
30

Platform-Aware Bottleneck Detection for Reconfigurable
Computing Applications

SETH KOEHLER, GREG STITT, and ALAN D. GEORGE, NSF Center for High Performance
Reconfigurable Computing, University of Florida

Reconfigurable Computing (RC) has the potential to provide substantial performance benefits and yet simul-
taneously consume less power than traditional microprocessors or GPUs. While experimental performance
analysis of RC applications has previously been shown crucial for achieving this potential, existing methods
still require application designers to manually locate bottlenecks and determine appropriate optimizations,
typically requiring significant designer expertise and effort. Worse, the diversity of platforms employed by
RC applications further complicates the process of detecting bottlenecks and formulating optimizations. To
address these shortcomings, we first discuss our platform-template system, which enables a performance
analysis tool to perform more accurate bottleneck detection and achieve a higher degree of portability across
diverse FPGA systems. We then provide details for our implementation of these concepts and techniques in
the Reconfigurable Computing Application Performance (ReCAP) tool. Next, we present a taxonomy of com-
mon RC bottlenecks, providing associated detection and optimization strategies for each bottleneck, which
we use to populate ReCAP’s knowledge base for bottleneck detection. Finally, we demonstrate the utility of
our approach via two application case studies across a total of three platforms.

Categories and Subject Descriptors: B.8.2 [Performance and Reliability]: Performance Analysis and
Design Aids; C.4 [Computer Systems Organization]: Performance of Systems—Measurement techniques

General Terms: Measurement, Performance

Additional Key Words and Phrases: FPGA, optimization, performance analysis

ACM Reference Format:
Koehler, S., Stitt, G., and George, A. D. 2011. Platform-aware bottleneck detection for reconfigurable com-
puting applications. ACM Trans. Reconfig. Technol. Syst. 4, 3, Article 30 (August 2011), 28 pages.
DOI = 10.1145/2000832.2000842 http://doi.acm.org/10.1145/2000832.2000842

1. INTRODUCTION

While performance continues to increase in both High-Performance Embedded Com-
puting (HPEC) and High-Performance Computing (HPC), the growing importance of
power has caused programmers in both fields to rely increasingly on explicit paral-
lelism and accelerators rather than on instruction-level parallelism or clock frequency
increases [Barroso 2005; Laudon 2005; Crawford et al. 2008]. Due to these trends, Re-
configurable Computing (RC), which typically employs both CPUs and reconfigurable
hardware such as FPGAs, has emerged as a viable field for providing substantial
performance [Garcia et al. 2006; Tessier and Burleson 2001] while simultaneously

This work was supported in part by the I/UCRC Program of the National Science Foundation under Grant
No. EEC-0642422. The authors gratefully acknowledge vendor equipment and/or tools provided by Aldec,
Altera, GiDEL, Nallatech, Xilinx, and XtremeData.
Authors’ addresses: S. Koehler (corresponding author), G. Stitt, A. D. George, NSF Center for High-
Performance Reconfigurable Computing (CHREC), Electrical and Computer Engineering Department, Uni-
versity of Florida, Gainesville, FL 32611; email: garfieldsk@gmail.com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2011 ACM 1936-7406/2011/08-ART30 $10.00
DOI 10.1145/2000832.2000842 http://doi.acm.org/10.1145/2000832.2000842

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 3, Article 30, Publication date: August 2011.

30:2 S. Koehler et al.

consuming little power in comparison to microprocessors or GPUs [Williams et al.
2011, 2008; Che et al. 2008].

Performance analysis for RC applications has been shown crucial for achieving this
potential performance due to the complexity of RC applications and systems [Koehler
et al. 2008; Curreri et al. 2010]. In addition, automatic bottleneck detection has been
shown a promising area of research in traditional HPC, accelerating the optimiza-
tion process as well as reducing expertise needed by a designer to achieve a higher-
performance solution for a given implementation and system [Mohr and Wolf 2003;
Jorba et al. 2008; Chung et al. 2008; Su et al. 2009; Truong and Fahringer 2002].
Due to the added complexity of RC applications and systems, bottleneck detection is
even more critical in RC, and yet is currently lacking, forcing application designers to
manually locate performance bottlenecks as well as strategize optimizations.

Unfortunately, providing bottleneck detection for RC applications incurs additional
challenges not typically present in traditional HPC. For example, while attempts have
been made to standardize some aspects of RC-system APIs, such as OpenFPGA’s
GenAPI [OpenFPGA 2010], the continued widespread diversity of both hardware and
software APIs for RC systems complicates bottleneck detection, as there are no stan-
dardized constructs such as MPI Send (a construct within the MPI library that sends
data from the calling node to another node in a system) that provide hooks for recording
relevant statistics such as measured bandwidth or bytes transferred. Another key chal-
lenge exists in defining, locating, reporting on, and suggesting remedies for application
bottlenecks. Many approaches in traditional HPC are ill-suited for RC applications
due to common assumptions that all system processing elements are relatively homo-
geneous, general purpose, and at roughly the same level in the system hierarchy (i.e.,
applications execute on CPUs that can perform general computation and communica-
tion, individually or in groups). In contrast, components within an RC application are
almost certainly heterogeneous, may be designed solely for scatter communication or
pipeline control (noncomputational components), exist in fairly deep and intricate hier-
archies, and may perform an arbitrary amount of work in a single cycle, thus resisting
conventional bottleneck detection and classification schemes. In addition, an FPGA’s
hardware flexibility significantly expands the possibilities for optimization, increasing
the complexity of formulating bottleneck remedies. Finally, from a practical standpoint,
trace data, which is used heavily for bottleneck detection in traditional HPC, cannot
be relied on in FPGAs as these devices typically have limited memories and real-time
requirements. Specifically, it can be difficult to “pause” an application on an FPGA due
to low-level interaction with external hardware, such as memories or other FPGAs.

Thus, in this article, we propose a platform-aware, knowledge-based bottleneck-
detection framework to address the current lack of bottleneck detection for RC appli-
cations. The proposed framework and tool are extensible in that users may easily add
support for their own platform, as long as it fits within the proposed platform-template
model, and may also easily modify the bottleneck knowledge base. We also present
what we believe to be the first taxonomy of common RC bottlenecks, including detec-
tion and optimization strategies, which we use to populate our ReCAP tool’s knowledge
base. Although this work should aid novice RC designers who may be unaware of many
potential bottlenecks and optimizations, experienced RC designers can benefit as well
from quick feedback on the location and severity of performance problems.

It is important to note that while we focus on improving runtime performance
throughout this article, these concepts and techniques can also be of use for reduc-
ing power consumption or resource usage as well. For example, an increase in raw
application performance may allow an application designer to decrease the number of
hardware cores or the clock frequency on the FPGA while still providing the required
performance. Conversely, optimization suggestions may indicate that resources could

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 3, Article 30, Publication date: August 2011.

Platform-Aware Bottleneck Detection for Reconfigurable Computing Applications 30:3

be reduced without sacrificing performance, allowing these resources to be repurposed
elsewhere for improved performance or to be left unused, reducing power or even per-
mitting a smaller FPGA to be employed. Thus, optimizations may be used to achieve a
balance amongst runtime performance, resource usage, and power consumption.

The remainder of this article is structured as follows. We first provide background
and related research for performance analysis and automatic bottleneck detection in
Section 2. Section 3 then details our platform-template system, enabling both platform-
specific bottleneck detection and tool portability. Next, in Section 4, we describe our
methodology for bottleneck detection and the nature of results produced by an exten-
sion to the Reconfigurable Computing Application Performance (ReCAP) tool. Then, in
Section 5, we explore and categorize common performance bottlenecks in RC applica-
tions, including methods of detection as well as suggestions to remedy these bottle-
necks. We then present case studies involving a time-domain finite impulse response
benchmark and a two-dimensional probability density function estimator in Section 6,
focusing on the utility of automatic bottleneck detection in the optimization process.
Finally, we conclude and provide directions for further research in Section 7.

2. BACKGROUND AND RELATED RESEARCH

RC applications are typically programmed using both High-Level Languages (HLLs)
for CPUs, such as C/C++, and Hardware Description Languages (HDLs) for FPGAs,
such as VHDL or Verilog; while HLLs can also be used to describe hardware for an
FPGA, we restrict our discussion to HDL-based RC applications. Although a micropro-
cessor is optional, many RC applications use CPUs for tasks such as data movement
and staging, pre- and postprocessing, or other computation that is better suited to a
general-purpose processor. At runtime, CPUs and FPGAs communicate through one
or more communication channels (e.g., PCIe, HyperTransport) in a variety of ways
from HLL code including function/macro calls, class methods, and memory-mapped
I/O, depending on the platform’s API.

As stated in the Introduction, performance analysis, and specifically platform-aware,
knowledge-based bottleneck detection, is critical for productively optimizing RC appli-
cations. Thus, in the remainder of this section we present background and related
research for performance analysis (Section 2.1) and for platform-aware, knowledge-
based bottleneck detection (Section 2.2).

2.1. Performance Analysis

In general, the goal of performance analysis is to aid the application designer in quickly
locating and remedying performance bottlenecks, where a bottleneck refers to some por-
tion of the application that reduces performance for the application as a whole (taken
from the notion of a bottle’s neck that restricts the flow of liquid from the larger bot-
tle). As depicted in Figure 1, performance analysis may be divided into stages including
gaining access to application data (instrumentation), recording and storing that data at
runtime (measurement), optionally analyzing recorded data for performance problems
(automated analysis), visualizing performance data and analysis results (presenta-
tion) in order to allow the designer to carry on further analyses (manual analysis), and
finally strategizing and implementing changes within the application in order to ame-
liorate located performance bottlenecks (optimization). These steps may be repeated
until desired performance is achieved or no further performance gains seem likely. It
is important to note that application performance and potential bottlenecks may vary
significantly based on the size and values of input data. Thus, it is critical to create
performance tests that accurately reflect the gamut of expected inputs when optimiz-
ing. While instrumentation, measurement, and presentation significantly accelerate
the process of optimizing an application, automated analysis and optimization are of

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 3, Article 30, Publication date: August 2011.

30:4 S. Koehler et al.

Instru
mentatio

n

Measurement

Automatic

Analysis

Presentatio
n

Optim
izatio

n

Application
Modified

Application
Instrumented
Application

Performance
Data

Visualizations
Potential

Bottlenecks

Potential
Bottlenecks

Manual

Analysis

Acceptable

Performance?
N

Y

Optimized

Application

Fig. 1. Overview of performance analysis process.

increasing importance as applications, and thus recorded performance data, grow in
complexity and size [Su et al. 2009; Chung et al. 2008; Mohr and Wolf 2003].

Our previous work provides performance analysis for RC applications, including in-
strumentation, measurement, and presentation for systems containing multiple CPUs
and FPGAs in the ReCAP framework and tool, including both HDL-based and HLL-
based applications [Koehler et al. 2008; Koehler and George 2010; Curreri et al. 2010];
to our knowledge, no other work provides general-purpose performance analysis for
RC applications. As this work extends ReCAP for HDL-based applications, we provide
a brief overview here. ReCAP builds upon the Parallel Performance Wizard (PPW) [Su
et al. 2011], adding support for monitoring FPGA API calls and time spent in HDL
conditional branches. Software may be written using C/C++, MPI, UPC, and SHMEM,
while hardware may be written in VHDL, although significant work has been per-
formed towards supporting Verilog.

The user’s HDL code is first instrumented via the HDL Instrumenter (a Java GUI),
which provides a number of options for profiling, tracing, and even verification (includ-
ing assertion monitoring, code coverage, and HDL testbench generation for comparing
actual execution with simulation). The HDL Instrumenter extracts and monitors all
useful hardware signals in the FPGA, providing a mechanism to retrieve monitored
FPGA data from software at runtime. Once instrumented, the user then employs their
standard tool flow to synthesize and implement their HDL code, producing an instru-
mented FPGA configuration file used to program the FPGA. This configuration file is
then added to a TAR file that was also produced during hardware instrumentation. The
TAR file is then placed in the root software application folder, and the user’s software
code is instrumented and compiled using wrapper scripts (e.g., ppwcc instead of cc).
Finally, the application is executed normally, producing performance data that may
then be visualized in PPW’s GUI or via SVG files produced from Graphviz. Figure 2
provides on overview of the process for analyzing an application’s performance using
ReCAP.

2.2. Knowledge-Based Bottleneck Detection and Platform Support

Knowledge-based bottleneck detection is a form of automated analysis designed to
locate and describe common performance bottlenecks in an application based upon
specific knowledge about where and how bottlenecks may occur. The goal of knowledge-
based bottleneck detection is to reduce both the effort and expertise required to opti-
mize an application, accelerating the optimization process; for a thorough overview
of various frameworks and tools for automatic analysis; see Su et al. [2009]. Without
bottleneck detection, the designer must understand the intricacies involving where bot-
tlenecks can occur, understand how to detect each bottleneck, instruct the tool to mon-
itor relevant data, interpret the performance data to locate bottlenecks, understand

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 3, Article 30, Publication date: August 2011.

Platform-Aware Bottleneck Detection for Reconfigurable Computing Applications 30:5

HDL source

HLL source

Instrumented
HDL source

Performance
data file(s)

HDL

Instrumenter

Compile with
PPW+RC
backend

Synthesis &
Implementation

Visualize with

PPW+RC
frontend

Instrumented
FPGA binary

Instrumented
CPU executable

Program
results

Step 1 Step 2

Step 3

Step 4

Execute
application

Step 5

Added steps during compilation / implementation tool-flow

Original steps during compilation / implementation tool-flow

Configuration TAR file

Fig. 2. Overview of instrumentation, measurement, and presentation in ReCAP.

what optimizations may be effective against each bottleneck, and determine the ex-
pected performance improvement if a given bottleneck were remedied (in order to
ascertain whether the bottleneck is worth remedying).

To our knowledge, no research has been performed that enumerates or categorizes
bottlenecks for RC applications, nor has automatic detection of RC bottlenecks been
demonstrated. However, DeHon et al. [2004] present numerous “design patterns” for
the purpose of improving application efficiency on reconfigurable systems; these de-
sign patterns could be included as optimization suggestions for relevant bottlenecks.
For traditional HPC systems (i.e., systems without FPGAs), Mohr and Wolf [2003]
provide a tree-based categorization of bottlenecks in EXPERT, a part of the KOJAK
performance tool (now called Scalasca) that analyzes where an application spends
time with respect to their categorization scheme. Jorba et al. [2008] discuss another
knowledge-based bottleneck detection tool, KappaPI 2, that employs an XML format to
store their knowledge base of bottleneck definitions, allowing the tool to locate patterns
representing performance problems in trace data collected from message-passing ap-
plications. Static code analysis is used in conjunction with a specification of bottleneck
“instances” (also in XML format) to indicate the cause or conditions of each bottle-
neck and to provide hints as to how the bottleneck may be remedied. Su et al. [2009]
provide details of their automated analysis framework within Parallel Performance
Wizard (PPW). Their tool provides automated, model-independent detection as well as
distributed analysis capabilities to reduce analysis time. Truong and Fahringer [2002]
provide a very detailed scheme for performance overhead classification in SCALEA,
a profile- and trace-based performance analysis tool that allows user specification of
metrics and code regions of interest. Chung et al. [2008] detail their framework and
tool for automatic bottleneck detection using an extensible, rule-based system and per-
formance data obtained from the IBM High-Performance Computing Toolkit. “Rules”
are created using “metrics,” both of which may be user-defined, and which, in turn, can
depend on parameters such as the target system, enabling the tool to provide detailed
information for all bottlenecks detected including expected performance improvement
if the bottleneck was removed. However, as mentioned in the Introduction, there are a

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 3, Article 30, Publication date: August 2011.

30:6 S. Koehler et al.

number of differences in RC systems and applications that must be addressed for RC
bottleneck detection.

Finally, due to the lack of standardized APIs for RC systems, tool designers must ei-
ther attempt to support a myriad of platform APIs or provide the user with a mechanism
to add support for their own platform. Due to the difficulties in adding and maintaining
support for, or even gaining access to, each new platform and API version, the first ap-
proach will typically ensure a limited number of supported platforms and thus limited
tool applicability. The latter approach is taken by some HLS tools, such as ImpulseC’s
platform-support packages [Bodenner 2010] or ROCCC’s platform interface abstraction
layer [University of California at Riverside 2010], as well as by frameworks supporting
generic communication between heterogeneous devices, such as Auto-Pipe [Chamber-
lain et al. 2010] or the System-level Coordination Framework (SCF) [Aggarwal et al.
2009]. Unfortunately, since locating bottlenecks often requires additional information
beyond what is necessary for portability (e.g., bytes transferred or expected bandwidth
for each transfer type), such approaches are not well-suited for bottleneck detection.
In addition, adding platform support may require significant expertise and effort (e.g.,
both ImpulseC and ROCCC require a manual conversion between a platform’s API and
their specified interface), limiting the potential for widespread use.

3. PLATFORM TEMPLATES

Platform templates have two purposes in ReCAP: bottleneck detection and portability.
In this section we detail our platform-template framework and its implementation in
ReCAP. While this framework handles many common API styles in both software and
hardware, we will also point out cases not currently handled as well as concepts that
could potentially address these situations.

ReCAP provides a single location within the HDL Instrumenter that encapsulates
all platform-specific information, permitting a typical user to quickly add support for
their own platform; this information is divided into several software and hardware
API tabs for easier access. ReCAP allows each platform to be given a unique name
and saves all platform information in a separate file, allowing platform templates to
be easily loaded and shared. In fact, ReCAP can support user APIs built on top of a
platform’s API, allowing several different platform templates to coexist for the same
platform; the user simply selects the corresponding template that matches the current
API in use.

3.1. Software

In order to locate bottlenecks involving CPU-FPGA communication, or to even deter-
mine when such communication is occurring, ReCAP must know what API calls are
possible as well as some auxiliary information such as purpose or bytes transfered (if
a transfer) in order to effectively instrument these calls. Specifically, a user must enter
a C/C++ prototype for a function, macro, or class method into the HDL Instrumenter1.
As this information can be directly obtained from the platform API’s header, which
must be available on the system, the user can simply copy and paste this information
into ReCAP.

For each prototype supplied, the user must indicate its type, which includes cate-
gories such as configuration, acquisition, data transfer, and release. In addition, C/C++
expressions can be given to identify the FPGA number associated with this call (if
any), bytes transferred for data transfers, and the filename(s) used to configure the

1Macros are currently handled by providing an equivalent function prototype; while this approach could
cause problems by presupposing argument and return types, an improved implementation could avoid this
issue by handling macros separately.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 3, Article 30, Publication date: August 2011.

Platform-Aware Bottleneck Detection for Reconfigurable Computing Applications 30:7

FPGA. These expressions are free to access function arguments, global variables, class
methods, or class public fields; for example, the FPGA number expression may sim-
ply be fpgaNum or this->getFpgaId(), assuming these represent an argument in the
prototype or a public class method, respectively.

From this information, ReCAP identifies and instruments each API call in the user’s
source code. Function- and macro-based API calls are overridden via macros that ef-
fectively change the name of each API call in user source code in order to instead call
instrumented wrapper functions or macros, which record various applicable statistics
(e.g., time spent, bytes transferred, bandwidth achieved) in addition to performing the
original API call2. Class methods are instrumented by subclassing each class within
a platform API, with each subclass method recording statistics before calling the cor-
responding base class’ method; in addition, any instantiation of a platform API class
in the user’s source code is replaced with an instantiation to the instrumented sub-
class in a copy of the user’s source code. Unfortunately, this approach would not be
sufficient for constructors and destructors due to the order in which constructors and
destructors are called. For example, timing a class constructor in a platform’s API
would require a timer to be started before that constructor was called, whereas the
subclass’ constructor won’t be called until after the platform API’s constructor. To
handle this situation, ReCAP’s subclass employs multiple inheritance, first inherit-
ing from another ReCAP-generated class that, in the case of the constructor, handles
starting timers and other measurement code before the platform API’s constructor is
called; the subclass’ constructor then stops timers and records statistics. Destructors
are handled in the reverse fashion due to the reverse order in which destructors are
called.

For bottleneck detection, ReCAP also allows a user to associate a default “reason”
for an API call. Example “reasons” include initializing, broadcasting, or waiting to
send due to a full buffer, and will be discussed in Section 4. For transfer functions,
microbenchmark data can be entered in tabular form, where each row includes the
transfer size (in bytes) and time taken to transfer that amount of data (in seconds).
Microbenchmark data permits ReCAP to detect bottlenecks and make specific sug-
gestions for communication-related bottlenecks, which are discussed in Section 5.1.
ReCAP could also perform microbenchmarks automatically, such as upon installation
or during a special calibration step, although additional information about how to use
each API call would then be required. In the absence of microbenchmark data, ReCAP
could simply detect performance deviations between different instances of the same
API call. All of these techniques have been demonstrated in traditional HPC. Finally,
a generic text field for platform-specific bottleneck suggestions is provided to associate
known issues with given API calls. For example, on a Cray XD1 system [Cray 2010], it
is roughly 200 times more efficient to have an FPGA write data into the CPU’s memory
than to have the CPU read from the FPGA’s QDR SRAMs [Tripp et al. 2005].

A single API call could represent more than one behavior. For example, a trans-
fer function may represent a read or a write depending on a class field or function
argument, or standard library functions may be used to access the FPGA, such as
an XtremeData XD1000 system’s [XtremeData Inc. 2010] use of the standard C open
function to initialize the FPGA. To support these scenarios, ReCAP permits a user to
enter a condition to determine whether or not monitoring is active for a given API
call, allowing a single transfer that can read and write to be monitored separately for
each case; the user simply enters the prototype twice with conditions testing for a read

2The use of macros for overriding functions causes problems with C++’s function overloading, although
method overloading is handled correctly; an improved implementation could handle this case properly via
name-mangling for overloaded functions.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 3, Article 30, Publication date: August 2011.

30:8 S. Koehler et al.

and write, respectively. This condition is equally useful for ignoring uses of standard
functions (such as open) unless the correct arguments are given that indicate an FPGA
access. A subtype label is also provided to allow a user to easily distinguish different
conditional versions of the same API call in visualizations and bottleneck reports.

While the information discussed before is sufficient for monitoring and bottleneck
detection, ReCAP must also be able to initiate transfers in order to retrieve hardware
performance data at runtime, requiring additional information about how to actu-
ally perform these transfers. While a general implementation could provide additional
detail about all transfer types, we reduce the amount of data a user must enter by
requiring this additional information for only one send and receive type. Thus, the
user must provide include directives for all FPGA libraries, a minimum and maximum
transfer size permitted, the data type for FPGA transfers, and a short code fragment,
usually one or two lines, that shows how to send (or receive) an array of data to (or from)
the FPGA. ReCAP must also be aware of how to allocate, free, and access these arrays;
default code for these tasks is provided, but can be overridden since FPGAs sometimes
require page-aligned data, and thus special allocation functions and data structures.
Further, ReCAP may be provided with conditions indicating a send or receive error for
better error checking. Additional miscellaneous information can be provided as well,
including a size multiplier on the FPGA data type for platforms that have different
data widths in hardware and software, a file exclusion list to prevent instrumenting
the inside of a user-defined API, and application-specific constants needed for FPGA
access.

Unfortunately, some issues remain with our approach. First, some APIs employ
memory-mapped FPGA access, where reading or writing to a specific memory loca-
tion from the CPU actually constitutes an FPGA transfer. It is not possible, in gen-
eral, to statically determine whether a given pointer access is in the FPGA’s memory
range, although runtime support is possible and many common cases could be detected
statically. Thus, ReCAP currently requires wrapping such pointer accesses in simple
macros or functions before they can be monitored; functions can be inlined to prevent
performance loss. Second, we assume the read and write functions used by ReCAP
to retrieve hardware performance data have addresses associated with them; in fact,
during instrumentation, the user must provide an address range that is unused by
the application so that ReCAP can hijack and use this range for transferring data.
This address-based approach precludes hijacking stream-based API calls that lack ad-
dress information; this issue could be resolved in a number of ways including hijacking
another API call that does provide address information (since ReCAP only needs one
address-based read and write API call), by embedding a special marker in the data
stream and escaping that marker in any data sent by the application, or by setting a
specific flag on the FPGA if such a feature were available and unused by the applica-
tion. Despite these limitations, we have found that most platforms can be supported
quickly (e.g., in a few hours). For example, ReCAP currently supports software and
hardware APIs for a Nallatech PCI-X card [Nallatech 2010], an XtremeData XD1000
system [XtremeData Inc. 2010], and a GiDEL PROCStar III PCIe card [GiDEL 2010];
Table I in Section 6 contains more information on these platforms.

3.2. Hardware

In order to determine when communication occurs in hardware, ReCAP must know
what events and data are associated with a read or write. Thus, ReCAP requests
information concerning the names of data and address signals for both incoming and
outgoing transfers as well as HDL conditions that indicate when data is available for,
or when data can be sent by, the user’s application. In addition, a user can provide
an HDL code fragment to perform required actions when sending or receiving data,

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 3, Article 30, Publication date: August 2011.

Platform-Aware Bottleneck Detection for Reconfigurable Computing Applications 30:9

Sensor
(input)

CPU

DDR
(output)

Core 1 Core 2

Legend

Component

Block
T1 T2 T1 T2

SRAM

P1 P2 P3

Core2

P1 P2 P3

Core1

Collector
C1 C2

Distributor
D1

B1 B1

Buffer1 Buffer2

FPGA
Top

Fig. 3. Directed graph of an RC application that takes input from a sensor, processes data using a two-core
pipeline, potentially offloads data to threads on a multicore CPU for further processing, and finally stores
results in DDR memory.

such as by setting a valid or acknowledge flag high. Also, due to the wide variety of
ways data can be transferred, ReCAP supports both memory-style access and block-
transfer-style access. The memory-style access typically consists of an address, data,
and a read/write enable; the block-transfer-style access (e.g., a DMA transfer) instead
employs an address and the number of words to be transferred, a request flag, and
potentially other handshaking flags as well. For block transfers, the user must provide
the signal name indicating the number of words and the condition indicating a transfer
request (address signals were already specified with the data signals earlier); the
transfer ends when the number of words reaches 0. The user may also select whether
the API will keep the address up-to-date on each cycle, or whether only a starting
address is provided, in which case ReCAP will manage updating the address internally.
Further, due to different latencies required by different platforms, the user may specify
the number of cycles to delay outgoing data, including 0 for the same cycle. Finally,
ReCAP requires the user to provide the top-level clock signal name (ReCAP currently
only operates in one clock domain, although an extended implementation could support
multiple clock domains) and reset condition.

As with software, we again assume an address-based scheme; if one is not present,
techniques mentioned earlier are applicable here as well. We also note that our current
framework only considers attachment to a CPU-FPGA communication port, whereas
the FPGA may connect to another FPGA or external memory as well. We leave the
extension of this framework to monitor these types of ports for future work, but this
extension should be similar to the techniques presented here. Thankfully, this limita-
tion only prevents automatic monitoring and bottleneck detection on these ports, as
our current implementation can monitor any port via a few hardware pragmas in the
top-level file; pragmas are discussed in Section 4.

4. BOTTLENECK DETECTION IN RC APPLICATIONS

As discussed in the Introduction, there are a number of factors beyond system and API
diversity that complicate bottleneck detection in RC applications, including intricate
hierarchies of interconnected components, component heterogeneity, and noncompu-
tational components. For example, Figure 3 depicts a simple mockup RC application

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 3, Article 30, Publication date: August 2011.

30:10 S. Koehler et al.

that distributes sensor input between two application core pipelines, performs some
computation using SRAM in that pipeline, collects results, and potentially offloads data
for further processing to a dual-core CPU with two software threads per core before
storing results in DDR memory. This application exhibits heterogeneity since many dif-
ferent blocks exist (e.g., the P1, P2, and P3 pipeline stages are likely performing fairly
different tasks), there are noncomputational components such as buffers, distributors,
and collectors, and there is complex interaction amongst blocks (e.g., data may traverse
through 6 or 10 blocks via several paths). Thus, these differences must be addressed
when detecting bottlenecks in RC applications.

We leverage our previous work in performance visualization and exploration [Koehler
and George 2010] for abstracting application behavior as a directed graph of blocks,
where a block represents a software thread, a clocked3 VHDL “process” block, or a
clocked Verilog “always” block (shown as black boxes in Figure 3). One key require-
ment of a block is that it operates in parallel with all other blocks, possibly with some
dependencies due to interactions between blocks. VHDL “entity-architecture” pairs,
Verilog “modules,” and CPU cores are called components, and may contain one or more
blocks. While each block may perform an arbitrary amount of communication and com-
putation (e.g., a single block may be simultaneously communicating with several blocks
while computing a multiply-and-accumulate), we choose a block to be the fundamental
unit of parallelism in our abstraction of an application. This choice represents a trade-
off between a desire for detailed recording and modeling of fine-grained parallelism
and a desire to minimize extraneous detail recorded and visualized.

Our previous work in performance visualization and exploration [Koehler and George
2010] also defines a pragma-based syntax, providing an application designer with
a simple, unobtrusive methodology for specifying high-level information concerning
application behavior; we extend this syntax here for the purpose of bottleneck detection.
Figure 4 provides some examples of our extended syntax for software and hardware
pragmas. Extensions to the syntax defined in our previous work include subdividing a
“busy” category into “work” and internal “overhead” as well as the addition of a “reason”
argument; for convenience, we briefly describe each part of a pragma’s syntax in the
following, including aspects defined in our previous work as well as these extensions.

Each pragma in software or hardware defines a state that the given block is in when
that pragma is reached in source code; these pragmas are placed either before an API
call or before the first statement in an HDL branch. Pragmas can indicate a block is
working, performing internal overhead, communicating, or waiting. Specifically, the
following categories are permitted.

—Work: tasks directly associated with the objective of the application (e.g., matrix
multiplication or convolution); this should be maximized.

—Overhead: internal, auxiliary tasks that are artifacts of the implementation, such as
bookkeeping or loop counter updates; this should be minimized.

—Send/Recv: movement of application data to or from this block.
—Wait send/Wait recv: synchronization with another block; examples include waiting

to send data to a locked resource or waiting to receive data from a block that is
currently working.

Additionally, a condition can be provided to indicate when a pragma is active; thus
multiple pragmas can be defined per API call or HDL branch with conditions indicating
which pragma is active at any given time. For example, only one of the two hardware
pragmas in the “waitAck” state in Figure 4(b) is active, depending on whether the “ack”

3Purely asynchronous logic will already have had timing optimized during synthesis and implementation
and can be monitored on clock boundaries if necessary.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 3, Article 30, Publication date: August 2011.

Platform-Aware Bottleneck Detection for Reconfigurable Computing Applications 30:11

#pragma recap writeX send(data, top.in, x1): words > 0
fpgaWrite(fpga, data, addr, words);
...
do {

#pragma recap waitResult wait_recv(buffer_empty, top.out, r1)
done = fpgaReadReg(fpga, addr2);

} while (done == 0);

(a) SW pragmas

case current_state is
when recvXCoord =>
--pragma recap getX recv(data, $CPU, x1)
...
when compute =>
--pragma recap mult work()
...
when nextIter =>
--pragma recap loopIncr overhead(update)
...
when waitAck =>
--pragma recap waitNext wait_recv(ack, top.out, w1): ack = ‘0’
--pragma recap next recv(ctrl, top.out, w1): ack = ‘1’

(b) HW pragmas

Fig. 4. Examples of user-defined pragmas.

signal is 0 or 1. All categories except for “work,” which has no arguments, accept an
optional first argument representing the “reason” the application is performing the
given operation; we will provide exact details for “reasons” later in this section. Finally,
the communication and wait categories require a target and message ID to be provided
as the second and third arguments, respectively. A target indicates which block(s) the
current block is communicating with or waiting for while a message ID distinguishes
between different communication involving the same blocks.

Figure 4(a) shows several examples of software pragmas for bottleneck detection.
The first pragma is given a unique, user-defined name of “writeX” and is categorized as
a “send.” The reason given is “data,” indicating the following API call is sending data,
as opposed to control messages, to a process block labeled “in” within the “top” VHDL
entity/architecture. Note that targets are given using hierarchical references (such as
is the case here) or using specially named blocks such as $CPU or $MEM. A message
ID of “x1” is also given. Note that the condition indicates this pragma will be active
only when “words” is greater than 0, as presumably the following API call does not
represent communication if 0 words are sent. The second pragma, named “waitResult,”
indicates the following API call is waiting to receive data because of an empty buffer;
the API call is waiting to receive data which will have a message ID of “r1” from the
“top.out” process block.

Figure 4(b) shows several examples of hardware pragmas. The first, named “getX,”
is complementary to the first software pragma. The process block is described to be
receiving data from the CPU with the same message ID. Note that it is possible to
receive multiple message IDs if needed, such as when different threads or different
states within the same thread interact with the same HDL pragma state. The next two
pragmas indicate when the given block is working (e.g., performing some multiplica-
tion) and performing an internal overhead task with the “update” reason (e.g., updating
a loop counter). The last two hardware pragmas demonstrate the use of conditions to
differentiate behavior, even within the same state; in fact, no state machine needs

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 3, Article 30, Publication date: August 2011.

30:12 S. Koehler et al.

Fig. 5. Default “reasons” provided by ReCAP for classifying API calls or HDL branches.

to be present in hardware at all. The pragma named “waitNext” indicates the VHDL
process block is waiting to receive an acknowledgment from another VHDL process
block, “top.out,” when the “ack” signal is low. However, when the “ack” signal is high,
the second pragma, named “next,” is active. This pragma indicates a control message,
the acknowledge, is being received with the given message ID.

Bottlenecks can occur when one or more blocks are working slower than other blocks
they interact with. In order to detect bottlenecks, we monitor time spent in each state
defined by a pragma as well as transitions between these states, thus generating a
Markov model of each block’s behavior. ReCAP employs three constructs in bottleneck
detection: reasons, metrics, and bottleneck rules; the latter two are discussed shortly
and are similar in notion to the rules, metrics, and parameters in Chung et al. [2008]
as well as to other techniques used in knowledge-based bottleneck tools [Jorba et al.
2008; Truong and Fahringer 2002].

Reasons provide an explanation for why an application is performing a given task.
In addition to just indicating that a given block is waiting to receive data, a user
can now specify the block is waiting to receive because of an empty buffer, because
of contention, or both – multiple “reasons” can be provided for a single state. These
“reasons” are user-editable and are closely tied to bottleneck rules discussed soon. For
example, a contention bottleneck can be detected by searching for blocks that could
achieve at least 1.05x speedup if all time spent in states with “contention” as a given
“reason” were eliminated. Figure 5 shows the different “reasons” provided in ReCAP
for each category.

The key concept behind “reasons” is that it is relatively easy for an application
designer, if provided a list of “reasons,” to look at an API call or branch of HDL code
and determine whether it is waiting for an acknowledge, sending control messages,
or updating a loop counter, whereas it is relatively difficult for a tool to ascertain
such high-level information automatically. Conversely, it is possible for a tool, given

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 3, Article 30, Publication date: August 2011.

Platform-Aware Bottleneck Detection for Reconfigurable Computing Applications 30:13

the preceding information for each API call or HDL branch of interest, to analyze the
performance of each block for potential bottlenecks and account for block dependencies,
whereas this task is fairly difficult for an application designer to perform manually.

Metrics are tool-provided measurements of runtime behavior such as duration of
an event, bytes transferred, or bandwidth observed. Metrics can be reported for any
block or overall, can be filtered by any combination of “reasons,” and are generally
used to define bottleneck rules, as discussed shortly. For example, a metric could re-
turn the minimum bandwidth for a software API function that was waiting to send
due to a full buffer or waiting to receive due to an empty buffer, or a metric could re-
turn the total time a hardware block spent communicating or waiting. Metrics can
be hardware- or software-specific, and currently include items such as total time
spent; min/avg/max/total bytes transferred; min/avg/max bandwidth observed; num-
ber of calls, call groups, min/avg/max consecutive calls, and call type for software API
calls; various statistics for microbenchmark data for a given API call, which are useful
for comparing with actual bandwidth achieved; and miscellaneous metrics for com-
puting formulas such as percentages and speedup. Unfortunately, adding, modifying,
or removing metrics requires some detailed tool knowledge, and thus metrics are not
user-customizable, although we have localized where metric information is defined to
facilitate the inclusion of additional metrics.

Since it is desirable to have a more flexible, user-defined metric structure, we have
begun development of a hardware directive framework for adding user-defined hard-
ware modules (with some constraints on port interfaces) that could extend ReCAP’s
measurement capabilities, which we briefly mention here. These directives can be de-
fined in terms of each other, and thus only a limited subset of hardware metrics must
actually be defined in HDL; the remainder are formed by a simple macro syntax that
can compose new metrics from other ones. The hardware subset includes directives
such as conditional constructs (from basic to multicycle pattern-based conditions),
sum, min/max, histogram, and several directives aiding in iteration which generate
arrays of linear or exponential sequences; composite directives include items for cor-
relation, additional multicycle pattern-based conditions, and even computing average
and standard deviation. Software metrics could be similarly defined using C/C++ code
modules.

Bottleneck rules include a description of the bottleneck; the bottleneck condition,
which can be any boolean C/C++ expression, typically employing one or more metrics;
textual suggestions for resolving the bottleneck along with arguments to insert into the
text (given in printf-style format); whether the bottleneck applies to individual blocks or
whether it can be applied to the entire application (or both); any additional metrics the
user may be interested in; and information concerning the original time and new time if
the bottleneck were resolved, which is used for computing speedup. Speedup is used to
filter out bottlenecks that, if remedied, would not improve application performance by
at least the user-defined speedup threshold. Bottleneck rules may be added or modified
by the user through ReCAP’s GUI and are saved along with all “reasons” in a separate
file to facilitate sharing of bottleneck detection strategies in a community; the file
format is currently that used by the standard Java “Properties” class, although other
formats such as XML could also be of use.

ReCAP detects and produces reports concerning bottlenecks at runtime immediately
after the user application has finished executing by testing all applicable bottleneck
rules on all software and hardware blocks and for the application as a whole. We
augmented ReCAP’s SVG-based visualization from Koehler and George [2010] with
warning icons for blocks containing bottlenecks. These icons directly link to an HTML
file containing bottlenecks detected in that block; internal named anchors are used
to jump within a single bottleneck file, and thus all bottlenecks may be reviewed

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 3, Article 30, Publication date: August 2011.

30:14 S. Koehler et al.

Fig. 6. Example of bottleneck detection results, showing inclusion of warning icons to indicate blocks with
bottlenecks and a portion of the detailed bottleneck report.

directly as well. All reported bottlenecks display information concerning the bottleneck
type; potential speedup if the bottleneck were remedied; suggestions for remedying the
bottleneck, which can include specific data from tool metrics; all values of metrics used
to determine whether to display this bottleneck; and any other user-specified met-
rics of interest. Currently, speedup presented is ideal, assuming no other bottlenecks
prevent the application from improving by the given amount; in reality, dependen-
cies amongst blocks could result in considerably less speedup. Our prior performance
exploration work in Koehler and George [2010] dealt directly with this estimation prob-
lem; thus, while not discussed or implemented in this work, integrating performance
exploration would significantly improve the accuracy of speedup estimates. Finally,
platform-specific suggestions and microbenchmark data are also included, the latter of
which is included as a link to an HTML table. Figure 6 shows an example of ReCAP’s
augmented visualization, which contains warning icons for blocks with bottlenecks
detected, as well as the associated bottleneck information.

Although users are free to add or modify “reasons,” “bottleneck rules,” and platform
templates, typical users of ReCAP need only add pragmas to their user source code to
take full advantage of bottleneck detection; Section 5 will present our taxonomy of com-
mon RC bottlenecks and associated “reasons” that are provided by default in ReCAP.
In addition, while we deal with only CPUs or FPGAs here, our block-based approach
could be applicable to a broad class of heterogeneous systems (e.g., GPUs, DSPs, Cell
processors); only the methodology for instrumentation and measurement must change.

As mentioned in the Introduction, our current implementation relies solely on profile
data for bottleneck detection, even though traditional HPC employs trace data for this
purpose; to compensate, ReCAP does provide a number of useful time-dependent profile

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 3, Article 30, Publication date: August 2011.

Platform-Aware Bottleneck Detection for Reconfigurable Computing Applications 30:15

metrics, such as those reporting on consecutive API calls and transitions between
different states in both software and hardware. While ReCAP supports tracing in both
software and hardware, the largest FPGAs currently contain less than 10MB of on-chip
memory; in contrast, a 40-block, 100MHz design generating 64-bit trace records every
10 cycles would require 3.2GB/s. Further, future devices with larger memories are
likely to employ larger applications, which will likely generate larger amounts of trace
data. Thus, reducing the number of trace events along with compressing or otherwise
preprocessing trace data to save storage could be of particular use. Also, unlike with
CPUs, it can be difficult to pause a user application in an FPGA in order to write trace
data to memory; the FPGA may interact with external hardware in a timing-dependent
manner, allowing a pause to miss critical data or become unsynchronized with another
device. If handshaking were required between the FPGA and all external devices,
pausing the user’s application on the FPGA may be a viable method for recording trace
data, albeit by incurring additional runtime overhead.

We finally note that ReCAP does currently employ a memory hierarchy to improve
tracing capabilities; local trace buffers are constructed from on-chip memory and then
fed into a single, per-chip trace collector using either internal or external memory,
the latter of which is connected manually at this time. This approach allows high-
bandwidth recording for small bursts of trace records for each block while providing
storage for larger amounts of trace data. As tracing can provide a wealth of data use-
ful for bottleneck detection, further research into efficient performance-based tracing
methodologies for FPGAs could be of great use.

5. COMMON BOTTLENECKS IN RC APPLICATIONS

In this section we attempt to systematically explore and taxonomize potential RC bot-
tlenecks, drawing upon our experience with RC applications as well as concepts and
techniques from knowledge-based bottleneck detection in traditional HPC. Since an RC
application may contain all the problems of a standard parallel application, traditional
HPC bottleneck detection tools are quite beneficial in tuning the CPU portion of an RC
application, allowing this work to be easily integrated with the significant amount of
literature and tools already present for traditional HPC. In fact, since ReCAP builds
upon PPW, it inherits all of PPW’s software bottleneck analysis capabilities. Thus, we
focus on bottlenecks that may occur due to CPU-FPGA communication and for bottle-
necks within the FPGA, culminating in a taxonomy of potential RC application bottle-
necks that includes detection and optimization strategies for each bottleneck and dove-
tails with traditional HPC knowledge-based bottleneck detection research. Figure 7
provides our taxonomy of possible bottlenecks, which will be discussed for the remain-
der of this section. Note that while this taxonomy contains common bottlenecks that
apply to both software and hardware, these bottlenecks are defined separately in Re-
CAP to permit different detection and optimization strategies for the same bottleneck.

We break our discussion into four general bottleneck categories: communication
(Section 5.1), synchronization (Section 5.2), internal overhead (Section 5.3), and imbal-
ances (Section 5.4). Since a number of bottlenecks that follow are detected simply by
determining if a significant portion of time for a block was spent performing tasks with
an associated reason, where “significant” implies a possible speedup of more than a
user-defined threshold if the problem were remedied, we will only highlight detection
strategies that require additional conditions to be tested.

5.1. Communication Bottlenecks

Bottlenecks may occur during communication between blocks (recall that a block can
be a VHDL process, Verilog always block, or software thread, and thus this includes
communication between CPUs and FPGAs, blocks within an FPGA, and even between

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 3, Article 30, Publication date: August 2011.

30:16 S. Koehler et al.

Polling

Control

Inefficient Transfer

Size / Type

Buffer Full /

Empty

General

Communication

General
Synchronization

Barrier

Acknowledge

Contention

Late Sender /

Receiver

General Internal

Overhead

Init / Finalize
Multiple Init /

Finalize

Update

Delay

Interrupt

Processing

Pipeline

Flush / Stall

Pipeline
Fill / Drain

Non-Overlapped

Transfers

Stage / Load

Imbalance

Legend

Software-only

Hardware-only

General Overhead

Common

Bottlenecks

Stalling

Application

Interface

Fig. 7. Taxonomy of common bottlenecks in an RC system.

FPGAs). If a block spends a significant portion of time communicating with other
blocks, this constitutes a potential general communication bottleneck. However, some
blocks may be solely purposed for communication (especially common in FPGAs); in
hardware, this case could be detected by searching for blocks with no pragmas spec-
ifying the “work” category, although, in software, ReCAP currently considers all time
spent between API calls to be “work,” making such detection more difficult. Sugges-
tions for ameliorating this generic bottleneck include overlapping communication with
other tasks if possible, employing bit-packing or compression, and repartitioning the
algorithm to reduce the data transferred. Note that if more specific communication
bottlenecks are detected in a block, basic bottleneck suggestions will still be displayed,
thus eliminating the need to repeat these suggestions for more specific cases.

Another common scenario in communication is that transfer rates can vary drasti-
cally with transfer size and type depending on the protocols and interconnects used; see
Figure 8 for a subset of transfer sizes and types for an XtremeData XD1000 platform,
a Pentium-4 Xeon system equipped with a Nallatech H101-X accelerator, and a quad-
core Xeon E5520 system equipped with two quad-FPGA GiDEL PROCStar III cards.
Thus, using an inefficient transfer type or size constitutes a potential bottleneck. Re-
CAP currently only detects this bottleneck in software, since hardware communication
is often not packetized and thus incurs no overhead beyond the actual data transfer,
although more complicated protocols could be used in hardware for inter-FPGA com-
munication if the FPGAs were not tightly coupled. For example, Figures 8(a) and 8(b)
demonstrate the potential for large differences between read and write performance,
whereas Figure 8(c) shows how different transfer types may perform better for differ-
ent transfer sizes. Figure 8(b) also shows that nonoverlapped transfers, where multiple
simultaneous transfers can occur via either nonblocking communication or collective

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 3, Article 30, Publication date: August 2011.

Platform-Aware Bottleneck Detection for Reconfigurable Computing Applications 30:17

0

50

100

150

200

250

300

350

400

4 16 64 25
6 1K 4K 16

K
64

K

25
6K 1M 4M 16

M
64

M

Transfer size (B)

T
ra

n
s

fe
r

ra
te

 (
M

B
/s

)

Write to FPGA (DMA) Read from FPGA (DMA)

(a) Nallatech H101-PCIXM

0

200

400

600

800

1000

1200

1400

1600

4K 16
K

64
K

25
6K 1M 4M 8M 64

M
25

6M 1G

Transfer size (B)

T
ra

n
s
fe

r
ra

te
 (

M
B

/s
)

Write to FPGA (blocking) Read from FPGA (blocking)

Write to FPGA (non-blocking) Read from FPGA (non-blocking)

(b) GiDEL PROCStar III

0

100

200

300

400

500

600

700

800

900

1000

8 32 12
8

51
2

2K 8K 32
K

12
8K

51
2K 2M 8M

Transfer size (B)

T
ra

n
s
fe

r
ra

te
 (

M
B

/s
)

Read from FPGA (low-latency) Write to FPGA (low-latency)

Write to FPGA (DMA) Read from FPGA (DMA)

Read/Write to FPGA (DMA)

(c) XtremeData XD1000

Fig. 8. Platform transfer rate versus transfer size across various RC systems and communication types,
demonstrating common communication problems. The nonblocking transfer rate was computed as the sus-
tained cumulative transfer rate of eight concurrent nonblocking transfers.

functions (e.g., broadcast, scatter, gather, reduce), can be a potential bottleneck in RC
applications; this is also true in hardware where it is ideal for a block to perform as
much communication as possible in parallel with other tasks, and thus communication
should be overlapped wherever possible. These phenomena have been well-researched
in non-RC contexts [Alexandrov et al. 1995].

ReCAP detects such bottlenecks by comparing actual bandwidth recorded with
the best microbenchmark bandwidths from the platform template; as mentioned in
Section 3, ReCAP could also automatically perform microbenchmarks or detect perfor-
mance deviations between similar API calls. From this data, ReCAP can make specific
suggestions on the best type to use if transfer size was held constant, the best size to use
if transfer type was held constant, and the best overall size and type to use for the plat-
form. The best size is given as a range of transfer sizes that achieve, for example, 95% of
maximum bandwidth for that transfer type along with a link to microbenchmark data
provided for further investigation. This type of specific suggestion, along with potential
speedups, is just one example of where ReCAP’s suggestions can be useful, even for
expert RC designers. Suggestions for increasing transfer size include unifying differ-
ent transfers together, such as by placing different items consecutively in the memory
map or by embedding control, masking, or address information in the communication
stream; note that an increase in transfer size may necessitate creating or increasing
the size of buffers to handle larger transfers if the data cannot be processed in real

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 3, Article 30, Publication date: August 2011.

30:18 S. Koehler et al.

time4. Transfer size may be decreased simply by breaking a large transfer into pieces,
in which case buffers may be able to be reduced in size to save resources. As an exam-
ple, transfering thirty-two 128KB packets on the Nallatech platform is more efficient
than transfering a single 4MB packet, yielding 360MB/s and 291MB/s, respectively.

Control messages deserve specific mention as these are commonly employed in RC
applications and typically incur significant overhead. ReCAP detects control messages
directly from pragmas that specify communication to be control oriented. One sugges-
tion for addressing control bottlenecks includes moving as much control logic onto the
FPGA as possible. For example, instead of reading from an FPGA register, testing a
value, and then possibly starting some action on the FPGA, the register test can be
moved onto the FPGA. Additional suggestions include employing unused address bits
in a read to carry control information or increasing the size/duration of the work being
controlled (e.g., loop unrolling), thus reducing the amount of control needed.

In software and hardware, it may be possible for both the application and interface
to stall a transfer, such as when no data is available or when another transfer pre-
empts the first transfer, potentially causing a stalling bottleneck on behalf of either the
application or interface. These bottlenecks can be detected in hardware by monitoring
the appropriate signals on the interface port; however, it is rare that an API would
surface such information in software, and stalling could occur in some intermediate
buffer not easily monitored from either software or hardware. These bottlenecks could
be remedied by the addition of buffers to prevent stalling or, in the case of the appli-
cation, by increasing the rate at which the application can accept data, such as via
replication of application components. While a similar suggestion could be made for
improving an API, this is typically not possible for an application designer, who often
does not have the source code for an API available, and thus reducing the application’s
data processing speed is suggested as this is unlikely to affect performance and may
save resources or power.

5.2. Synchronization Bottlenecks

Synchronization bottlenecks indicate a block is waiting on one or more other blocks,
either to transfer data or to reach a certain point in execution before continuing.
If two blocks must communicate synchronously, one block may arrive to its side of
communication later than another, permitting a late sender or late receiver bottle-
neck (common terminology in traditional HPC bottleneck detection). Suggestions for
remedying this situation include performing unrelated computation or communica-
tion while waiting, buffering or double-buffering depending on whether the appli-
cation is streaming-based or block-memory-based, or remedying an imbalance be-
tween blocks either by increasing the efficiency of the slower block or decreasing the
efficiency of faster blocks, the latter of which could reduce power or resources used.
If employing a buffer in the streaming case, ReCAP suggests a transmission size
that is at most half the total buffer size to ensure the buffer can be refilled before
it drains and at least a quarter of the total buffer size to maximize communication
bandwidth.

As buffering is a common technique for addressing synchronization bottlenecks,
additional common bottlenecks include a full buffer or empty buffer bottleneck. ReCAP
suggests an imbalance may exist, as mentioned before, or that burst traffic may be
occurring if the buffer is full and empty often, in which case the buffer size should be
increased to handle larger bursts or the transmission size should be decreased and

4ReCAP’s actual suggestions often contain additional description and examples not included here for brevity,
but which are quite useful for less-experienced RC designers.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 3, Article 30, Publication date: August 2011.

Platform-Aware Bottleneck Detection for Reconfigurable Computing Applications 30:19

the transmission frequency increased to smooth out the bursts, such as by having a
separate thread handle transmission periodically.

Several additional types of synchronization bottlenecks are also handled in ReCAP.
A polling bottleneck can occur when status of another block is repeatedly queried
until some condition is met. In hardware, this situation is extremely common and
is similar to a normal synchronization bottleneck; however, in software, this behavior
is problematic, wasting communication bandwidth and processor time. ReCAP detects
this bottleneck by searching for any API call that is waiting to receive data and is,
on average, executed three or more times consecutively. Suggestions include using
interrupts if supported by the system and API, moving any unrelated tasks between
polling calls, and using a separate thread to perform the poll, potentially adding an
indicator into data returned from the poll, such as “percent done,” to estimate time the
thread should sleep before polling again.

An acknowledge bottleneck can occur when waiting for a block to acknowledge some
event. In this case, ReCAP suggests specutively continuing without the acknowledge
if an acknowledge is expected, storing any checkpoint or state information needed to
restart or retry a task if the acknowledge does not arrive so long as this storage is
not prohibitive in terms of memory requirements. A barrier bottleneck indicates that a
block is waiting for other blocks to reach a given point of execution before continuing.
In this case, decoupling these blocks via buffering may be possible if no feedback or
resource contention exists that would prevent blocks from continuing. For example,
to average the results from several blocks, a running average could be computed or a
buffer could be added to the output of each block, with the average being computed
from the buffer output.

A contention bottleneck detects when blocks are spending a significant time waiting
on a shared resource. There are a number of suggestions for alleviating this type of
bottleneck. One suggestion involves reducing time needed to acquire or release a lock,
usually by adding an arbiter that manages all requests to the shared device. Another
suggestion includes increasing the efficiency or replication of the shared resource itself.
For example, placing a memory in a faster clock domain, such as one that can handle
two transactions per application cycle, can reduce contention. Similarly, replication of
the shared resource may reduce contention as well depending on the coupling required
amongst replicated copies. For example, replicating a memory in hardware or using an
additional memory bank from software permits multiple independent reads to be issued
simultaneously to different copies of memory at the expense of ensuring a write is issued
to all memories for consistency. Additional suggestions include forcing a staggered
ordering to reduce or eliminate locking, increasing (or decreasing) granularity of tasks
performed between lock and release if the cost for locking is high (or low), ensuring
no block holds a shared resource any longer than necessary, ensuring the minimum
locking is performed to still ensure consistency, and finally reducing the efficiency of
other blocks or the number of blocks accessing the shared resource to potentially save
resources with little performance loss.

5.3. Internal Overhead Bottlenecks

A block can spend a significant amount of time performing bookkeeping or other in-
ternal overhead tasks, thus allowing an internal overhead bottleneck to occur. As with
other generic bottlenecks, this bottleneck may be addressed by parallelizing, pipelin-
ing, or otherwise overlapping these tasks with others or by increasing the size/duration
of the work associated with internal overhead so that fewer overhead tasks are per-
formed (e.g., loop unrolling). However, many specific variants of this bottleneck are
also detected. Initialization, finalization, and update bottlenecks occur when signifi-
cant time is spent in a block performing initialization, update, or finalization tasks.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 3, Article 30, Publication date: August 2011.

30:20 S. Koehler et al.

Suggestions include reducing or eliminating this overhead; for example, if a histogram
is to be accumulated in memory and thus needs to be cleared for each new dataset, it
may be possible to instead maintain a bit-vector that indicates which memory locations
have been accessed since the last dataset and thus determine whether to store or add a
given value to the current memory location. A multiple initialization or multiple final-
ization bottleneck indicates that software has not only spent a significant amount of
time configuring or releasing the FPGA, but that software performed this task several
times; this typically indicates several different configuration files have been loaded
during runtime to accelerate different phases of an application. These bottlenecks are
detected by ensuring the API call is of the appropriate type (e.g., configure, release)
and called at least twice. Suggestions for optimization include adding functionality to,
or generalizing functionality in, each configuration file to reduce the number of config-
urations, rescheduling the CPU’s work if the same configuration file is loaded multiple
times so that overhead from reprogramming the same file is reduced, and repartition-
ing the algorithm to minimize the amount of functionality needed by the FPGA, such
as by moving some pre- or postprocessing tasks from the FPGA to the CPU.

An interrupt-processing bottleneck may occur if a block is interrupted too often by
another block. Note that while the physical interrupt is communication, this refers to
interrupt handling, and thus is an internal task. In this case, the number of exceptional
circumstances that cause interrupts should be reduced, such as by increasing precision
to reduce overflow interrupts or by resolving the most common interrupts locally, if pos-
sible. A delay bottleneck occurs when a block must delay for some internal reason, such
as when waiting for an extra-long combinatorial path or internal pipeline, the latter of
which is handled specifically in the pipeline fill/drain and pipeline flush/stall bottle-
necks. Delay bottleneck suggestions focus on reducing the latency causing the delay or
overlapping these latencies with other delays or useful work. Suggestions for address-
ing a pipeline fill/drain bottleneck include filling a pipeline with the next dataset while
still processing or draining the previous dataset. Suggestions for addressing a pipeline
flush/stall bottleneck include decreasing latency or pipeline stages, although this must
be balanced with the effect on the FPGA’s maximum frequency; moving detection of
flush conditions earlier to minimize stages flushed; and having pipelines with a large
number of stalls process data from multiple streams, interleaving independent data
into the pipeline to minimize dependency stalls.

5.4. Imbalance Bottlenecks

An imbalance of computation between two or more related blocks is also considered
a potential bottleneck. A stage imbalance refers to an imbalance where a block de-
pends on other blocks, such as in a pipeline. Optimization of this bottleneck involves
improving the performance of slower blocks, such as through additional stage divi-
sion or replication, or by reducing the performance of faster blocks to potentially save
resources. A load imbalance indicates an imbalance between parallel blocks that re-
ceive data, potentially indirectly, from the same source block, such as is common with
replicated cores. One possible optimization for this bottleneck includes improving the
data distribution scheme. For example, employing a look-ahead round-robin scheme
that determines whether any of the next four or eight blocks are idle, skipping them
all if so, or employing a priority-based selection scheme such as least-recently used can
often improve performance. Additional optimizations include adding input buffers or
changing the replication factor to possibly distribute data more evenly. For example,
simply using a prime replication factor may distribute data more evenly than a heavily
composite replication factor.

ReCAP detects both bottlenecks by searching through the block dependency graph
given by user pragmas to determine where potential bottlenecks are located; a number

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 3, Article 30, Publication date: August 2011.

Platform-Aware Bottleneck Detection for Reconfigurable Computing Applications 30:21

Table I. RC Platforms Employed During Case Studies

Name CPU(s) FPGA(s) API type
Nallatech Pentium 4 Xeon One Virtex 4 LX100 C, simple memory
H101-PCIXM 3.2GHz (PCI-X card)

XtremeData Dual-core Opteron One Stratix II S180 C++, DMA
XD1000 285 2.6GHz (HyperTransport socket)

GiDEL Quad-core Xeon 5520 Four Stratix III E260s C++, simple memory
PROCStar III 2.26GHz (PCIe card)

of metrics are provided that return statistics over these block groups to facilitate such
bottleneck detection. Within the provided suggestions, specific data about the best and
worst performing blocks as well as the average performance of all related blocks are
also given to allow a designer to determine how severe the imbalance is and what
techniques may be best in addressing the bottleneck.

6. CASE STUDIES

To demonstrate the utility of RC bottleneck detection and platform templates, our
extended ReCAP tool was employed on two different applications on a total of three
diverse RC platforms: a time-domain finite impulse response benchmark [Haney et al.
2005] on a GiDEL PROCStar III [GiDEL 2010] and a two-dimensional probability
density function estimator application [Nagarajan et al. 2008] on both a Nallatech
H101-PCIXM card [Nallatech 2010] and an XtremeData XD1000 system [XtremeData
Inc. 2010]. Table I provides details for these RC systems.

6.1. Time-Domain Finite Impulse Response

The Time-Domain Finite Impulse Response (TDFIR) benchmark is part of the HPEC
challenge benchmark suite [Haney et al. 2005] and has been accelerated on GPUs as
well [McGraw-Herdeg et al. 2007]. For an FPGA-accelerated version, we implemented
convolution for real numbers rather than complex; however, for consistency of results,
we report all numbers in GFLOPS, thus accounting for the fact that each basic com-
putation involves only two floating-point operations rather than eight for the complex
versions. This case study was performed on the GiDEL system (Table I) using Quartus
9.1SP2 and GCC 4.4.3 with −O3 optimization; all times given are the average of three
executions. The TDFIR benchmark was able to execute at 125MHz on the FPGA for
both the original and optimized versions, and thus all executions were performed at
this frequency for uniformity of results. All FPGA benchmark execution times include
all data transfer times between the CPU and FPGA as well as any other needed CPU
tasks such as data movement; we only exclude the FPGA initialization/finalization
time, since the configuration file could be preloaded once and then used indefinitely,
such as for streaming large amounts of data through.

Three datasets were used for evaluation, which consisted of random data with the
same kernel size, input size, and iterations (i.e., the number of different subdatasets
with the given kernel and input size that must be computed). Dataset A and B are
the standard datasets given in the HPEC challenge, while dataset C is the largest
dataset from McGraw-Herdeg et al. [2007] (Table II). We compare FPGA results from
a Stratix III E260 to both the Intel Xeon E5520 processor (the host processor in the
GiDEL system) and the results given in McGraw-Herdeg et al. [2007] for an NVIDIA
8800GTX.

Upon executing the FPGA version of TDFIR, two problems were observed. First, the
single-FPGA version was slower than either the CPU or GPU version for the first two
datasets, although the FPGA version did achieve a 9.1x speedup over the CPU and a
3.0x speedup over the GPU on dataset C (Figure 9(a)). Second, when scaling up from

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 3, Article 30, Publication date: August 2011.

30:22 S. Koehler et al.

Table II. Datasets Evaluated for TDFIR Benchmark

Dataset Kernel Size Input Size Iterations
A 12 1024 20
B 128 4096 64
C 4096 32768 128

0

5

10

15

20

25

30

A B C

Data Set

P
e
rf

o
rm

a
n

c
e
 (

G
F

L
O

P
S

)

Xeon E5520 Nvidia 8800GTX

Stratix III E260 (original app) Stratix III E260 (optimized app)

1.65x

speedup

(a) TDFIR performance

1

1.5

2

2.5

3

3.5

4

1 2 3 4
FPGAs

S
p

e
e

d
u

p
 (

U
n

o
p

ti
m

iz
e

d
)

Data Set A Data Set B

Data Set C Linear speedup

(b) original FPGA TDFIR scalability

1

1.5

2

2.5

3

3.5

4

1 2 3 4
FPGAs

S
p

e
e
d

u
p

 (
O

p
ti

m
iz

e
d

)

Data Set A Data Set B

Data Set C Linear speedup

(c) optimized FPGA TDFIR scalability

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4# FPGAs

P
e

rf
o

rm
a

n
c

e
 (

G
F

L
O

P
S

)

Original FPGA version Optimized FPGA version

2.9x
speedup

(d) FPGA TDFIR performance (dataset C)

Fig. 9. TDFIR performance on various devices (including both the original and optimized FPGA performance
after bottleneck detection.

1 to 4 FPGAs, performance scaled poorly, resulting in less than 1.06x speedup for
datasets A and B and less than 2.1x speedup for dataset C, even though no communi-
cation or synchronization was needed between FPGAs; different iterations were simply
scattered to the different FPGAs (Figure 9(b)).

We then employed ReCAP’s automatic bottleneck detection on the FPGA version
of TDFIR, using dataset C for execution. Overhead for obtaining performance data
was acceptable, incurring an additional 5.1% in software time, 1.8% of FPGA logic
resources, 0.8% of FPGA register resources, and a negligible (less than 1%) decrease
in frequency; the benchmark still met the required 125MHz. ReCAP detected several
communication bottlenecks in software including “inefficient communication size and
type” with an ideal speedup of 11.63x; “control overhead” with an ideal speedup of
3.60x; a “late sender” bottleneck for the FPGA, where the CPU is ready to receive
data but the FPGA is late in sending that data, with an ideal speedup of 2.52x; and a
“late sender” bottleneck for the CPU, where the FPGA is ready to receive data but the
CPU is late in sending that data, with an ideal speedup of 1.63x. As mentioned earlier,
the speedup numbers are ideal, and thus our performance exploration framework in
Koehler and George [2010] should be used for more accurate predictions. For example,
while ReCAP suggests earlier that an 11.63x speedup is possible if the associated

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 3, Article 30, Publication date: August 2011.

Platform-Aware Bottleneck Detection for Reconfigurable Computing Applications 30:23

bottleneck is remedied, ReCAP’s visualization shows the FPGA is working 54.1% of
the time when processing dataset C, thus limiting speedup to at most 1/0.541 = 1.85x;
the FPGA is working much less of the time for datasets A and B and thus better
speedup is possible for these cases. Nonetheless, the ideal speedup numbers given are
still useful for providing an upper bound on potential performance improvement as
well as for serving as a severity indicator for a given bottleneck, thus indicating which
bottlenecks should typically be addressed first.

We first chose to address the “inefficient communication size and type” bottleneck.
For one API call, bottleneck detection indicated a 2.52x speedup was possible if the
transfer size were increased to between 32MB and 64MB (or higher for asynchronous
communication) while a 2.39x speedup was possible by switching to low-latency trans-
fers. As changing the transfer size would be more difficult and yet not result in much
additional performance beyond that gained by switching the transfer type, we chose
the latter approach for this API call. However, for several other API calls, solely switch-
ing to a different communication type was not recommended by ReCAP, and thus we
increased the transfer size by a factor of 8 to 10 via buffers and logic to handle batch
transfers5. These changes alone resulted in a 1.47x improvement in performance for
dataset C on one FPGA and a 1.68x performance improvement for 4 FPGAs. However,
with only a 2.4x speedup between the 1- and 4- FPGA versions, scalability was still
low.

We next addressed the “late sender” bottlenecks, which suggested overlapping the
waiting period with other computation or communication, using asynchronous trans-
fers if available, as well as employing double or higher-order buffering. Thus, we over-
lapped communication using asynchronous transfers and quadruple buffering with
three different external memories as well as internal memory, providing an additional
1.12x improvement in performance for dataset C on one FPGA and an additional 1.73x
performance improvement for 4 FPGAs; the 1-FPGA version experienced less perfor-
mance increase due to heavy use of its computational units. As shown in Figure 9(c),
the second optimization resulted in a scalability of over 90% of the ideal (3.61/4.00) for
dataset C and noticeable improvement in scalability for dataset B.

Thus, by employing these two optimizations, performance was improved by 1.65x
for the single-FPGA version and 2.9x for the 4-FPGA version, achieving 27.3 GFLOPS
and 98.9 GFLOPS on dataset C, respectively. The 4-FPGA version achieved a total of
54.4x speedup over the software baseline. Final performance for each dataset is shown
as black bars in Figure 9(a) and with circle markers in Figure 9(d). Further, the single
FPGA version now performed 1.15x better than the CPU on dataset B, whereas the
original version had performed 6.7 times slower than the CPU. While performance on
dataset A was increased by 5.7x, the FPGA continued to perform poorly due to commu-
nication overhead; the Nvidia 8800GTX experienced a similar, albeit less pronounced,
effect for this dataset, as seen in Figure 9(a). Further improvements suggested by
ReCAP, such as moving a memory clear operation from software into FPGA logic,
would likely achieve some additional speedup, although the FPGA cores were observed
to be working 68.7% of the time in the 4-FPGA version, limiting the amount of fur-
ther speedup possible without employing additional resources or a better algorithm.
It is noteworthy that given the reported bottlenecks and optimization suggestions,
actual optimizations were made within two days, resulting in higher performance as

5ReCAP suggested increasing the transfer size much further for optimal transmission, which was infeasible
due to memory limitations. Thus, we manually determined a balance between significantly better bandwidth
from the microbenchmark table, memory overhead, and achieving even divisibility into the number of
iterations for each dataset; the last requirement resulted in a batch size of 10 for dataset A since 8 does not
divide evenly into the stipulated 20 iterations for that dataset.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 3, Article 30, Publication date: August 2011.

30:24 S. Koehler et al.

0

5

10

15

20

25

30

35

40

45

50

2 4 6 8 10 12 14 16 18 20

Number of FPGA Cores

S
p

e
e

d
u

p
 o

v
e

r
C

P
U

Original

Optimized

11.4x

speedup

Fig. 10. Speedup of initial and improved versions of the 2DPDF application when compared to a CPU
baseline.

well as improved productivity compared to manual, ad hoc bottleneck location and
optimization.

6.2. Two-Dimensional Probability Density Function Estimation

The two-dimensional Probability Density Function (2DPDF) estimation application
is used in various engineering, financial, and scientific fields where nonparametric
probabilistic approaches are required; the application is computationally intensive,
involving O(m× n2) operations where m is the number of sample points and n is the
number of bins per dimension. Our implementation uses the Parzen-window algorithm
and a fixed-point format ([18,9] external precision, [48,18] internal precision, given in
[total, fractional] format) [Nagarajan et al. 2008].

Our experimental setup consisted of the Nallatech system (Table I), using GCC 4.4.3
and Xilinx ISE 11.5 to compile all C and VHDL files, respectively. A software base-
line was written in C using only integer arithmetic to better compare to the FPGA’s
fixed-point format, as the CPU’s floating-point version was slower. This baseline was
compiled with −O3 optimization and executed on the attached Pentium 4 Xeon 3.2GHz
processor; all execution times were computed from the average of 3 executions. The
2DPDF application was capable of operation at 100MHz or higher for all design vari-
ants, and thus 100MHz was used for uniformity of performance results. Similar to the
convolution case study, all FPGA application execution times include all data transfer
times between the CPU and FPGA as well as any other needed CPU tasks such as data
movement; we only exclude the FPGA initialization/finalization time, since the config-
uration file could be preloaded once and then used indefinitely, such as for streaming
large amounts of data through.

Initially, we attempted to gain speedup by extending the 2DPDF application to a mul-
ticore design within the FPGA. Figure 10 shows the initial execution times for several
multicore variants (circle markers). While our software baseline required 250.5 sec-
onds to process 1,024,000 points, the 20-core FPGA design required only 64.5 seconds
for the same dataset, resulting in a 3.9x speedup. However, Figure 10 demonstrates
that these additional cores provided diminishing performance improvements.

We then employed ReCAP’s automatic bottleneck detection on the 20-core design.
Overhead for obtaining performance data was acceptable, incurring an additional
14.2% in software time due to millions of API calls during execution, 4.3% of FPGA
logic resources, 2.3% of FPGA register resources, and a maximum 2.2% decrease in
frequency. ReCAP identified a number of potential bottlenecks including a “CPU late
sender” bottleneck with ideal 16.21x speedup, a “control” overhead bottleneck with

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 3, Article 30, Publication date: August 2011.

Platform-Aware Bottleneck Detection for Reconfigurable Computing Applications 30:25

ideal 1.55x speedup, an “inefficient communication size/type” bottleneck with ideal
9.83x speedup, a “control” overhead bottleneck with ideal 1.38x speedup, and an “FPGA
late sender” bottleneck with ideal 1.32x speedup. Specifically, bottlenecks were also de-
tected in five of the twelve individual API calls in software involving clearing memory,
starting and stopping cores, checking to see if cores were complete, and reading the
output; each API call’s potential speedup ranged from 1.15x to 1.34x. The generic “all
overhead” bottleneck on the FPGA indicated that, if the FPGA were fully utilized, a
possible 16.81x speedup could be achieved.

Based on the optimizations suggested earlier, we focused on consolidating the large
number of small transfers performed and on moving control logic onto the FPGA.
Specifically, several input buffers were increased in size from 2KB to 32KB, the mini-
mum ideal transfer size suggested by ReCAP; output buffers were placed consecutively
in the memory map, permitting a single larger read rather than several smaller reads;
register data was consolidated to reduce the amount of data polled; and control logic
was moved onto the FPGA, performing tasks such as automatically clearing intermedi-
ate FPGA buffers when receiving new data rather than relying on software to manually
control this process.

Speedup for the improved 2DPDF application increased from 3.9x to 44.4x when
compared with the software baseline, resulting in an 11.4x performance improvement
between the unoptimized and optimized versions (square markers in Figure 10) and
demonstrating far more linear speedup with respect to the number of cores employed.
Interestingly, we also discovered that the new version incurred slightly less rounding
error since FPGA data is rounded when transferred to the CPU and fewer transfers
were employed in the optimized version, although the error incurred by the origi-
nal version was deemed acceptable. Again, it is noteworthy that given the reported
bottlenecks and optimization suggestions, actual optimizations were made within a
day, resulting in a significant performance increase as well as improved productivity
compared to manual approaches for bottleneck detection and optimization.

As a final attempt to improve performance, we ported the optimized 2DPDF appli-
cation to the XD1000 platform (Table I), which allowed us to increase computational
resources by a factor of 2.4x. Software and hardware were compiled with GCC 4.3.2
with -O3 optimization and Quartus 9.1SP2, respectively. We obtained an additional
2.5x speedup over the Nallatech implementation; note that a speedup greater than
2.4x is possible due to faster transfers afforded by the HyperTransport interconnect on
the XD1000. We used ReCAP’s automatic bottleneck detection on the ported applica-
tion, incurring an additional 5.2% of software runtime overhead, 4.7% of FPGA logic
resources, 1.8% of FPGA register resources, and a 15.3% frequency degradation, which
resulted from the application filling 87% of the device before instrumentation, and thus
92% of the device after instrumentation; the 100MHz requirement was still met by the
instrumented version.

ReCAP’s bottleneck detection returned several potential bottlenecks, but the ideal
speedups were much lower than in the previous cases. For example, in software, all
speedups were less than 4.2x; in hardware the cores showed speedup potential of at
most 1.31x, with a stage imbalance bottleneck as the exception. While this stage imbal-
ance bottleneck showed a potential of up to 5.5x speedup, the stage imbalance it referred
to involved a basic distribution core that performs very little communication and no
work; with the integration of the aforementioned performance exploration framework,
such false positives could be significantly reduced. Thus, given lackluster performance
improvements predicted, we chose not to optimize further, although there are scenarios
where a user may believe the potential speedup warrants additional effort, such as if
the application must be executed many times or if runtime were significantly longer.
This result underscores an often overlooked benefit of bottleneck detection; bottleneck

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 3, Article 30, Publication date: August 2011.

30:26 S. Koehler et al.

Table III. 2DPDF Results for Both the Nallatech and XD1000
Platforms

Application Version Runtime (s) Speedup
Pentium 4 Xeon CPU 250.515 1.0
Nallatech (FPGA original) 64.506 3.9
Nallatech (FPGA optimized) 5.648 44.4
XD1000 (FPGA) 2.218 112.9

Speedup is given with respect to the software baseline exe-
cuted on a Pentium 4 Xeon 3.2GHz CPU.

detection can often be as useful in indicating what not to optimize as it is in what to
optimize. Table III gives execution times for the 2DPDF application on both platforms,
showing that the XD1000 version achieved a 112.9x speedup over the original Pentium
4 Xeon 3.2GHz software baseline.

7. CONCLUSIONS

In this article, we proposed what we believe to be the first automatic bottleneck de-
tection framework and tool for RC applications, including a framework for platform
templates that permits more accurate, platform-aware bottleneck detection as well as
tool portability across diverse RC systems. These templates are easily created by end-
users, typically in a few hours provided the platform fits within the generic platform-
template model. In addition, we formulated what we believe to be the first taxonomy
of common bottlenecks for RC applications, along with associated detection and op-
timization strategies for each of these bottlenecks, to populate ReCAP’s knowledge
base for bottleneck detection. Our bottleneck knowledge base is extensible, providing
for user detection of bottlenecks not envisioned by the authors. The knowledge-based
bottleneck detection framework and platform-template system were implemented by
extending our Reconfigurable Computing Application Performance (ReCAP) tool, pro-
viding users with a full-featured RC performance analysis tool for diverse RC systems
that can significantly accelerate the optimization process.

We then demonstrated bottleneck detection in ReCAP via two case studies involving a
Time-Domain Finite Impulse Response (TDFIR) benchmark from the HPEC challenge
and a two-dimensional Probability Density Function (2DPDF) estimation application
on a total of three diverse platforms. ReCAP reported a number of bottleneck types
discovered in both software and hardware along with optimization suggestions and
potential speedup for each bottleneck type. Several of these optimization suggestions
were employed to achieve an additional 2.9x speedup for TDFIR, resulting in a total
54.4x speedup over the CPU baseline, and an additional 11.4x speedup for 2DPDF
estimation, resulting in a 44.4x speedup over the CPU baseline. We ported 2DPDF
to the XD1000 platform, which provided an additional 2.5x speedup due to increased
computational resources. Based on lackluster potential speedup reported by bottle-
neck detection, we did not further optimize the application, resulting in a total 112.9x
speedup over the Pentium 4 Xeon 3.2GHz CPU baseline.

Future work includes the implementation and integration of our performance explo-
ration framework (detailed in Koehler and George [2010]) to provide better predictions
for expected speedup if a bottleneck were addressed; the expansion of our metric frame-
work to allow users the ability to define their own metrics; research into the inclusion
of trace-based analyses for RC bottleneck detection; the extension of our platform-
template system to handle memory and other external resources to the FPGA besides
the currently supported communication port to the CPU; and completion of support
for Verilog-based applications. Finally, similar research is also needed in bottleneck
detection for RC applications that use HLLs to describe hardware (commonly referred

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 3, Article 30, Publication date: August 2011.

Platform-Aware Bottleneck Detection for Reconfigurable Computing Applications 30:27

to as High-Level Synthesis, or HLS), as these languages are increasing in importance
and popularity.

ACKNOWLEDGMENTS

The authors gratefully acknowledge Dr. Karthik Nagarajan for the initial implementation of the 2D-PDF
estimator application.

REFERENCES

AGGARWAL, V., GARCIA, R., STITT, G., GEORGE, A., AND LAM, H. 2009. SCF: A device- and language-independent
task coordination framework for reconfigurable, heterogeneous systems. In Proceedings of the 3rd In-
ternational Workshop on High-Performance Reconfigurable Computing Technology and Applications
(HPRCTA’09). ACM, New York, 19–28.

ALEXANDROV, A., IONESCU, M. F., SCHAUSER, K. E., AND SCHEIMAN, C. 1995. LogGP: Incorporating long messages
into the logp model—One step closer towards a realistic model for parallel computation. In Proceedings
of the 7th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA’95). ACM, New
York, 95–105.

BARROSO, L. A. 2005. The price of performance. Queue 3, 7, 48–53.
BODENNER, R. 2010. Creating platform support packages. http://www.impulseaccelerated.com/AppNotes/

APP109 PSP/IATAPP109 PSP.pdf.
CHAMBERLAIN, R., FRANKLIN, M., TYSON, E., BUCKLEY, J., BUHLER, J., GALLOWAY, G., GAYEN, S., HALL, M., SHANDS,

E., AND SINGLA, N. 2010. Auto-Pipe: Streaming applications on architecturally diverse systems. Com-
put. 43, 3, 42–49.

CHE, S., LI, J., SHEAFFER, J. W., SKADRON, K., AND LACH, J. 2008. Accelerating compute-intensive applications
with GPUs and FPGAs. In Proceedings of the Symposium on Application Specific Processors (SASP’08).
IEEE Computer Society, Los Alamitos, CA, 101–107.

CHUNG, I.-H., CONG, G., KLEPACKI, D., SBARAGLIA, S., SEELAM, S., AND WEN, H.-F. 2008. A framework for automated
performance bottleneck detection. In Proceedings of the IEEE International Symposium on Parallel and
Distributed Processing (IPDPS’08). 1 –7.

CRAWFORD, C. H., HENNING, P., KISTLER, M., AND WRIGHT, C. 2008. Accelerating computing with the cell broad-
band engine processor. In Proceedings of the Conference on Computing Frontiers. ACM, New York, 3–12.

CRAY. 2010. Cray XD1 datasheet. http://www.hpc.unm.edu/%7Etlthomas/buildout/Cray XD1 Datasheet.pdf.
CURRERI, J., KOEHLER, S., GEORGE, A. D., HOLLAND, B., AND GARCIA, R. 2010. Performance analysis framework for

high-level language applications in reconfigurable computing. ACM Trans. Reconfig. Technol. Syst. 3, 1,
1–23.

DEHON, A., ADAMS, J., DELORIMIER, M., KAPRE, N., MATSUDA, Y., NAEIMI, H., VANIER, M., AND WRIGHTON, M.
2004. Design patterns for reconfigurable computing. In Proceedings of the IEEE Symposium on Field-
Programmable Custom Computing Machines. 13–23.

GARCIA, P., COMPTON, K., SCHULTE, M., BLEM, E., AND FU, W. 2006. An overview of reconfigurable hardware in
embedded systems. EURASIP J. Embed. Syst. 1, 13–13.

GIDEL. 2010. GiDEL PROCStar III PCIe x8TM computation accelerator. http://www.gidel.com/pdf/
PROCStarIII%20Product%20Brief.pdf.

HANEY, R., MEUSE, T., KEPNER, J., AND LEBAK, J. 2005. The HPEC challenge benchmark suite. In Proceedings
of the 9th Annual High-Performance Embedded Computing Workshop (HPEC’05).

JORBA, J., MARGALEF, T., AND LUQUE, E. 2008. Applied Parallel Computing. State of the Art in Scientific Com-
puting. Springer (Chapter Search of Performance Inefficiencies in Message Passing Applications with
KappaPI 2 Tool), 409–419.

KOEHLER, S., CURRERI, J., AND GEORGE, A. D. 2008. Performance analysis challenges and framework for high-
performance reconfigurable computing. Parall. Comput. 34, 4-5, 217–230.

KOEHLER, S. AND GEORGE, A. D. 2010. Performance visualization and exploration for reconfigurable computing
applications. In Proceedings of the International Conference on Engineering of Reconfigurable Systems
and Algorithms (ERSA).

LAUDON, J. 2005. Performance/watt: the new server focus. SIGARCH Comput. Archit. News 33, 4, 5–13.
MCGRAW-HERDEG, M. P., ENRIGHT, D. P., AND MICHEL, B. S. 2007. Benchmarking the NVIDIA 8800GTX with

the CUDA development platform. In Proceedings of the 11th Annual High-Performance Embedded Com-
puting Workshop (HPEC’07).

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 3, Article 30, Publication date: August 2011.

30:28 S. Koehler et al.

MOHR, B. AND WOLF, F. 2003. Euro-Par 2003 Parallel Processing. Springer (Chapter KOJAK A Tool Set for
Automatic Performance Analysis of Parallel Programs.) 1301–1304.

NAGARAJAN, K., HOLLAND, B., SLATTON, C., AND GEORGE, A. D. 2008. Scalable and portable architecture for prob-
ability density function estimation on FPGAs. In Proceedings of the 16th International Symposium on
Field-Programmable Custom Computing Machines (FCCM’08). IEEE Computer Society, Los Alamitos,
CA, 302–303.

NALLATECH. 2010. H101-PCIXM PCI-X FPGA accelerator card. http://www.nallatech.com/PCI-Express-
Cards/h101-pcixm.html.

OPENFPGA. 2010. OpenFPGA GenAPI version 0.4 draft for comment. http://www.openfpga.org/
Standards%20Documents/OpenFPGA-GenAPIv0.4.pdf.

SU, H.-H., BILLINGSLEY III, M., AND GEORGE, A. D. 2011. Parallel performance wizard: A performance system
for the analysis of partitioned global-address-space applications. Int. J. High-Perform. Comput. Appl. in
press.

SU, H.-H., BILLINGSLEY III, M., AND GEORGE, A. D. 2009. A distributed, programming model-independent
automatic analysis system for parallel applications. In Proceedings of the 14th IEEE International
Workshop on High-Level Parallel Programming Models and Supportive Environments (HIPS) of IPDPS.

TESSIER, R. AND BURLESON, W. 2001. Reconfigurable computing for digital signal processing: A survey. The J.
VLSI Signal Process. 28, 7–27.

TRIPP, J. L., MORTVEIT, H. S., HANSSON, A. A., AND GOKHALE, M. 2005. Metropolitan road traffic simulation on
FPGAs. In Proceedings of the 13th Annual IEEE Symposium on Field-Programmable Custom Computing
Machines (FCCM’05). IEEE Computer Society, Washington, DC, 117–126.

TRUONG, H.-L. AND FAHRINGER, T. 2002. SCALEA: A performance analysis tool for distributed and parallel
programs. In Proceedings of the 8th International Europar Conference(EuroPar02). Springer, 41–55.

UNIVERSITY OF CALIFORNIA AT RIVERSIDE. 2010. ROCCC 2.0 user’s manual—Revision 0.5.1.
http://roccc.cs.ucr.edu/documentation/files/UserManual-0.5.1.pdf.

WILLIAMS, J., GEORGE, A. D., RICHARDSON, J., GOSRANI, K., MASSIE, C., AND LAM, H. 2011. Characterization of
fixed and reconfigurable multi-core devices for application acceleration. ACM Trans. Reconfig. Technol.
Syst. 3, 4, to appear.

WILLIAMS, J., GEORGE, A. D., RICHARDSON, J., GOSRANI, K., AND SURESH, S. 2008. Computational density of fixed
and reconfigurable multi-core devices for application acceleration. In Proceedings of the Reconfigurable
Systems Summer Institute (RSSI).

XTREMEDATA INC. 2010. XD1000TM development system. http://old.xtremedatainc.com/index.php?option=
com content&view=article& id=109&Itemid=170.

Received August 2010; accepted January 2011

ACM Transactions on Reconfigurable Technology and Systems, Vol. 4, No. 3, Article 30, Publication date: August 2011.

