPI. For comparison and convenience, the microbenchmark results for the
TMC spin barrier on TILE-Gx36 in Figure 4 are also illustrated. While not depicted in Figure 7,
TSHMEM barriers on TILEPro64 perform with a 36-tile latency of 3�s, on the same magnitude
of performance as TSHMEM barriers on TILE-Gx and vastly outperforming the TMC spin barrier
on TILEPro64 (50�s). The TMC spin barrier on TILE-Gx36, however, outperforms the TSHMEM
barrier, opening the possibility of adopting its use for the TILE-Gx version of TSHMEM. Unfor-
tunately, the use semantics for TMC barriers require memory allocation of a state variable to track
the number of tasks in the barrier. This allocation would have to occur for each instance of an
SHMEM barrier call in order to ensure that PEs that are engaged in multiple barriers do not return
from the wrong barrier. One design option is to leverage memoization techniques to alleviate some
of the allocation penalty of state variables; however, the added complexity from both memoization
management and state-variable management may result in a performance penalty greater than the
current performance of TSHMEM barriers over UDN, especially because the current TSHMEM

Figure 7. Latencies of SHMEM barrier on TILE-Gx36.
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barrier design does not depend on state variables nor require memory allocation. We plan to explore
memoization and its performance implications in future TSHMEM barrier designs.

Alongside the TSHMEM barrier results, performance for barriers in OpenSHMEM and OSHMPI
is also shown. OpenSHMEM barriers demonstrate significant variance and unreliable behavior when
scaling up. OSHMPI barriers have minimal variance and scale in performance from 8 to 44�s at
36 tiles. In contrast, TSHMEM barriers reach 2.4�s at 36 tiles, over 18 times lower latency than
OSHMPI barriers.

4.3.2. Fence/Quiet. Because put operations do not wait for completion before returning to the call-
ing PE, the communication synchronization routines shmem_fence() and shmem_quiet()
ensure outstanding puts are ordered properly or completed before returning. The shmem_fence()
routine guarantees put ordering to individual PEs before and after the function call, but does not
guarantee completion. In contrast, shmem_quiet() is semantically stronger and will block execu-
tion until all outstanding puts to all PEs are completed. TSHMEM implements shmem_quiet()
using tmc_mem_fence(), a memory fence operation that blocks until all memory stores are visi-
ble. Currently, shmem_fence() is set as an alias of shmem_quiet(), providing it the stronger
semantics until shmem_fence() is implemented with its weaker semantics.

4.4. Collective communication

The SHMEM collective routines provide group-based communication for a subset of tiles. Collec-
tive designs and performance results for TSHMEM are discussed in the following. While collective
algorithms have been explored with greater depth in other parallel environments such as MPI
[23–27], the collective algorithms in TSHMEM presented here are intended to explore performance
behaviors on the TILE-Gx and its 2D mesh. Results for OpenSHMEM and OSHMPI are also
provided as a basis for comparison of both algorithmic performance and runtime/conduit behavior.

4.4.1. Broadcast. Broadcast is a one-to-all operation where the active set of PEs obtains data
from a root PE. TSHMEM currently has support for push-based and pull-based implementations
of broadcast.

The push-based broadcast is performed by having the root PE perform a put operation sequentially
to all other PEs. This algorithm does not fully utilize the mesh fabric or the memory bandwidth of
the Tilera processors, and is therefore only used for testing purposes in TSHMEM. In contrast, the
pull-based broadcast is performed by having all other PEs in the active set perform a get operation
on the data from the root PE. This approach distributes work to all other PEs on the device, instead
of the root PE performing all of the work as is the situation with push-based. All other PEs will be
issuing concurrent requests to a single memory location. The effective bandwidth is maximized on
the TILE-Gx by leveraging its L3 distributed cache (Section 3.1) and storing this repeatedly accessed
data within the L2 caches of the tiles, bypassing the need to go to memory. Local tiles on the device
observe maximum performance by accessing data directly from cache, but alternative algorithms are

Figure 8. SHMEM broadcast latencies on TILE-Gx36. (a) 8 PEs; (b) 16 PEs; (c) 32 PEs.
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preferred for PEs on multi-socket systems that have to access the data through memory and cannot
benefit from this optimization.

Figure 8 shows results for push-based and pull-based TSHMEM algorithms, two algorithms
within OpenSHMEM, and the performance of the underlying MPI broadcast within OSHMPI. The
first OpenSHMEM algorithm is a linear broadcast that is functionally equivalent to the TSHMEM
pull-based approach: all PEs other than the root PE issue a get operation on the data. The second
algorithm is a binary-tree broadcast, whereby a binary-tree graph is generated to determine which
parent PEs transfer data to which children PEs. With the root PE at the tree’s root, parent nodes
transfer data via put operations until all children receive the broadcasted data. For message sizes
less than 128 KB, the tree-based OpenSHMEM algorithm is faster than the linear algorithm, but
demonstrates unfavorable performance at large message sizes. Furthermore, the performance dif-
ference is significant between the linear algorithm and TSHMEM’s pull-based approach despite the
functional similarity. TSHMEM-pull outperforms OpenSHMEM-linear for all message sizes, and
the linear algorithm is only able to approach the performance of TSHMEM-pull at large message
sizes because of amortization of runtime overhead with the higher latency of large data transfers.
OpenSHMEM-linear’s performance difference can be attributed to the GASNet communication run-
time that it uses. In addition to the large overhead from GASNet, we observe system instability and
runtime variance using GASNet with large PE counts. As the number of PEs increase, OpenSH-
MEM experiences higher latency variance with increasing message size, as indicated in Figure 8c.
In addition, low performance with OpenSHMEM collectives is not isolated to TILE-Gx; it has also
been observed with distributed systems supporting InfiniBand [28] and is an area of improvement
for the reference implementation.

The MPI broadcast used by OSHMPI performs similarly to the straightforward push-based
approach in TSHMEM. In comparison, the pull-based TSHMEM algorithm is an order of mag-
nitude faster than MPI broadcast, achieving between 0.5 and 0.8�s of latency for small-message
broadcasts. For large message sizes from 4 to 32 MB, OSHMPI stabilizes with approximately three
times higher latency than TSHMEM-pull. Finally, TSHMEM-pull exhibits high parallel scalability
as the number of PEs increases. For 64-byte transfers, TSHMEM broadcast latencies are from 0.54
(8 PEs) to 0.57�s (32 PEs), benefiting from the TILE-Gx distributed cache.

4.4.2. Fast collection. Collection is an all-to-all operation that concatenates an array from each
PE and distributes the resultant array to all PEs. The OpenSHMEM specification defines two types
of collection routines: collect and fast collect (fcollect). General collect allows each PE to supply
a different-sized array for concatenation. PEs need to communicate with each other to know how
far along the concatenation has progressed as well as where to append their array to the result. In
contrast, fast collect has the restriction that each PE must supply the same-sized array, allowing PEs
to implicitly know where to append their portion to the resultant array.

Figure 9 shows TSHMEM results for two algorithms: a naive design leveraging pull-based broad-
cast and a linear design. For the naive fcollect algorithm, all PEs perform a put operation and send

Figure 9. SHMEM fast-collect latencies on TILE-Gx36. (a) 8 PEs; (b) 16 PEs; (c) 32 PEs.
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their data to a root PE. Once the root PE receives everyone’s array, a pull-based broadcast is exe-
cuted where all other PEs get the newly concatenated result. This fast collect design can be broken
into two stages: (1) n PEs (including the root PE) transferM bytes to the root PE’s destination array,
and (2) root PE broadcasts .n �M/ bytes to destination arrays on .n� 1/ PEs. Treating M as con-
stant, stage 1’s total data transferred scales linearly with the number of participating tiles, similar
to a broadcast operation. Stage 2, however, scales quadratically in total data as the number of tiles
increases because each PE receives a copy of the entire concatenated result containing arrays from
all other PEs. Summarizing this algorithm, all PEs execute a put operation to the root PE, then all
PEs will execute a get operation from the root PE for the result. In contrast, the linear fcollect algo-
rithm has all PEs execute a put operation to each other PE, sending it the portion of its data. This
algorithm allows the result to be iteratively built on all PEs as the data arrive. Both TSHMEM and
OpenSHMEM implement this linear algorithm, with results illustrated in Figure 9. Within OSHMPI,
fcollect is implemented using MPI_Allgather(), which performs the same functionality from
the MPICH library. On the TILE-Gx, MPICH performance is more favorable than that of GASNet.

As the number of PEs increases, TSHMEM’s fcollect performance surprisingly widens in favor of
the naive approach for small message sizes. The main performance advantage of the naive approach
with a large number of PEs is cache locality. The concatenated array is built on the root PE and then
repeated cache reads can distribute the result to the other PEs efficiently via the L3 distributed cache.
The linear algorithm only outperforms this naive approach for medium-sized messages. Because
small-message or large-message transfers are emphasized in most applications, the default fcollect
algorithm in TSHMEM is this naive approach with pull-based broadcast. In comparing the algo-
rithms for large messages, TSHMEM-naive is 1.6 times faster than TSHMEM-linear, 2.3 times
faster than OpenSHMEM, and 2.6 times faster than OSHMPI.

4.4.3. Reduction. Reduction is an all-to-all operation that performs an associative binary operation
on the array elements from each active-set PE. OpenSHMEM reduction routines are defined by the
element type (e.g., short, int, float) and the reduction operation (e.g., xor, sum, min, max).

TSHMEM currently includes three designs for reduction operations: naive, linear, and tree. The
design for naive reduction has a root PE continuously get data from each other PE, iteratively per-
forming the reduction operation on the values with the result array. Once all active-set PEs have
participated and the final reduction is available, a pull-based broadcast is issued to distribute the
results to all other participating PEs. Unlike the naive fcollect whereby each PE was able to put its
data onto a root PE concurrently, the naive reduction is bottlenecked with the root PE performing
get operations and reducing the results as they sequentially arrive. Therefore, TSHMEM also pro-
vides a tree reduction algorithm that sets up a binary-tree communication pattern and reduces the
results from the child nodes to each parent node until it reaches the root node (the root PE). Similar
to naive, a pull-based broadcast is then executed for each PE to obtain the reduction result.

Finally, TSHMEM and OpenSHMEM both provide a linear reduction algorithm. For linear reduc-
tion, each PE iteratively gets the source data from all other PEs and reduces them to a result for the

Figure 10. SHMEM float-summation reduction latencies on TILE-Gx36. (a) 8 PEs; (b) 16 PEs; (c) 32 PEs.
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local PE. Broadcasting the final result is not needed as the result is computed locally on each PE.
For OSHMPI, reduction operations are translated to MPI_Allreduce() function calls.

Results for summation reduction with single-precision floating-point arrays are shown in
Figure 10. We observed similar performance trends for other reduction operations such as integer
summation and integer XOR. TSHMEM-linear results surprisingly show similar performance as the
TSHMEM-naive method; however, TSHMEM-naive outperforms TSHMEM-linear for larger mes-
sage sizes. At 32 PEs and for message sizes beyond the L1 cache size (32 KB), TSHMEM-naive is
approximately two to three times faster than TSHMEM-linear. For TSHMEM-linear, cache local-
ity significantly affects performance at these larger message sizes since all participating PEs are
attempting to get data from all other PEs while accessing their own cache and memory to com-
pute results. This behavior causes numerous concurrent and random memory accesses, whereas
TSHMEM-naive experiences better cache locality because of the root PE performing all of the
reduction calculations. For 1-MB transfers with 32 PEs, the root PE in TSHMEM-naive experiences
half as many local-tile L3 cache reads compared with TSHMEM-linear, and the remaining PEs
require only 0.6% as many local-and-remote L3 cache reads to retrieve the reduced dataset from the
root PE compared with locally computing it.

At 8 and 16 PEs, TSHMEM-tree is equal to or faster than TSHMEM-naive. For 32 PEs,
TSHMEM-tree is faster than TSHMEM-naive for all message sizes. The default reduction algo-
rithm in TSHMEM is the tree approach due to more efficient memory utilization with increasing PE
counts. OpenSHMEM performance exhibits similar trends as with broadcast and fcollect. OSHMPI
reduction performance is approximately 2.8 times slower than TSHMEM-tree for small messages,
and similar in performance for larger messages.

The collective results in this subsection are intended as a case study for the TILE-Gx. A common
theme is that distributed collective algorithms can display insufficient performance on shared-
memory, many-core devices. Others have reached similar conclusions when experimenting with
multi-core systems [29]. In leveraging the device-level microbenchmarking results, we demonstrate
that the design of collective communications in TSHMEM offers high performance on the TILE-
Gx many-core architecture, while enabling further library exploration toward systems consisting of
multiple many-core processors.

5. APPLICATION CASE STUDIES

The SHMEM and OpenMP are highly amenable programming environments for SMP architec-
tures because of their shared-memory semantics. With many-core processors emerging onto the
HPC scene, developers are interested in the performance and scalability of their applications for
these devices. This section analyzes several applications, written in both SHMEM and OpenMP,
on the TILE-Gx8036 [2]. We focus our analysis on showcasing performance differences between
OpenMP (provided by the TILE-Gx GCC 4.4.7 compiler) and the three SHMEM implementations:
TSHMEM, the OpenSHMEM reference implementation, and OSHMPI atop MPICH. OpenMP
serves as a baseline for our performance comparison because of its ubiquity for parallel program-
ming on SMP devices. In comparing TSHMEM with OpenMP, we aim to show that libraries
like TSHMEM can offer competitive or higher performance than established language-based
solutions.

The applications in this section consist of both custom-developed kernels and example programs
from the OpenSHMEM test suite version 1.0d [10]. These applications are presented as follows:
exponential curve fitting; OSH 2D heat equation; matrix multiply; OSH matrix multiply; OSH heat
image; and a case study in parallelizing the FFTW library. SHMEM applications were ported to
OpenMP when it was easily achieved. Specific optimizations were made only when the compu-
tational algorithm remained unchanged for both versions of the application. Scalability results are
presented with increasing number of PEs, where PEs are either processes in SHMEM or threads in
OpenMP and are reported in execution times up to the realistic maximum number of PEs for the
TILE-Gx8036 (36 PEs). For OSH heat image, we also present results with increasing problem sizes
to illustrate TSHMEM’s performance improvement over OpenMP and OSHMPI at full-device scale.
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Figure 11. Execution times for (a) exponential curve fitting (100M points, double); (b) OSH 2D heat
equation (Jacobi method on a 288 � 288 matrix); (c) matrix multiply (2048 � 2048, double); and (d) OSH

matrix multiply (2048 � 2048, double).

5.1. Exponential curve fitting

An exponential equation of the form y D aebx can be represented in linear form with logarithms:
ln.y/ D ln.a/ C bx. This form allows us to leverage linear curve-fitting via least-mean-squares
approximation and transform the final result back to exponential form with inverse logarithms. The
implementation for curve fitting is embarrassingly parallel and consists of a constant number of
barriers and reductions. This application serves as a metric for parallel-performance overhead for
the runtime environments that we are testing.

The execution times are presented in Figure 11a. OpenSHMEM is the only runtime environment
that does not exhibit the expected linear scalability. Scalability of OpenSHMEM is significantly
impacted for executions with more than 4 PEs on the TILE-Gx. Further investigation shows that this
behavior is a result of generic instrumentation of the GASNet conduits on the TILE-Gx and interop-
erability issues with GASNet and the TILE-Gx’s process scheduler. As a result, GASNet is unable
to leverage the TILE-Gx’s NUMA (non-uniform memory access) hierarchy in an efficient manner.
Attempting to manually set the processor affinity via the Linux scheduler and via numactl fails to
improve its high-variance behavior. As a result, the performance comparisons between TSHMEM,
OpenMP, and OSHMPI in this section are more relevant in demonstrating application behavior on
TILE-Gx.

5.2. OSH 2D heat equation

The OpenSHMEM (OSH) website has a test suite consisting of benchmarks and applications.
One such application is an iterative heat-equation solver for heat distribution in a rectangular
(2D) domain via conduction. The provided application supports three iteration methods: Jacobi,
Gauss–Seidel, and successive over-relaxation. We benchmark our runtime environments with the
Jacobi method on a 288 � 288 rectangular domain, with 288 chosen as the least-common multiple
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of 32 and 36, such that the domain space is evenly divisible amongst the PEs. SHMEM communica-
tion consists of a linear number of put operations, broadcasts, reductions, and barriers. An OpenMP
implementation was not tested for this application.

Execution times in Figure 11b show that TSHMEM and OSHMPI performance are similar, with
a performance edge to TSHMEM at full-device utilization because of barrier performance. In con-
trast, OpenSHMEM executions behaved erratically, preventing several PE counts from executing
to completion.

5.3. Matrix multiply

The matrix-multiplication algorithm chosen for instrumentation was a partial-row dissemination
with loop-interchange optimization for three matrices: C D A � B . Each PE is partitioned a block
of sequential rows to compute the partial result. In the case of OpenMP, the A;B , and C matrices
are shared among the threads via compiler directives. Because of SHMEM’s symmetric heap, the A
and C matrices can be easily partitioned among the PEs, but each PE receives a private copy of the
B matrix because of the pattern of computation. Consequently, the memory requirements are forced
to scale with the number of PEs and the size of the matrix because of the private copies that reside on
each PE. There are other parallelization strategies that do not require private matrix copies, but the
pattern of computation and communication would have differentiated from the OpenMP version. In
addition to row dissemination, loop interchange can easily occur because each matrix element in C
has no data dependency with its other elements. By interchanging the inner-most loop with one of
its outer loops, locality of reference and cache-hit rates drastically increase.

Execution times for SHMEM and OpenMP matrix multiplication are presented in Figure 11c. For
the SHMEM version, communication consists of broadcasting the B matrix to all PEs, unless the
data can be accessed directly from the remote partition via shmem_ptr(). The OpenMP version
has only implicit barriers, as all three matrices are shared via compiler directives and are directly
accessible. The execution times for OpenMP, TSHMEM, and OSHMPI are similar with each other
and scale consistently to full-device utilization.

5.4. OSH matrix multiply

One of the applications from the OpenSHMEM test suite is a matrix-multiplication kernel. Unlike
the previous matrix-multiplication kernel, this kernel implements a block-column distribution for
computation and leverages a distributed data structure that divides up the three matrices among
the PEs. This data distribution results in more communication time to obtain non-local elements
of the B matrix to perform matrix multiplication, but the advantage is substantially lower memory
use for increasing number of PEs. As a result, this approach sacrifices some runtime performance,
but is more amenable for very large matrices. The communication in this application consists of a
quadratic number of barriers and put operations with complexity O.p � r/, where p is the number
of PEs and r is the number of rows in the matrices. For further details, source code can be obtained
from the OpenSHMEM test suite [10].

The performance of this kernel is shown in Figure 11d for the TILE-Gx. TSHMEM and OpenMP
performance scale similarly on the device, with OpenMP showing a slight performance improve-
ment at 32 PEs. This result is attributed to the amount of data movement in the SHMEM version. In
the SHMEM version, each PE exchanges data by copying it into another PE’s shared partition at the
end of each compute iteration. The OpenMP version, however, does not require this step because the
data can be accessed directly via data sharing. While the OpenMP approach is more amenable for
an SMP device, the SHMEM approach was implemented for operation on a distributed system, as
the data cannot be accessed directly and must be transferred with one-sided operations. A different
SHMEM implementation would be capable of accessing the data directly, but would only be appli-
cable on SMP devices as a result. Interestingly, OSHMPI performance is consistently worse than
OpenMP and TSHMEM even at two PEs and stops scaling after 16 PEs (half-device utilization).
This kernel is the only application in this section that exhibits this behavior. This result is attributed
to the amount of communication in this application and exposes potential scalability issues with
the application itself. The amount of communication depends on p, the number of PEs; therefore,
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additional PEs will increase both the amount and duration of communication operations. OSHMPI
is significantly affected by this behavior with its higher-latency barriers compared with TSHMEM.
Finally, the execution times from Figures 11c and 11d show that this implementation of matrix mul-
tiplication is 1.5 to 2 times slower than the previous matrix multiplication because of the pattern
of computation.

5.5. OSH heat image

This application takes width and height parameters as inputs and solves a heat-conduction modeling
problem. Each PE is assigned a block of rows and assists in performing iterative heat-conduction
computation in order to generate an output image. The SHMEM communication for this applica-
tion consists of a linear number of put and barrier operations based on the number of iterations
in the modeling problem. The OpenMP version consists of a linear number of barriers and
critical-section regions.

Execution times are shown in Figure 12a. OpenMP, TSHMEM, and OSHMPI observe similar
performance until 16 PEs. TSHMEM continues to scale,while both OpenMP and OSHMPI exhibit
a slight degradation in scaling at 32 and 36 PEs. This application demonstrates favorable perfor-
mance for TSHMEM at full-device utilization. Because the entire input data are implicitly shared
with OpenMP, synchronization operations such as barriers become more numerous and costly
than with SHMEM’s distributed approach to data partitioning and ownership. Additionally, as the
number of PEs increases, the additional synchronization points while iterating on the heat-image
model results in this decrease of performance for OpenMP. This slight decrease also applies with
TSHMEM, but is less impactful on the overall application performance than in the OpenMP case.
For OSHMPI, the majority of the time difference compared with TSHMEM is due to higher-latency
barrier synchronization.

We present results for OSH heat image with increasing input sizes in Table III. TSHMEM
shows a maximum performance improvement of 30% over OpenMP at inputs of 2048� 2048, with
an improvement of 18% for larger input sizes. This performance improvement is significant and

Figure 12. Execution times for (a) OSH heat image (1024�1024with 5000 iterations) and (b) parallelization
of FFTW (8192 FFT operations on 8192-length complex-float arrays).

Table III. Performance of OSH Heat Image at 36 cores for varying problem sizes.

TSHMEM Compared to OpenMP Compared to OSHMPI

Problem Size Time (s) Time (s) Improvement (%) Time (s) Improvement (%)

1024 � 1024 13.5 16.2 17 16.0 16
2048 � 2048 61.2 87.6 30 67.4 9.3
4096 � 4096 347.6 440.6 21 355.4 2.2
8192 � 8192 1568.8 1918.8 18 1581.1 0.78
16384 � 16384 6313.6 7717.2 18 6371.1 0.90
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is not intuitively conveyed via the logarithmic-scale graph in Figure 12a. Comparing TSHMEM
with OSHMPI, TSHMEM’s performance improvement decreases as the problem size increases,
but the execution time differences between TSHMEM and OSHMPI show an increasing trend. At
8192� 8192, the time difference is 12.3 s in favor of TSHMEM over OSHMPI. The time difference
at 16384�16384 is 57.5 s, an increasing trend favoring TSHMEM. This trend indicates that the rate
of growth for the time difference is positive, but is slower than the rate of growth of the raw execution
time for problem sizes less than 16384 � 16384. As a result, TSHMEM exhibits higher scalabil-
ity than OSHMPI and each percentage point of improvement becomes more significant as problem
sizes increase. Performance improvement of TSHMEM begins to increase at 16384 � 16384, indi-
cating that the rate of growth for the time difference is now faster than the rate of growth of the
execution time.

5.6. Distributed FFT with SHMEM and FFTW

The final application involves the process-based parallelization of a popular fast Fourier trans-
form (FFT) library, FFTW [30]. The application performs a distributed, one-dimensional, discrete
Fourier transform (DFT) using the FFTW library, with data setup and inter-process communica-
tion via SHMEM. While the FFTW library is already multithreaded internally, this application
uses SHMEM instead of MPI to handle inter-process communication via fast one-sided puts to
quickly exchange data for a distributed system. An OpenMP implementation was not tested for this
application.

The execution times are shown in Figure 12b for the TILE-Gx. This application executes in three
phases: (1) DFT operation with twiddle calculations and data exchange, (2) matrix transpose, and (3)
DFT operation. All of the SHMEM communication occurs in phase one during data exchange and,
for each PE, consists of a linear number of put operations and a computational barrier. TSHMEM
and OSHMPI execution times are similar and achieve full-device scaling, with TSHMEM demon-
strating a slight performance advantage over OSHMPI because of higher-performance put and
barrier operations. OpenSHMEM is able to achieve a moderate amount of scalability, but not to the
extent of either TSHMEM or OSHMPI.

6. CONCLUSIONS AND FUTURE WORK

In exploring PGAS semantics for modern many-core processors, we have presented and evalu-
ated our design and analysis of TSHMEM, a high-performance OpenSHMEM library built atop
Tilera-provided libraries for the Tilera TILE-Gx and TILEPro many-core architectures. The current
TSHMEM design provides for all of OpenSHMEM functionality, excluding static-variable sup-
port for atomic operations. Our analysis of TSHMEM serves as an evaluation basis for low-level
PGAS semantics and performance on modern and emerging many-core processors with the intent
of enabling similar libraries to deliver higher utilization and performance for current-generation and
next-generation many-core systems.

Performance of TSHMEM is demonstrated with microbenchmarks of Tilera-library and
TSHMEM functions, offering direct validation of realizable performance and any inherited over-
head. Results indicate that TSHMEM designs for dynamic symmetric-variable transfers display
minimal overhead with underlying Tilera libraries and that numerous SHMEM functions outper-
form those from the OpenSHMEM reference implementation and from OSHMPI atop MPICH.
Additionally, the design for barrier synchronization in TSHMEM is shown to be fast relative to
several available Tilera barrier primitives for both the TILE-Gx and TILEPro. In comparing the per-
formance of TSHMEM collectives, the communication algorithms that emphasize cache locality by
coalescing results onto a single tile surprisingly performed better than the algorithms that focused
on linearly distributed communication.

Performance, portability, and scalability of SHMEM applications for the TILE-Gx are illus-
trated via numerous application case studies comparing TSHMEM performance with OpenMP, the
OpenSHMEM reference implementation, and OSHMPI. Our experiments exhibited application-
scalability concerns with the OpenSHMEM reference implementation because of generic instru-
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mentation for TILE-Gx used by its underlying GASNet communications runtime. As a result, we
focus our experiments on analyzing performance behavior with TSHMEM, OpenMP, and OSHMPI.
For application scalability, TSHMEM, OpenMP, and OSHMPI exhibit similar trends, but when
exploring different problem sizes at full-device utilization, TSHMEM demonstrates a marginal to
significant performance improvement. This conclusion provides validation to a bare-metal library
design for TSHMEM on many-core devices.

Future work for TSHMEM will include further library optimizations in conjunction with explo-
ration of extensions for the OpenSHMEM standard specification. With the resurgence of interest
in SHMEM and OpenSHMEM, proposed extensions such as threading support [31] merit inves-
tigation with impact on performance and API semantics. Finally, we plan to diversify our PGAS
design exploration with TSHMEM to include devices such as the Intel Xeon Phi many-core copro-
cessor [32], and expand our design on the TILE-Gx with novel architectural features such as the
mPIPE packet engine as we explore the shared-memory abstraction in TSHMEM across multiple
many-core devices.
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