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Abstract— In order to improve their performance-per-watt 
capabilities over general-purpose architectures, FPGAs are 
commonly employed to accelerate applications. With the 
exponential growth of available data, machine-learning apps 
have generated greater interest in order to more 
comprehensively understand that data and increase 
autonomous processing. As FPGAs become more readily 
available on cloud services like Amazon Web Services F1 
platform, it is worth studying the performance of accelerating 
machine-learning apps on FPGAs over traditional fixed-logic 
devices, like CPUs and GPUs. FPGA frameworks for 
accelerating convolutional neural networks (CNN), which are 
used in many machine-learning apps, have begun to emerge for 
accelerated-application development. This research aims to 
compare the performance of these forthcoming frameworks on 
two commonly used CNNs, GoogLeNet and AlexNet. 
Specifically, handwritten Chinese character recognition is 
benchmarked across multiple FPGA frameworks on Xilinx and 
Intel FPGAs and compared against multiple CPU and GPU 
architectures featured on AWS, Google’s Cloud platform, the 
University of Pittsburgh’s Center for Research Computing 
(CRC), and Intel’s vLab Academic Cluster. All NVIDIA GPUs 
have proven to have the best performance over every other 
device in this study. The Zebra framework available for Xilinx 
FPGAs showed to have an average 8.3 times and 9.3 times 
performance and efficiency improvement, respectively, over the 
OpenVINO framework available for Intel FPGAs. Although the 
Zebra framework on the Xilinx VU9P showed greater efficiency 
than the Pascal-based GPUs, the NVIDIA Tesla V100 proved to 
be the most efficient device at 125.9 and 47.2 images-per-second-
per-Watt for AlexNet and GoogLeNet, respectively. Although 
currently lacking, FPGA frameworks and devices have the 
potential to compete with GPUs in terms of performance and 
efficiency. 
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I. INTRODUCTION 
The explosive growth of available data for training 

machine-learning models has driven a heavier focus on the 
development of artificial-intelligence apps. This growth in 
data requires faster, more efficient, and more intelligent 
processing. Machine-learning apps for image processing often 
use convolutional neural networks (CNNs) in their models for 
processing new, unclassified data autonomously. CNNs are 
attractive for these types of applications because they require 
minimal preprocessing in comparison to other methods in 
order to extract image features [1]. The goal of CNNs is to 
extract features from the input images, which is necessary in 
order to have a common representation of images associated 

with a class. An image feature is a measurable property of an 
image, such as outlines of shapes and patterns among sets of 
images. The CNN is trained to recognize these features and 
associate the same patterns to similar classes of images. The 
features should be unique between classes and common within 
a class, so the CNN can make clear inferences. The parallel 
nature of CNNs, consisting of convolutions and matrix 
multiplications, make them highly amenable for GPU and 
FPGA acceleration. 

Traditional acceleration of CNNs on FPGAs has been 
performed by implementing a specific neural-network 
processor in hardware [2] [3] [4] [5]. This process can lead to 
lengthy design times and limited flexibility when the model or 
application domain is changed. Frameworks for accelerating 
CNNs on FPGAs for use with machine-learning frameworks, 
like Caffe and MxNet, are being developed to address these 
issues. The same apps that use GPUs for acceleration can 
leverage these frameworks to use FPGAs instead, with limited 
configuration of the FPGA required. 

Limited research has been presented on studying these 
FPGA frameworks for accelerating CNNs.  It is important to 
understand the performance of these emerging frameworks to 
optimally use FPGAs in machine-learning app acceleration. 
While other architectures, like GPUs, are also popular for 
accelerating machine-learning apps, it is beneficial to compare  
the performance of these FPGA frameworks to GPU and 
fixed-logic devices, for example, to investigate reductions in 
energy consumption. Many different toolkits and frameworks 
exist to leverage Intel and Xilinx devices in different ways. It 
is challenging, yet important, to be able to compare different 
frameworks on different architectures.   

In this research, we evaluate and compare current 
architectures and frameworks for CNN acceleration on 
various FPGAs, GPUs, and CPUs with a case study in Chinese 
character recognition. This evaluation will aid in the 
understanding of the relative performance in terms of 
throughput and efficiency of many different acceleration 
platforms. As focus begins to shift from machine-learning 
training to inferencing, it is important to understand the 
architectures and frameworks to best accelerate machine-
learning inferencing apps and effectively design high-
performance computing (HPC) systems oriented to machine 
learning. 

II. BACKGROUND 
Many different concepts, tools, frameworks, and devices 

are used in this study to understand the current HPC machine-
learning inferencing domain. This section aims to explain all 
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the components necessary for the app acceleration on 
different architectures, frameworks, and platforms. 

A. Machine-Learning Inference  
With the trained network, inferencing can be performed on 

new data. For more information, the reader is referred to [6], 
[7], [8], [9], [10], [11], [12], [13].  

B. Caffe Machine-Learning Framework 
Caffe is an open-source framework for developing 

machine-learning apps. In this research, we use Caffe because 
the CNN acceleration frameworks for FPGAs currently only 
fully support Caffe models [14] [15] [16]. For more 
information, the reader is referred to [17]. 

C. Field-Programmable Gate Arrays (FPGAs) 
Unlike fixed-logic devices such as CPUs and GPUs, 

FPGAs are reconfigurable-logic devices. FPGAs are capable 
of realizing dedicated data-paths that map to application 
functions, resulting in more efficient processing compared to 
fixed-logic devices. These custom data-paths often give 
FPGAs an advantage over fixed-logic devices in terms of 
performance-per-watt. Many different data-paths can be 
instantiated onto the FPGA in parallel, which makes these 
devices amenable for accelerating CNN-based apps. Although 
the data-paths on FPGAs are typically longer than fixed-logic 
devices, the energy-efficiency comes from the parallelism in 
the design [8]. 

D. Xilinx Framework for Deep Neural Networks (xfDNN) 
The xfDNN v2 framework, also referred to as xDNN, aims 

to accelerate CNNs on Xilinx FPGAs. The framework has 
support for custom neural networks, which has allowed for 
more general usage of the framework [14]. Xilinx provides a 
compiler tool which maps layers of the CNN being used in an 
application to xfDNN for proper acceleration. This 
compilation is one of the few extra steps required for 
accelerating an application with xfDNN. The xfDNN 
framework has multiple configuration profiles. The two main 
profiles are the 4×28×32 and 2×56×32 configurations. The 
difference between these configurations is the number of 
processing elements (PE) being used. A processing element is 
the main computational unit of xfDNN. There are 4 and 2 
processing elements in the 4×28×32 and 2×56×32 
configurations, respectively. The labels 28×32 and 56×32 
signify the DSP array configuration used for each PE. The 
differences between the two designs are that the 56×32-
labeled core can process higher-resolution images at a lower 
latency, whereas the 28×32-labeled core is designed for 
maximum throughput [18]. Caffe is used on the CPU side of 
the application, which then makes reference to xfDNN for 
FPGA acceleration. There is no source provided for xfDNN, 
only a precompiled binary. 

E. Mipsology Zebra 
Zebra is a closed-source framework for Xilinx FPGAs 

which was developed by Mipsology. Mipsology claims that 
Zebra can take any existing Caffe application for CPUs and 
GPUs and execute it using the Zebra runtime on Xilinx 
FPGAs [15]. This portability is an attractive feature when 
trying to port existing applications to different device 
architectures quickly. Similar to xfDNN, Zebra can be 
configured with a different number of “cores.” No 
documentation exists for the usage or details of the cores, but 
the default is set to six cores. Additionally, like xfDNN, the 

main application makes calls to the Caffe API which then 
references the Zebra framework. 

F. Graphics Processing Units (GPUs) 
GPUs have been widely used in machine-learning apps for 

their highly parallel nature. GPUs are typically comprised of 
thousands of lightweight cores which allow for acceleration of 
massively-parallel math operations, similar to those found in 
CNNs. The Volta architecture featured in the 12-nm Tesla 
V100 was designed with machine-learning apps in mind. The 
convolutional layers in CNNs are computed through matrix 
multiplication and accumulation operations. The Volta 
architecture on the V100 contains over 600 “Tensor cores” 
that each perform four-by-four, half-precision matrix 
multiplication and full-precision accumulation in a single 
clock cycle. These Tensor cores give the Volta architecture a 
significant advantage in machine-learning apps versus 
previous GPU architectures [19]. To leverage GPU-specific 
hardware, like Volta Tensor cores, a fork of Caffe has been 
developed by NVIDIA known as NVCaffe. For more 
information, the reader is referred to [20]. 

G. Many-Core CPUs 
With the intention of being clusters-on-chip, it is important 

to include many-core CPUs in this comparison to understand 
their increasingly parallel performance in the machine-
learning domain against other HPC devices. For more 
information on the devices in this study, the reader is referred 
to [21], [22], [23], [24], [25]. 

H. Intel Machine-Learning Software 
Intel also develops different tools to optimally leverage 

their different devices and architectures for machine-learning 
apps. The first is a fork of Caffe known as Intel-Optimized 
Caffe or Caffe*. For more information, the reader is referred 
to [26]. 

The OpenVINO toolkit from Intel provides another 
method for accelerating machine-learning apps on Intel CPUs, 
GPUs, FPGAs, and other accelerators. For more information, 
the reader is referred to [27]. 

I. Handwritten Chinese Character Recognition (HCCR) 
In order to test the FPGA frameworks fully, the machine-

learning app must be challenging enough to require a deep 
network with many layers. The ImageNet Large Scale Visual 
Recognition Challenge (ILSVRC) is a competition in which 
neural networks classify images from typically 200 categories. 
This competition poses as a standard benchmark for stressing 
neural-network performance. There is a demand to understand 
the performance of optical character recognition on FPGAs, 
so classifying Chinese characters from thousands of different 
classes could potentially be as challenging as ILSVRC. 
Specifically, the Institute of Automation of Chinese Academy 
of Sciences has a handwritten database of 7653 different 
Chinese characters [28]. Classifying images from 7653 
distinct classes is a difficult task that requires large neural 
networks in order to accurately extract distinct, relevant 
features from the handwritten images. 

J. Caffe-Accelerator Model 
Many of the frameworks and devices serve similar roles in 

the acceleration of the HCCR app. Figure 1 visualizes the 
acceleration model between Caffe, accelerators, frameworks, 
CNN models, and data. The Caffe forks, such as NVCaffe and 
Intel Caffe*, can be substituted for Caffe on the CPU in this 



model. OpenVINO is the only instance where the framework 
is the same for both CPU and accelerator combination. In the 
case of Intel Caffe*, the Intel MKL is used for accelerating the 
application on the CPU itself, so no offloading occurs. In 
Figure 1, the underlined values are used in this research and 
nonunderlined values show other common examples. 

 

III. RELATED WORK 
Previous work has informed this research by exploring 

complex classification problems such as HCCR. In order to 
fully understand the capabilities of the frameworks in this 
study, it is important to stress them in many ways. While the 
developers of the acceleration frameworks claim strong 
performance on well-known CNN models like AlexNet and 
GoogLeNet, it is important to understand how these 
frameworks perform with custom CNNs. Using custom CNNs 
will remove optimizations the frameworks have for specific 
CNNs. Previous work has shown that AlexNet and a variant 
of GoogLeNet can be used to perform high-performance, 
online, handwritten Chinese character recognition at high 
accuracies [29] [6]. These DCNN models demand high-
performance from the frameworks which stress their 
capabilities. The custom variant of GoogLeNet was developed 
because the full depth of GoogLeNet is not required for the 
HCCR application [6]. This variant uses 14 layers as opposed 
to the 22 layers in the standard version.  

For more information on previous work accelerating 
CNNs on FPGAs, the reader is referred to [2], [3], [4], [5], 
[30].  

IV. METHODOLOGY 
The main focus of this research is to benchmark existing 

frameworks for accelerating CNNs on FPGAs, GPUs, and 
CPUs for a performance comparison of the architectures on 
machine-learning apps. Two different versions of the same 
HCCR app are used. The first is a C++ app that loads bitmap 
image files from a directory and uses the Caffe API to classify 
the images in batched mode, evaluating a specific number of 
images at each execution step. The second C++ app is similar 
to the first, except that it uses the OpenVINO API in order to 
classify the batched images. In each case, the app is executed 
using batch sizes of 1, 2, 4, 8, 16, 32, 64, 96, 128, 256, 512, 
1024, and 2048 where applicable. For the OpenVINO results, 
batch sizes are limited to 8 for the general variant and 96 for 
the optimized variants. The app classifies 252,545 images 
which are a subset of the CASIA database. The app runs 50 
iterations of classifications on the entire dataset before 
averaging the resulting performance. Previous research has 
been done on this application by [6] and [29]. They showed 

that variants of GoogLeNet and AlexNet can be used to 
accurately classify handwritten Chinese characters. In order to 
fairly evaluate the frameworks and platforms, 16-bit 
operations were used for inferencing using the same 
handwritten database, CNNs, and pretrained models as the 
previous work. The OpenVINO toolkit does not support 16-
bit operations with the CPU plugin, resulting in the 
OpenVINO Xeon CPU operations being 32-bit. Additionally, 
the GTX 1080 Ti upgrades FP16 operation to FP32, so the 
results for this device also use 32-bit, floating-point precision 
[31]. 

A. Xilinx FPGA Acceleration 
The Xilinx FPGA studied is the Xilinx Virtex UltraScale+ 

(XCVU9P). Two frameworks, xfDNN and Zebra, will be 
evaluated on this device using the Caffe-based app on AWS. 
The specific xfDNN version is using the 4×28 PEs, and Zebra 
is configured using six soft cores. The Zebra configuration 
was left unchanged as recommended by the documentation. 
First, the xfDNN compiler is run using both AlexNet and 
GoogLeNet, which creates the resulting JSON files for proper 
network-specific acceleration on the xfDNN platform. Next, 
the xfDNN quantizer is run to create additional JSON files 
that specify scaling factors for the layers within each 
corresponding CNN to calculate the network using 16-bit 
operations. The xfDNN binary is loaded onto the Xilinx 
FPGA on AWS. Next, the Caffe-based app then loads the 
xfDNN library with the proper compiler and quantizer JSON 
files to accelerate inferencing on the xfDNN platform. When 
running the same app using the Zebra framework, no 
additional compiler or quantizer is required to generate 
additional files. Similar to xfDNN, the Zebra binary is loaded 
onto the Xilinx FPGA on AWS. Additionally, like xfDNN, 
the Caffe-based app loads the Zebra library and accelerates 
inferencing on the Zebra platform. 

B. Intel FPGA Acceleration 
The Intel FPGA studied resides on the Programmable 

Acceleration Card (PAC), which features an Arria 10 GX 
(10AX115N). The OpenVINO toolkit is used on the Intel 
FPGA on the Intel vLab cluster because Intel-based Caffe 
support does not exist for Intel FPGAs. In order to run the 
OpenVINO-based app, the CNNs are given to the OpenVINO 
model-optimizer application to create corresponding XML 
files for proper acceleration on the target device. For the Intel 
PAC, 16-bit operation model-optimizer files are created. In 
order to run the OpenVINO-based app on the Intel PAC, the 
16-bit generic or network-optimized version of the 
OpenVINO binary is loaded onto the PAC on vLab. Finally, 
the OpenVINO-based app is run using the network-specific 
model-optimizer XML files in heterogenous mode, 
accelerating the app on the Intel PAC. 

C. Intel CPU Acceleration 
In order to compare the OpenVINO and Caffe results 

from different architectures, the Caffe-based app will also be 
executed on the Xeon CPU (SKL 8180) in addition to the 
OpenVINO-based app. From this comparison, we will be able 
to compare how the Caffe and OpenVINO frameworks 
perform on the same architecture and application to infer how 
the performance of the other architectures compare. For the 
Xeon CPU running the OpenVINO-based app, the 

 
Figure 1 Caffe Accelerator Model. 



OpenVINO toolkit does not support 16-bit operations on the 
CPUs resulting in 32-bit operations. To run the OpenVINO-
based app on the Xeon CPU, no additional steps are required 
such as loading additional binaries, so the app is run in CPU 
mode with the network-specific model-optimizer XML files. 
When running the Caffe-based app, the Xeon CPU 
specifically uses the Intel Optimized Caffe* and the Intel 
MKL. The rest of the CPUs in this case study, KNL (7250) 
and KNM (7295) provided by vLab, will only run the Caffe-
based app using the Intel Optimized Caffe* and the Intel 
MKL. 

D. NVIDIA GPU Accleration 
The GPUs used in this study, as mentioned previously, are 

the NVIDIA Tesla P100 provided by Google Cloud, NVIDIA 
Tesla V100 provided by AWS, and the GTX 1080 Ti 
provided by CRC. All of these devices will run the Caffe-
based app using NVCaffe and cuDNN. No additional steps 
are required when using the GPU platforms such as the 
xfDNN compiler and quantizer or the OpenVINO model-
optimizer. 

V. RESULTS 
The main metric of the study is performance in terms of 

images-per-second. Accuracy is not focused on specifically in 
this study because the performance of the neural networks 
should be similar no matter the network input. That said, this 
research did observe the Top-1 accuracies for AlexNet and 
GoogLeNet to vary between 94-96% and 96-97%, 
respectively, across the devices studied. 

Table 1 shows the breakdown of xfDNN, NVIDIA Tesla 
V100, Tesla P100, GTX 1080 Ti, Intel PAC, Xeon Skylake 
8180, Xeon Phi KNL 7250, and Xeon Phi KNM 7295 
performance in terms of total operations-per-second. Similar 
metrics were not provided by Mipsology for Zebra. Additional 
information is included about another framework for 
accelerating CNNs on Micron boards featuring Xilinx FPGAs 
known as Snowflake; however, hardware was not available to 
benchmark [32].  

Figure 2 shows the performance of GoogLeNet and 
AlexNet across the different frameworks and devices at their 
respective maximum performing batch sizes. The xfDNN 
framework fails to run with AlexNet, so data is not present. 
Similarly, the Tesla P100 fails to run the custom-variant 
GoogLeNet at a batch size greater than 1, limiting throughput. 

Figure 3 shows the efficiency characteristics in terms of 
performance-per-Watt of each network across varying 

frameworks and platforms. The total device power (TDP) for 
the devices in the study can be found in Table 1. For the Zebra 
framework, documentation claims the maximum power 
consumption is below 40W, where the TDP for the XCVU9P 
FPGA is around 65W [33]. As Xilinx gives no guarantee 
about power consumption, we use the TDP of the FPGA, 
65W, for xfDNN. AWS does not provide access to FPGA 
power information. We use TDP to compare each device 
because of the potential each device has to use peak power.  

Table 1 Maximum FP16 OPS Performance of Frameworks/Devices and 
Power Consumption 

Device 
Configuration 

FP16 Giga-
Operations-

per-
Second-

per-Core 

Total 
Number 
of Cores 

FP16 Giga-
Operations-
per-Second 

Device 
Power 

(W) 

xfDNN v2 – 2 
PE [18] 1702.4 2 3,404.8 65 

xfDNN v2 – 4 
PE [18] 896 4 3,584 65 

Mipsology 
Zebra (2018) 

[15] 
N/A 6 N/A 40 

Tesla V100 
[19] 195 640 

(Tensor) 
125,000 
(Tensor) 300 

Tesla P100 [34] 5.2 3,584 18,700 300 

GTX 1080 Ti 
[31] 3.2 3,584 

11,340 
(upgrade 

FP32) 
250 

Snowflake – 
512-510 [32] 0.37 512 191 24 

Snowflake – 
1k-511 [32] 0.5 1,024 512 48 

Snowflake – 
1k-852 [32] 0.5 1,024 512 150 

Intel PAC [16] 
[35] N/A N/A 1,500 45 

Xeon Skylake 
8180 [25] [36] 80 56 4,480 410 

Xeon Phi KNL 
7250 [22] 46.2 68 3,141 215 

Xeon Phi KNM 
7295 [23] 49.5 72 3,564 320 

 

 
Figure 2 Maximum Throughput Performance of Frameworks/Devices at Batch Size for Maximum Performance 



VI. DISCUSSION 
When comparing the neural networks, GoogLeNet and 

AlexNet, we can see that AlexNet consistently achieves 
higher performance than GoogLeNet. This higher 
performance of AlexNet is because of the shorter latency 
AlexNet has from input to output layers having only five 
layers compared to GoogLeNet’s 14 layers, allowing for faster 
image classification. Since AlexNet has fewer layers than 
GoogLeNet, more RAM can be used for the images being 
classified, which allows for larger batch sizes. The smaller 
number of layers gives AlexNet higher performance at the 
slightly lower accuracy. For this application, we have 
observed the average Top-1 accuracies of AlexNet and 
GoogLeNet to be similar as 95.3% and 96.5%, respectively. 

A. Device Performance 
Comparing Xilinx FPGA frameworks, we can see that 

Mipsology Zebra outperforms xfDNN across both neural 
networks. As Zebra also provides much more portability than 
xfDNN, this feature gives a greater advantage to Zebra over 
xfDNN for accelerating machine-learning apps on Xilinx 
FPGAs. 

According to the results from the GPUs, the performance 
of the Tesla V100 is significantly higher than the other GPUs 
in the study. It is clear that the parallel nature of the Tesla 
V100, and its architecture featuring Tensor cores, greatly 
helps throughput performance. 

From the CPU results, the Xeon device has a significant 
performance advantage over the Xeon Phi devices, even 
though it features a smaller number of cores. However, the 
cores of the Xeon devices operate at a maximum of 3.8GHz 
versus 1.6GHz of both the KNL and KNM Xeon Phi devices 
[22] [23] [25]. Additionally, comparing the Xeon Phi devices, 
KNL slightly outperforms KNM consistently between both 
CNNs and batch sizes. As KNM is targeted at acceleration 
machine-learning apps, this result is concerning [37]. 
Although, preliminary data shows that backward-pass timing, 
as opposed to forward-pass or inferencing, on the KNM 
significantly outperforms KNL across CNNs and batch sizes. 
This data means that the KNM devices show much better 
performance in terms of CNN training than inferencing. In all 
cases of the CPU testing, the system did not run out of 
memory, but this out-of-memory error was a source of crashes 
in the FPGA and GPU cases. The overall app execution time 
became very slow and thus we limited the batch size to 2048 
since no other framework or device achieved more.  

For the Intel PAC FPGA results, there is an advantage to 
using the network-specific optimized OpenVINO binaries 
over the generic variant at every batch size and when 
comparing maximum performance. The generic binary is 
limited to eight images-per-batch which hurts overall 
parallelism when trying to accelerate a custom CNN with 
OpenVINO. Next, we observe the Xeon Skylake CPU’s 
performance with OpenVINO against the PAC FPGA. We can 
see the Xeon CPU outperforms the PAC FPGA at every batch 
size and in terms of maximum performance. The OpenVINO 
network-specific optimized binaries for the PAC FPGA are 
limited to a maximum batch size of 96 images. This limit, 
again, hurts overall parallelism when trying to accelerate one 
of these CNNs on the PAC FPGA. 

In order to get an understanding of the performance 
characteristics of both Caffe and OpenVINO, we compared 
the maximum performance of each framework on the Xeon 
Skylake CPU. We can see from the results that both 
frameworks perform similarly. OpenVINO has a slight 
performance advantage over Caffe when running GoogLeNet; 
however, Caffe has a more significant performance advantage 
over OpenVINO when running AlexNet. From this 
comparison, we can conclude that the framework 
implementations are similar enough to justify a comparison of 
the PAC FPGA results with the other devices in the study. 
Observing that Zebra on the FPGA outperforms OpenVINO 
on the Intel PAC FPGA by an average of 8.3×, the OpenVINO 
framework is not competitive when accelerating CNNs on 
FPGAs. This performance gap could be due to the technology 
node disparity, 16-nm and 20-nm for the XVU9P and Intel 
PAC respectively, and the limited batch sizes supported with 
OpenVINO. 

Comparing the results of the Xilinx FPGA using Zebra and 
the Tesla V100 using cuDNN, we see there is a large disparity 
in the performance between the Tesla V100 and the FPGA. 
Our results indicate that the FPGA framework would need to 
consume less than 22W of power in order to be more efficient 
in terms of performance-per-Watt. To calculate the power 
required for better efficiency, the performance of the Zebra 
framework is divided by the efficiency of the Tesla V100. 
When comparing the performance of individual cores of 
xfDNN and the Volta architecture, the xfDNN cores can 
achieve higher theoretical performance. The main reason why 
the performance gap is so large is that xfDNN only instantiates 
four cores on the FPGA whereas, the Volta architecture 
contains 80 streaming multiprocessors, each with eight Tensor 
cores. 

 
Figure 3 Efficiency of Frameworks/Devices at Batch Size for Maximum Performance  



When comparing the Zebra performance to the Xeon 
Skylake CPU, we can see that there is less of a disparity 
between the two than what was observed with Zebra and the 
V100. However, the Xeon device still significantly 
outperforms the Zebra framework. Naturally, this 
performance of the Xeon device means that the V100 is 
expected to outperform the Xeon device, which is what is 
observed in the next comparison. The V100 outperforms the 
Xeon device by an average factor of 2.6×. 

B. Device Efficiency 
In terms of the efficiency of each device and framework, 

we can see the V100 significantly outperforms every other 
device and framework, even at a large power package of 
300W. This efficiency at 300W shows how much higher the 
V100 performs compared to each of the other devices and 
frameworks.  

Interestingly, the FPGA using Zebra has similar to greater 
performance-per-Watt capabilities against both Pascal-based 
architectures, the Tesla P100 and GTX 1080 Ti. The large 
performance disparity between the Pascal and Volta 
architectures is due to the inclusion of the Tensor cores in the 
Volta architecture. The development of these frameworks for 
accelerating CNNs on FPGAs is clearly relevant since they are 
capable of being more efficient than general-purpose 
architectures that lack specific accelerators for this domain.  

According to the results, the Intel products, including all 
Xeon and Xeon Phi CPUs, as well as the PAC FPGA, perform 
the worst in terms of efficiency across Caffe, OpenVINO, and 
different CNNs. These results are a magnitude less than the 
rest of the Xilinx and NVIDIA device results, besides xfDNN, 
which perform at around the same efficiency as the Intel 
devices. The main reason for this poor efficiency on the CPU 
side is the large power packages of the CPUs, similar to GPUs, 
without the performance to match the GPUs. In the case of 
OpenVINO and the PAC FPGA, the power package is one of 
the lowest in the study; however, the performance is not close 
to any of the other devices and frameworks.  

VII. CONCLUSIONS 
In this research, a machine-learning inferencing app was 

developed to leverage many different HPC architectures and 
frameworks, designed to compare these technologies to one 
another. CNNs such as AlexNet and a custom 14-layer version 
of GoogLeNet were used to classify handwritten Chinese 
characters. The Caffe framework was used to leverage Xilinx 
FPGAs, NVIDIA GPUs, and Intel Xeon and Xeon Phi CPUs. 
The Intel platform-agnostic OpenVINO framework was used 
with Intel PAC FPGAs and additionally with Intel Xeon CPUs 
to gain an understanding of OpenVINO versus Caffe 
performance.  

It is clear that the Tensor cores significantly accelerate the 
performance of machine-learning inference on NVIDIA 
GPUs. Without significant improvements in performance to 
FPGA frameworks for accelerating CNNs, FPGAs may need 
to add additional hardware, similar to Tensor cores, to be more 
competitive in the machine-learning domain. In fact, the next-
generation Xilinx architecture, known as Versal, is designed 
with new “AI engines” consisting of long instruction word and 
single instruction, multiple data processing engines [38].  

Intel devices and frameworks are also lacking in the 
machine-learning inferencing domain. CPUs are the most 
general-purpose device in the study, posing significant 

overhead, especially in terms of efficiency. It is challenging 
for CPUs to tailor to one domain as they serve all computing 
domains. Being the worst in every category, the OpenVINO 
framework for PAC FPGAs needs significant improvements 
in order to be competitive in this domain as well.  

Some of these performance disparities may also be due to 
the technology node of each device. The Volta architecture is 
the smallest at 12-nm. The worst-performing architecture in 
this study, the Arria 10, is also the largest at 20-nm. This factor 
can of course have significant implications on performance of 
the devices.  

Overall, GPUs dominate performance and efficiency when 
accelerating CNNs with Caffe. The next most efficient 
devices, Xilinx FPGAs, need significant improvements for 
accelerating machine-learning apps, especially since they 
currently cannot perform training. Mipsology has mentioned 
that they do plan to support training in the future [15]. The 
Tesla V100 has significantly better performance with both 
AlexNet and GoogLeNet at 12.38× and 13.81×, respectively, 
over Zebra’s performance. Similarly, the Tesla V100 has 
better efficiency with both AlexNet and GoogLeNet at 1.65× 
and 1.84×, respectively, when compared to Zebra’s efficiency. 
Although the Versal architecture is not set to be released until 
late 2019, data from Xilinx shows Versal performing at 2× 
over the Tesla V100 using GoogLeNet for machine-learning 
inference with maximum batch size [38]. This architecture, in 
combination with the next release of xfDNN v3 and Zebra, has 
potential to make FPGAs more competitive with GPUs for 
machine-learning inference and significantly more efficient.  

This research has provided insight on throughput 
performance and efficiency characteristics of a practical, 
deep-learning app across many different architectures and 
frameworks. The development of these apps can be 
continually used as architectures and frameworks evolve to 
understand their respective, relative performance. As focus 
shifts from machine-learning training to inferencing 
acceleration, this research provides critical information to 
prepare app acceleration for the future of the machine-learning 
domain. 
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