
VirtualRC: A Virtual FPGA Platform for
Applications and Tools Portability

Robert Kirchgessner, Greg Stitt, Alan George, Herman Lam
NSF Center for High-Performance Reconfigurable Computing (CHREC)

Department of Electrical and Computer Engineering
University of Florida

{kirchgessner, gstitt, george, hlam}@chrec.org

ABSTRACT
Numerous studies have shown significant performance and power
benefits of field-programmable gate arrays (FPGAs). Despite
these benefits, FPGA usage has been limited by application
design complexity caused largely by the lack of code and tool
portability across different FPGA platforms, which prevents
design reuse. This paper addresses the portability challenge by
introducing a framework of architecture and middleware for
virtualization of FPGA platforms, collectively named VirtualRC.
Experiments show modest overhead of 5-6% in performance and
1% in area, while enabling portability of 11 applications and two
high-level synthesis tools across three physical platforms.

Categories and Subject Descriptors
C.3 [Special-purpose and Application-based Systems]: Real-
time and embedded systems.

General Terms
Performance, Design.

Keywords
FPGA, portability, virtual architectures.

1. INTRODUCTION
Field-programmable gate arrays (FPGAs) have been widely
shown to often achieve significant performance improvements
compared to microprocessors [6], graphics-processing units
(GPUs) [10], et al., while also reducing power consumption [10].
Despite such advantages, many application designers have
avoided FPGAs due to significantly lower design productivity as
compared to other devices [3].

Although numerous factors lead to low productivity [4], a major
contributor is the lack of application portability [4] across FPGA
boards and systems, herein referred to as platforms. Differences in
platform architectures prevent developers from exploiting
common design reuse techniques, forcing them to redesign
significant portions of an application and write platform-specific
register-transfer-level (RTL) code. This problem also extends to
debugging, performance analysis, and high-level synthesis (HLS)

tools [4] which could ideally support any platform architecture.
Existing tools, however, require a platform-support package for
each individual platform, making it infeasible to support the
numerous available platforms.

To address these problems, we introduce a framework for FPGA
platform virtualization called VirtualRC (Virtual Reconfigurable
Computing). VirtualRC enables application portability by
providing a configurable virtual platform architecture and
corresponding software middleware that the framework can
potentially map onto any physical platform. With VirtualRC,
application designers target a user-customizable virtual platform,
which simplifies development and enables the same RTL code to
execute on any supported physical platform. In this paper, we
evaluate VirtualRC on three PCIe and PCI-X FPGA platforms
from GiDEL, Pico Computing, and Nallatech, demonstrating a
modest performance overhead of 5-6% and an area overhead of
less than 1% using application case studies and benchmarks. We
showcase application portability across three platforms with 11
different RTL applications that required no coding changes. We
similarly demonstrate the portability of RTL synthesized from
two HLS tools, ROCCC [11] and AutoESL [6].

2. RELATED WORK
Previous works have addressed portability via application-
specialized platform interfaces. Saldaña et al. [8] proposed a
method of enabling the MPI programming model across FPGA
platforms via HW/SW middleware. Reves et al. [7] presented a
portable virtual architecture specific to software-defined radio
applications. VirtualRC is conceptually similar, but also enables
virtual FPGA platforms where designers can configure any
application-specialized platform architecture. Coole et al. [1]

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
FPGA’12, February 22–24, 2011, Monterey, California, USA.
Copyright 2012 ACM 978-1-4503-1155-7/12/02...$10.00.

App. RTL Tools

SW
Middleware

App. SW

Platform API

Virtual FPGA Platform

Platform A Platform B

. . .

. . .

VirtualRC
Framework

Host

Platform RTL

Figure 1: Overview of the VirtualRC framework for FPGA
platform virtualization, which enables application and tool

portability across multiple physical FPGA platforms.

introduced virtual FPGA devices for fast placement and routing,
which is complementary to VirtualRC platform virtualization.

Standardized APIs such as OpenFPGA’s GenAPI [5] and Intel’s
Acceleration Abstraction Layer (AAL) [2] address portability by
providing a standardized software API for communicating with
platform resources. Similarly, OpenCL [9] provides
communication between heterogeneous devices. VirtualRC
provides a unique API, but could potentially use any interface.

3. VirtualRC
As shown in Figure 1, VirtualRC provides a configurable virtual
FPGA platform and a software middleware API for
communication with the virtual platform.

To use VirtualRC, an application designer or tool first analyzes
application characteristics and then requests a corresponding
virtual platform architecture based upon provided configuration
options. For example, a designer or tool could request one
external memory with a 32-bit read port for the streaming of
floating-point inputs, and another external memory with a 16-bit
write port for writing fixed-point results. Given this request,
VirtualRC generates a virtual platform, represented by an empty
RTL entity, whose interface matches the requested configuration
of resources. For the previous example, the virtual platform
interface would have a 32-bit input corresponding to the read port
of one virtual memory, and a 16-bit output corresponding to the
write port of the second memory, in addition to control signals.
The application designer then writes their application RTL code
using the virtual platform as a top-level interface. Alternatively,
an HLS tool could generate an application circuit that connects to
the virtual platform interface. Finally, a set of platform RTL,
ideally provided by the physical platform vendor, implements the
virtual platform architecture on the physical platform by
converting the interfaces and protocols into those used by the
physical platform. Although the exact structure of platform RTL
depends upon the virtual and physical platforms, for the platforms
we evaluated most of this RTL consisted of simple control logic
and specialized buffers for changing streaming data widths.

In creating the virtual platform architecture, we analyzed
numerous FPGA platforms from GiDEL, Nallatech, DRC, Pico,
and XtremeData, and identified several architectural features
common to all platforms: 1) one or more FPGAs; 2) a platform
bus for communicating between the host and the FPGA platform;
3) an FPGA communication controller that allows software to
access on-chip resources such as block RAM and registers; and 4)
one or more external memories. The virtual platform architecture
provides these same four resources, as shown in Figure 2, with a
unified interface and communication protocol that allows
designers and tools to use the same RTL code on any supported
platform. Details of the interfaces and communication protocols
are omitted here for brevity.

The virtual platform supports the following configuration options.
For the external memories, the virtual platform allows designers
to specify the number of virtual memories, the size, the number of
ports (read or write), and the data width of each port. To enable an
arbitrary number of ports per virtual memory, the virtual memory
interface contains an arbiter using a round-robin policy for
concurrent accesses. Virtual memories may either be mapped
externally to physical memory or internally to on-chip memory,
depending upon application requirements and available resources.
Currently, designers are required to manually perform this
mapping, which we will automate in future work. For the FPGA

communication controller, the platform allows designers to
configure different data widths and numbers of controllers. The
platform also supports a configurable number of virtual FPGA
devices, although at present each virtual device simply acts as a
top-level entity for a corresponding physical FPGA.

To enable software code portability, VirtualRC provides a simple
C++ middleware API with overloaded read and write primitives
that enable transparent communication of a variable or array to
and from virtual resources. The API directly translates VirtualRC
communication routines to virtual components into native API
calls to the physical platform. The goal of the current API is to
show proof of concept for communication with the virtual
platform; the middleware could potentially use any API.

4. EXPERIMENTS
In this section, we describe the experimental setup (4.1) and then
analyze performance and area overhead (4.2). We then evaluate
the portability of applications and high-level synthesis tools (4.3)
using VirtualRC across multiple physical platforms.

4.1 Experimental Setup
In our experiments, we evaluate VirtualRC on three different
FPGA platforms: the GiDEL PROCStar III; Nallatech H101; and
Pico Computing M501. Each platform has a significantly different
platform architecture and API, and all use a variety of FPGAs
from different vendors. To support each platform, we manually
created the platform RTL shown in Figure 1, which required
several days to several weeks. However, vendors could add this
support in much less time due to familiarity with their platforms.

Bitstreams for the GiDEL PROCStar III were generated using
Altera Quartus 9.1 SP2. Bitstreams for the Pico M501 and
Nallatech H101 were generated using Xilinx ISE 12.3. Driver
versions used were 8.8 (GiDEL), FUSE 1.5 (Nallatech) and a pre-
release version of the M501 drivers (Pico). All software was
compiled used g++ version 4.4.3 with –O3 optimizations.

4.2 Overhead Analysis
This section analyzes VirtualRC overhead. Section 4.2.1 presents
case studies that evaluate application performance overhead. We
then analyze FPGA memory bandwidth overhead (4.2.2),
software middleware overhead (4.2.3), and resource overhead
(4.2.4).

FPGA Comm. Controller

Virtual Memories

Configurable
Memories
(Number, Size)

Configurable
Virtual FPGAs
(Number)

Configurable
Port Interfaces
(Number, Type,

Data width)

Configurable
Interfaces

(Number, Type,
Data width)

To/From
Virtual

Memories

Host
Platform Bus

Figure 2: Virtual platform architecture overview.

4.2.1 Application Case Studies
This section evaluates VirtualRC performance overhead by
comparing application performance of native implementations for
a physical platform with implementations targeting VirtualRC on
the same platform. We obtained source code for previously
published implementations of Smith-Waterman and Needle-
Distance [6]. We chose these two bioinformatics applications due
their existing implementation on the GiDEL PROCStar III and
substantial speedup over an optimized software baseline.

To evaluate overhead, we used VirtualRC to create the virtual
platform interface required by the applications. We then manually
mapped the application interfaces to the virtual resource
interfaces. Porting the application required no modifications to the
application code, and took approximately half an hour per
application (not including compilation). We also created software
based upon the original application software using the VirtualRC
API. We then executed these applications on the PROCStar III,
both with and without VirtualRC, for varying input sizes.

Figure 3 illustrates the performance overhead of the Smith-
Waterman and Needle-Distance applications on VirtualRC for the
PROCStar III. Across all input sizes, VirtualRC had a peak
performance overhead of 6% for Smith-Waterman and 5% for
Needle-Distance, with the overhead approaching 0% for large
inputs sizes in both cases. This overhead was due to differences in
the software required to interface VirtualRC with the original
FIFO interface. In future work, we will add a configurable FIFO
interface option to VirtualRC that will minimize this overhead.
VirtualRC had an area overhead of approximately 1% for both
applications due to the configurable virtual resources.

4.2.2 External Memory Bandwidth Overhead
For each platform (PROCStar III, M501, and H101), we measured
the effective memory bandwidth with and without VirtualRC for
varying transfer sizes. For VirtualRC, we configured a single
virtual memory with a width equal to the native memory width.
For the case without VirtualRC, we used a state machine and
FIFO buffer to characterize a streaming application without
blocking. We then measured the number of clock cycles required
to transfer a specified amount of data.

Table 1 evaluates the FPGA to external memory overhead.
Overhead was smallest on the PROCStar III due to similarities
between the GiDEL IP and VirtualRC interfaces, with a

maximum overhead of 5% for small transfers and negligible
overhead for large transfers. For the H101, maximum overhead
was 8% for small transfers and again negligible for large
transfers. The VirtualRC overhead was largest on the M501 due
to significant differences in interface and features from
VirtualRC. The M501 IP limits transfer from 32 to 4096 bytes.
Although VirtualRC adds additional overhead, it also enables
transfers of any size. We measured a peak overhead of 25% for
small transfers, which decreased substantially for transfers over
1KB. Since FPGA applications commonly use large data streams,
the overhead of VirtualRC in these cases would be negligible.

4.2.3 Software Middleware Overhead
In order to analyze the software overhead for memory accesses,
we measured the effective bandwidth for each platform using the
VirtualRC API versus physical API for varying transfer sizes.

Table 2 evaluates the host to external memory overhead. The
PROCStar III had the smallest overhead of 6% due to similarities
between GiDEL and VirtualRC APIs. Maximum overhead on the
H101 was 27% for small transfers, and became negligible for
transfers above 32 KB. The largest overhead of 46% was
measured for the M501, but only for transfers of 16 to 64 bytes.
Since data transfers between host and FPGAs are costly,
applications tend to avoid small transfers, making the overhead of
VirtualRC insignificant for common situations.

4.2.4 FPGA Resource Overhead
Resource overhead from VirtualRC stems from three major
components: the FPGA communication controller; the virtual

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

1K 4K 16K 64K 256K 1M 4M 16M 64M

P
e
rc
e
n
t
O
ve
rh
e
ad

Database Size

Smith‐Waterman Overhead
Varying Sequence Lengths

350 450 550 650

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

1K 4K 16K 64K 256K 1M 4M 16M 64M

P
er
ce
n
t
O
ve
rh
e
ad

Number of Sequence Comparisons

Needle‐Distance Overhead
Varying Sequence Lengths

50 150 250 350 450

Figure 3: Performance overhead of VirtualRC compared to native PROCStar III implementations of
Smith-Waterman and Needle-Distance applications.

Table 1: Read (write) overhead from FPGA to external
memory due to VirtualRC memory virtualization.

 16B 1KB 16KB 256KB 1MB

PROCStar III 5%(4%) 3%(2%) 1%(1%) 0%(0%) 0%(0%)

H101 4%(8%) 0%(0%) 0%(0%) 0%(0%) 0%(0%)

M501 25%(19%) 5%(4%) 2%(2%) NA NA

Table 2: Read (write) overhead from host to FPGA memory
due to VirtualRC middleware API.

 16B 1KB 16KB 256KB 1MB

PROCStar III 5%(0%) 6%(0%) 0%(1%) 0%(0%) 0%(0%)

H101 16%(27%) 13%(27%) 12%(17%) 0%(0%) 0%(0%)

M501 44%(46%) 1%(0%) 1%(0%) 0%(1%) 0%(0%)

memory read interface; and the virtual memory write interface.
We determined overhead for each component using the
appropriate vendor tool (Quartus, ISE). Each component was
found to require less than 1% of total device resources in terms of
LUTs, registers, and block RAMs. The exact resource usage on
each platform varied based on how similar the native IP interface
was to the VirtualRC interface specification.

4.3 Portability Analysis
In this section we demonstrate application and tool portability
provided by the VirtualRC framework. To evaluate portability,
we created a variety of applications for VirtualRC and also
obtained examples from OpenCores (www.opencores.org) that we
modified to use VirtualRC. We then executed each application
and tool on the three aforementioned vendor platforms, using the
exact same application code. Each application consists of RTL
code in addition to C++ code using the VirtualRC middleware
that transfers data to and from the virtual platform. Since
performance was not the goal of these experiments, a frequency
of 125 MHz was used except in cases where the estimated design
operating frequency was lower.

Table 3 summarizes a list of applications used to demonstrate
portability on all three platforms. VirtualRC successfully
executed all applications on each platform, with the exception of
Option Pricing, which would not fit on the H101. This limitation
was not a consequence of VirtualRC, but was caused by non-
parameterized RTL code that we could not reduce in size to fit on
the older Virtex-4 FPGA on the H101. It is important to note that
this table is not intended as a performance comparison due to
significant platform differences. Instead, the purpose here is to
show characteristics of each application on each system.

Table 4 demonstrates tool portability. As with Table 3, these
results are not intended to be compared across devices or between
tools. Instead, these results verify that VirtualRC enables identical
HLS code synthesized into RTL to work seamlessly across
multiple platforms that are not directly supported by the tools.
Therefore, VirtualRC potentially enables HLS tools to support
any platform without effort from the tool vendors.

5. LIMITATIONS AND FUTURE WORK
There are several limitations that we plan to address as future
work which include expanding VirtualRC to enable embedded
processor architectures, further reducing overhead for different
use cases, estimating virtual platform performance for design
exploration, and integrating alternative software APIs.

6. CONCLUSIONS
To address challenges in FPGA design productivity owing to lack
of code portability, we introduced VirtualRC. VirtualRC provides
developers with a user configurable virtual platform interface,
enabling portability across any supported platform. We evaluated
VirtualRC using applications and benchmarks, and show a
performance overhead of 5-6% with an area overhead of less than
1%. We also demonstrated that VirtualRC enables application and
tool portability by executing the same code for 11 different
applications and two tools across three physical platforms.

7. ACKNOWLEDGEMENTS
This work was supported in part by the I/UCRC Program of the
National Science Foundation under Grant No. EEC-0642422. The
authors gratefully acknowledge vendor equipment and tools
provided by Altera, GiDEL, Nallatech, Pico Computing, and
Xilinx that helped make this work possible.

8. REFERENCES
[1] Coole, J., and Stitt, G. Intermediate fabrics: Virtual architectures for

circuit portability and fast placement and routing. In
Hardware/Software Codesign and System Synthesis (CODES+ISSS),
2010 IEEE/ACM/IFIP Int. Conf. on (2010).

[2] Intel. Intel QuickAssist Technology AAL (White Paper).

[3] Jones, D., Powell, A., Bouganis, C.-S., and Cheung, P. GPU versus
FPGA for high productivity computing. In Field Programmable
Logic and Applications (FPL), 2010 Int. Conf. on (2010).

[4] Merchant, S., Holland, B., Reardon, C., George, A., Lam, H., Stitt,
G., Smith, M., Alam, N., Gonzalez, I., El-Araby, E., Saha, P., El-
Ghazawi, T., and Simmler, H. Strategic challenges for application
development productivity in reconfigurable computing. In Aerospace
and Electronics Conference, 2008. IEEE National (2008).

[5] OpenFPGA. OpenFPGA GenAPI version 0.4 Draft for Comment.

[6] Pascoe, C., Lawande, A., Lam, H., George, A., Sun, Y., Farmerie,
W., and M., H. Reconfigurable supercomputing with scalable
systolic arrays and in-stream control for wavefront genomics
processing. In Proc. of Symposium on Application Accelerators in
High-Performance Computing (2010).

[7] Reves, X., Marojevic, V., Ferrus, R., and Gelonch, A. FPGA’s
middleware for software defined radio applications. In Field
Programmable Logic and Applications, 2005. Int. Conf. on (2005).

[8] Saldaña, M., Patel, A., Madill, C., Nunes, D., Wang, D., Chow, P.,
Wittig, R., Styles, H., and Putnam, A. MPI as a programming model
for high-performance reconfigurable computers. ACM Trans.
Reconfigurable Technol. Syst. 3 (November 2010), 22:1–22:29.

[9] Stone, J., Gohara, D., and Shi, G. OpenCL: A parallel programming
standard for heterogeneous computing systems. Computing in
Science Engineering 12, 3 (may-june 2010), 66 –73.

[10] Tian, X., and Benkrid, K. High-performance quasi-monte carlo
financial simulation: FPGA vs. GPP vs. GPU. ACM Trans.
Reconfigurable Technol. Syst. 3 (November 2010), 26:1–26:22.

[11] Villarreal, J., Park, A., Najjar, W., and Halstead, R. Designing
modular hardware accelerators in c with ROCCC 2.0. In Field-
Programmable Custom Computing Machines (FCCM), 2010 18th
IEEE Annual Int. Sym. on (may 2010), pp. 127 –134.

Table 3: Demonstration of VirtualRC application portability.

PROCStar III M501 H101
Freq.

(MHz)
Time
(ms)

Freq.
(MHz)

Time
(ms)

Freq.
(MHz)

Time
(ms)

1D Convolution FP 125 39.29 125 247.90 100 91.06

2D Convolution FP 106 13.18 106 15.18 100 43.25

Option Pricing 125 12.15 s 125 14.40 s - -

Sum Abs. Differences 98 14.72 98 15.62 98 86.71

Needle Distance 125 194.00 125 116.20 100 199.51

Smith Waterman 125 116.00 125 133.00 100 225.00

Image Segmentation 125 12.40 125 16.39 100 4.81

OpenCores SHA256 125 64.05 125 120.49 100 25.97

OpenCores FIR 125 24.51 125 413.80 100 106.16

OpenCores AES128 125 25.33 125 503.78 100 126.18

OpenCores JPEG Enc. 125 15.29 125 23.93 100 21.24

Table 4: Demonstration of VirtualRC tool portability.

PROCStar III M501 H101
Freq.

(MHz)
Time
(ms)

Freq.
(MHz)

Time
(ms)

Freq.
(MHz)

Time
(ms)

ROCCC 8pt FFT 125 15.66 125 16.61 100 39.91

ROCCC 5-tap FIR 125 17.78 125 18.73 100 40.57

AutoESL Convolution 125 4.29 125 7.31 100 2.49

