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ABSTRACT 
Numerous studies have shown significant performance and power 
benefits of field-programmable gate arrays (FPGAs). Despite 
these benefits, FPGA usage has been limited by application 
design complexity caused largely by the lack of code and tool 
portability across different FPGA platforms, which prevents 
design reuse. This paper addresses the portability challenge by 
introducing a framework of architecture and middleware for 
virtualization of FPGA platforms, collectively named VirtualRC. 
Experiments show modest overhead of 5-6% in performance and 
1% in area, while enabling portability of 11 applications and two 
high-level synthesis tools across three physical platforms.  

Categories and Subject Descriptors 
C.3 [Special-purpose and Application-based Systems]: Real-
time and embedded systems. 

General Terms 
Performance, Design. 

Keywords 
FPGA, portability, virtual architectures. 

1. INTRODUCTION 
Field-programmable gate arrays (FPGAs) have been widely 
shown to often achieve significant performance improvements 
compared to microprocessors [6], graphics-processing units 
(GPUs) [10], et al., while also reducing power consumption [10]. 
Despite such advantages, many application designers have 
avoided FPGAs due to significantly lower design productivity as 
compared to other devices [3]. 

Although numerous factors lead to low productivity [4], a major 
contributor is the lack of application portability [4] across FPGA 
boards and systems, herein referred to as platforms. Differences in 
platform architectures prevent developers from exploiting 
common design reuse techniques, forcing them to redesign 
significant portions of an application and write platform-specific 
register-transfer-level (RTL) code. This problem also extends to 
debugging, performance analysis, and high-level synthesis (HLS) 

tools [4] which could ideally support any platform architecture. 
Existing tools, however, require a platform-support package for 
each individual platform, making it infeasible to support the 
numerous available platforms. 

To address these problems, we introduce a framework for FPGA 
platform virtualization called VirtualRC (Virtual Reconfigurable 
Computing). VirtualRC enables application portability by 
providing a configurable virtual platform architecture and 
corresponding software middleware that the framework can 
potentially map onto any physical platform. With VirtualRC, 
application designers target a user-customizable virtual platform, 
which simplifies development and enables the same RTL code to 
execute on any supported physical platform. In this paper, we 
evaluate VirtualRC on three PCIe and PCI-X FPGA platforms 
from GiDEL, Pico Computing, and Nallatech, demonstrating a 
modest performance overhead of 5-6% and an area overhead of 
less than 1% using application case studies and benchmarks. We 
showcase application portability across three platforms with 11 
different RTL applications that required no coding changes. We 
similarly demonstrate the portability of RTL synthesized from 
two HLS tools, ROCCC [11] and AutoESL [6].  

2. RELATED WORK 
Previous works have addressed portability via application-
specialized platform interfaces. Saldaña et al. [8] proposed a 
method of enabling the MPI programming model across FPGA 
platforms via HW/SW middleware. Reves et al. [7] presented a 
portable virtual architecture specific to software-defined radio 
applications. VirtualRC is conceptually similar, but also enables 
virtual FPGA platforms where designers can configure any 
application-specialized platform architecture. Coole et al. [1] 
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Figure 1: Overview of the VirtualRC framework for FPGA 
platform virtualization, which enables application and tool 

portability across multiple physical FPGA platforms. 



introduced virtual FPGA devices for fast placement and routing, 
which is complementary to VirtualRC platform virtualization. 

Standardized APIs such as OpenFPGA’s GenAPI [5] and Intel’s 
Acceleration Abstraction Layer (AAL) [2] address portability by 
providing a standardized software API for communicating with 
platform resources. Similarly, OpenCL [9] provides 
communication between heterogeneous devices. VirtualRC 
provides a unique API, but could potentially use any interface. 

3. VirtualRC  
As shown in Figure 1, VirtualRC provides a configurable virtual 
FPGA platform and a software middleware API for 
communication with the virtual platform. 

To use VirtualRC, an application designer or tool first analyzes 
application characteristics and then requests a corresponding 
virtual platform architecture based upon provided configuration 
options. For example, a designer or tool could request one 
external memory with a 32-bit read port for the streaming of 
floating-point inputs, and another external memory with a 16-bit 
write port for writing fixed-point results. Given this request, 
VirtualRC generates a virtual platform, represented by an empty 
RTL entity, whose interface matches the requested configuration 
of resources. For the previous example, the virtual platform 
interface would have a 32-bit input corresponding to the read port 
of one virtual memory, and a 16-bit output corresponding to the 
write port of the second memory, in addition to control signals. 
The application designer then writes their application RTL code 
using the virtual platform as a top-level interface. Alternatively, 
an HLS tool could generate an application circuit that connects to 
the virtual platform interface. Finally, a set of platform RTL, 
ideally provided by the physical platform vendor, implements the 
virtual platform architecture on the physical platform by 
converting the interfaces and protocols into those used by the 
physical platform. Although the exact structure of platform RTL 
depends upon the virtual and physical platforms, for the platforms 
we evaluated most of this RTL consisted of simple control logic 
and specialized buffers for changing streaming data widths. 

In creating the virtual platform architecture, we analyzed 
numerous FPGA platforms from GiDEL, Nallatech, DRC, Pico, 
and XtremeData, and identified several architectural features 
common to all platforms: 1) one or more FPGAs; 2) a platform 
bus for communicating between the host and the FPGA platform; 
3) an FPGA communication controller that allows software to 
access on-chip resources such as block RAM and registers; and 4) 
one or more external memories. The virtual platform architecture 
provides these same four resources, as shown in Figure 2, with a 
unified interface and communication protocol that allows 
designers and tools to use the same RTL code on any supported 
platform. Details of the interfaces and communication protocols 
are omitted here for brevity.  

The virtual platform supports the following configuration options. 
For the external memories, the virtual platform allows designers 
to specify the number of virtual memories, the size, the number of 
ports (read or write), and the data width of each port. To enable an 
arbitrary number of ports per virtual memory, the virtual memory 
interface contains an arbiter using a round-robin policy for 
concurrent accesses. Virtual memories may either be mapped 
externally to physical memory or internally to on-chip memory, 
depending upon application requirements and available resources. 
Currently, designers are required to manually perform this 
mapping, which we will automate in future work. For the FPGA 

communication controller, the platform allows designers to 
configure different data widths and numbers of controllers. The 
platform also supports a configurable number of virtual FPGA 
devices, although at present each virtual device simply acts as a 
top-level entity for a corresponding physical FPGA.  

To enable software code portability, VirtualRC provides a simple 
C++ middleware API with overloaded read and write primitives 
that enable transparent communication of a variable or array to 
and from virtual resources. The API directly translates VirtualRC 
communication routines to virtual components into native API 
calls to the physical platform. The goal of the current API is to 
show proof of concept for communication with the virtual 
platform; the middleware could potentially use any API.  

4. EXPERIMENTS 
In this section, we describe the experimental setup (4.1) and then 
analyze performance and area overhead (4.2). We then evaluate 
the portability of applications and high-level synthesis tools (4.3) 
using VirtualRC across multiple physical platforms. 

4.1 Experimental Setup 
In our experiments, we evaluate VirtualRC on three different 
FPGA platforms: the GiDEL PROCStar III; Nallatech H101; and 
Pico Computing M501. Each platform has a significantly different 
platform architecture and API, and all use a variety of FPGAs 
from different vendors. To support each platform, we manually 
created the platform RTL shown in Figure 1, which required 
several days to several weeks. However, vendors could add this 
support in much less time due to familiarity with their platforms. 

Bitstreams for the GiDEL PROCStar III were generated using 
Altera Quartus 9.1 SP2. Bitstreams for the Pico M501 and 
Nallatech H101 were generated using Xilinx ISE 12.3. Driver 
versions used were 8.8 (GiDEL), FUSE 1.5 (Nallatech) and a pre-
release version of the M501 drivers (Pico). All software was 
compiled used g++ version 4.4.3 with –O3 optimizations. 

4.2 Overhead Analysis 
This section analyzes VirtualRC overhead. Section 4.2.1 presents 
case studies that evaluate application performance overhead. We 
then analyze FPGA memory bandwidth overhead (4.2.2), 
software middleware overhead (4.2.3), and resource overhead 
(4.2.4). 
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Figure 2: Virtual platform architecture overview. 



4.2.1 Application Case Studies 
This section evaluates VirtualRC performance overhead by 
comparing application performance of native implementations for 
a physical platform with implementations targeting VirtualRC on 
the same platform. We obtained source code for previously 
published implementations of Smith-Waterman and Needle-
Distance [6]. We chose these two bioinformatics applications due 
their existing implementation on the GiDEL PROCStar III and 
substantial speedup over an optimized software baseline.   

To evaluate overhead, we used VirtualRC to create the virtual 
platform interface required by the applications. We then manually 
mapped the application interfaces to the virtual resource 
interfaces. Porting the application required no modifications to the 
application code, and took approximately half an hour per 
application (not including compilation). We also created software 
based upon the original application software using the VirtualRC 
API. We then executed these applications on the PROCStar III, 
both with and without VirtualRC, for varying input sizes. 

Figure 3 illustrates the performance overhead of the Smith-
Waterman and Needle-Distance applications on VirtualRC for the 
PROCStar III. Across all input sizes, VirtualRC had a peak 
performance overhead of 6% for Smith-Waterman and 5% for 
Needle-Distance, with the overhead approaching 0% for large 
inputs sizes in both cases. This overhead was due to differences in 
the software required to interface VirtualRC with the original 
FIFO interface. In future work, we will add a configurable FIFO 
interface option to VirtualRC that will minimize this overhead. 
VirtualRC had an area overhead of approximately 1% for both 
applications due to the configurable virtual resources.   

4.2.2 External Memory Bandwidth Overhead 
For each platform (PROCStar III, M501, and H101), we measured 
the effective memory bandwidth with and without VirtualRC for 
varying transfer sizes. For VirtualRC, we configured a single 
virtual memory with a width equal to the native memory width. 
For the case without VirtualRC, we used a state machine and 
FIFO buffer to characterize a streaming application without 
blocking. We then measured the number of clock cycles required 
to transfer a specified amount of data.  

Table 1 evaluates the FPGA to external memory overhead. 
Overhead was smallest on the PROCStar III due to similarities 
between the GiDEL IP and VirtualRC interfaces, with a 

maximum overhead of 5% for small transfers and negligible 
overhead for large transfers. For the H101, maximum overhead 
was 8% for small transfers and again negligible for large 
transfers. The VirtualRC overhead was largest on the M501 due 
to significant differences in interface and features from 
VirtualRC. The M501 IP limits transfer from 32 to 4096 bytes. 
Although VirtualRC adds additional overhead, it also enables 
transfers of any size. We measured a peak overhead of 25% for 
small transfers, which decreased substantially for transfers over 
1KB. Since FPGA applications commonly use large data streams, 
the overhead of VirtualRC in these cases would be negligible. 

4.2.3 Software Middleware Overhead 
In order to analyze the software overhead for memory accesses, 
we measured the effective bandwidth for each platform using the 
VirtualRC API versus physical API for varying transfer sizes.  

Table 2 evaluates the host to external memory overhead. The 
PROCStar III had the smallest overhead of 6% due to similarities 
between GiDEL and VirtualRC APIs. Maximum overhead on the 
H101 was 27% for small transfers, and became negligible for 
transfers above 32 KB. The largest overhead of 46% was 
measured for the M501, but only for transfers of 16 to 64 bytes. 
Since data transfers between host and FPGAs are costly, 
applications tend to avoid small transfers, making the overhead of 
VirtualRC insignificant for common situations. 

4.2.4 FPGA Resource Overhead 
Resource overhead from VirtualRC stems from three major 
components: the FPGA communication controller; the virtual 
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Figure 3: Performance overhead of VirtualRC compared to native PROCStar III implementations of  
Smith-Waterman and Needle-Distance applications.  

Table 1: Read (write) overhead from FPGA to external 
memory due to VirtualRC memory virtualization. 

   16B  1KB  16KB  256KB  1MB 

PROCStar III  5%(4%)  3%(2%)  1%(1%)  0%(0%)  0%(0%) 

H101  4%(8%)  0%(0%)  0%(0%)  0%(0%)  0%(0%) 

M501  25%(19%)  5%(4%)  2%(2%)  NA  NA 
 

Table 2: Read (write) overhead from host to FPGA memory 
due to VirtualRC middleware API. 

   16B  1KB  16KB  256KB  1MB 

PROCStar III  5%(0%)  6%(0%)  0%(1%)  0%(0%)  0%(0%) 

H101  16%(27%)  13%(27%)  12%(17%)  0%(0%)  0%(0%) 

M501  44%(46%)  1%(0%)  1%(0%)  0%(1%)  0%(0%) 



memory read interface; and the virtual memory write interface. 
We determined overhead for each component using the 
appropriate vendor tool (Quartus, ISE). Each component was 
found to require less than 1% of total device resources in terms of 
LUTs, registers, and block RAMs. The exact resource usage on 
each platform varied based on how similar the native IP interface 
was to the VirtualRC interface specification. 

4.3 Portability Analysis 
In this section we demonstrate application and tool portability 
provided by the VirtualRC framework. To evaluate portability, 
we created a variety of applications for VirtualRC and also 
obtained examples from OpenCores (www.opencores.org) that we 
modified to use VirtualRC. We then executed each application 
and tool on the three aforementioned vendor platforms, using the 
exact same application code. Each application consists of RTL 
code in addition to C++ code using the VirtualRC middleware 
that transfers data to and from the virtual platform. Since 
performance was not the goal of these experiments, a frequency 
of 125 MHz was used except in cases where the estimated design 
operating frequency was lower.  

Table 3 summarizes a list of applications used to demonstrate 
portability on all three platforms. VirtualRC successfully 
executed all applications on each platform, with the exception of 
Option Pricing, which would not fit on the H101. This limitation 
was not a consequence of VirtualRC, but was caused by non-
parameterized RTL code that we could not reduce in size to fit on 
the older Virtex-4 FPGA on the H101. It is important to note that 
this table is not intended as a performance comparison due to 
significant platform differences. Instead, the purpose here is to 
show characteristics of each application on each system. 

Table 4 demonstrates tool portability. As with Table 3, these 
results are not intended to be compared across devices or between 
tools. Instead, these results verify that VirtualRC enables identical 
HLS code synthesized into RTL to work seamlessly across 
multiple platforms that are not directly supported by the tools. 
Therefore, VirtualRC potentially enables HLS tools to support 
any platform without effort from the tool vendors. 

5. LIMITATIONS AND FUTURE WORK 
There are several limitations that we plan to address as future 
work which include expanding VirtualRC to enable embedded 
processor architectures, further reducing overhead for different 
use cases, estimating virtual platform performance for design 
exploration, and integrating alternative software APIs.  

6. CONCLUSIONS 
To address challenges in FPGA design productivity owing to lack 
of code portability, we introduced VirtualRC. VirtualRC provides 
developers with a user configurable virtual platform interface, 
enabling portability across any supported platform. We evaluated 
VirtualRC using applications and benchmarks, and show a 
performance overhead of 5-6% with an area overhead of less than 
1%. We also demonstrated that VirtualRC enables application and 
tool portability by executing the same code for 11 different 
applications and two tools across three physical platforms. 
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Table 3: Demonstration of VirtualRC application portability. 

PROCStar III M501 H101 
Freq. 

(MHz) 
Time 
(ms)  

Freq. 
(MHz) 

Time 
(ms) 

Freq. 
(MHz) 

Time 
(ms) 

1D Convolution FP 125 39.29 125 247.90 100 91.06 

2D Convolution FP 106 13.18 106 15.18 100 43.25 

Option Pricing 125 12.15 s 125 14.40 s - - 

Sum Abs. Differences 98 14.72 98 15.62 98 86.71 

Needle Distance 125 194.00 125 116.20 100 199.51 

Smith Waterman 125 116.00 125 133.00 100 225.00 

Image Segmentation 125 12.40 125 16.39 100 4.81 

OpenCores SHA256 125 64.05 125 120.49 100 25.97 

OpenCores  FIR 125 24.51 125 413.80 100 106.16 

OpenCores  AES128 125 25.33 125 503.78 100 126.18 

OpenCores JPEG Enc. 125 15.29 125 23.93 100 21.24 
 

Table 4: Demonstration of VirtualRC tool portability. 

PROCStar III M501 H101 
Freq. 

(MHz) 
Time 
(ms)  

Freq. 
(MHz) 

Time 
(ms) 

Freq. 
(MHz) 

Time 
(ms) 

ROCCC 8pt FFT 125 15.66 125 16.61 100 39.91 

ROCCC 5-tap FIR 125 17.78 125 18.73 100 40.57 

AutoESL Convolution 125 4.29 125 7.31 100 2.49 

 


