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ABSTRACT

Commercial SRAM-based, field-programmable gate arrays

(FPGAs) have the capability to provide space applica-

tions with the necessary performance, energy-efficiency, and

adaptability to meet next-generation mission requirements.

However, mitigating an FPGA’s susceptibility to radiation-

induced faults is challenging. Triple-modular redundancy

(TMR) techniques are traditionally used to mitigate radi-

ation effects, but TMR incurs substantial overheads such

as increased area and power requirements. In order to

reduce these overheads while still providing sufficient ra-

diation mitigation, we propose the use of algorithm-based

fault tolerance (ABFT). We investigate the effectiveness of

hardware-based ABFT logic in COTS FPGAs by develop-

ing multiple ABFT-enabled matrix multiplication designs,

carefully analyzing resource usage and reliability tradeoffs,

and proposing design modifications for higher reliability.

We perform fault-injection testing on a Xilinx Virtex-5

platform to validate these ABFT designs, measure design

vulnerability, and compare ABFT effectiveness to other

fault-tolerance methods. Our hybrid ABFT design reduces

total design vulnerability by 99% while only incurring 25%

overhead over a baseline, non-protected design.

1. INTRODUCTION

As remote sensor technology for space systems increases

in fidelity, the amount of data collected by orbiting satel-

lites and other space vehicles will continue to outpace the

ability to transmit that data to other stations (e.g., ground

stations, other satellites). By increasing the onboard data-

processing capabilities of future systems, raw data can be

interpreted, reduced, and/or compressed onboard the space

system before transmitting the results to ground stations,

thus reducing data transmission requirements. Traditionally,

radiation-hardened devices, with increased protection from

long-term radiation exposure (total ionizing dose), provide
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system reliability and correctness for these space systems.

However, these hardened devices are very expensive and

have dramatically reduced performance as compared to non-

hardened commercial-off-the-shelf (COTS) components.

One approach for high-performance space system de-

sign leverages hardware-adaptive devices such as field-

programmable gate arrays (FPGAs). COTS FPGAs can

provide parallel computations at a high level of performance

per unit size, mass, and power [1]. Fortunately, many space

applications, such as synthetic aperture radar (SAR) [2],

hyperspectral imaging (HSI) [3], image compression [4],

and other image processing applications [5], where onboard

data processing can significantly reduce data transmission

requirements, are amenable to an FPGA’s highly parallel

architecture.

In order to leverage FPGAs in space systems, the FPGA

must operate correctly and reliably in high-radiation envi-

ronments. Fortunately, when combined with special system

design techniques, SRAM-based FPGAs can be viable for

space systems. An SRAM-based FPGA’s primary compu-

tational limitation is the possibility of SEUs causing errors

within the FPGA user logic and routing resources, which

can manifest as configuration memory upsets or logic mem-

ory (e.g., flip-flops, user RAM) upsets, resulting in devia-

tions from the expected application behavior. Fault-tolerant

techniques, such as triple-modular redundancy (TMR) and

memory scrubbing, can protect the system from most SEUs

and significantly decrease the SEU-induced errors, but de-

signing an FPGA-based space system using TMR introduces

at least 200% area overhead for each protected module.

Depending on the expected upset rates for a given space

system, other fault-tolerance methods could be used to

provide sufficient reliability while maximizing the resources

available for performance.

Algorithm-based fault tolerance (ABFT) is a method

that can be used with many linear-algebra operations, such

as matrix multiplication or LU decomposition [6]. For-

tunately, many space applications are composed of linear-

algebra operations; e.g., HSI features matrix multiplication,

while SAR features fast Fourier transforms. Other algo-



rithms can often be converted to fit an algebraic framework.

Traditionally, ABFT has been implemented in software,

with multiprocessor arrays, and in hardware, with systolic

arrays, to protect application datapaths. Our ABFT ap-

proach may be used in FPGA applications to provide both

datapath and configuration memory protection with low

overhead.

We present an analysis of multiple fault-tolerance meth-

ods on Xilinx FPGAs including TMR and ABFT. We

examine the resource usage of each method and measure the

vulnerability of the design using a fault-injection tool. We

then examine possible design tradeoffs and modifications

that can enable higher reliability. The remaining sections

of this paper are organized as follows. Section 2 surveys

previous work related to ABFT. Section 3 describes multiple

hardware architectures for a matrix multiplication design

that is used as an example case study. Section 4 analyzes

resource usage and vulnerability of each design using a

fault-injection tool. Finally, Section 5 presents conclusions

and outlines directions for future research.

2. BACKGROUND

ABFT augments an original data matrix with row and/or

column checksums and the linear-algebra operation is per-

formed on the new, augmented matrix. If the linear-algebra

operation is computed successfully, the resulting augmented

matrix will contain valid, consistent checksums [6]. ABFT

checksum generation and comparison has lower computa-

tional complexity than the primary linear-algebra operation.

ABFT computational overhead is generally low, and as a

proportion of total computation, decreases as the matrix size

increases. ABFT was originally envisioned for use with

massively parallel processor and systolic arrays, but can also

be created within an FPGA’s logic fabric. Our work shows

that ABFT in FPGAs can be used to detect many errors

caused by configuration memory faults in addition to data

memory faults.

2.1. Mathematical Basis for ABFT

The following definitions provide the mathematical back-

ground for ABFT. To obtain the weighted checksums, the

initial data will have to be multiplied by an encoder matrix.

Without loss of generality and to simplify the notation, we

assume that generic matrix is square with dimensions of

N ×N .

Definition 1: An encoder matrix is a matrix whose

product with the data matrix will yield the desired check-

sums. For the remainder of this paper we will refer to the

encoder matrix as EN . The EN used in this paper will have

dimensions of N × 1.

EN =
[

1 1 · · · 1 1
]T

(1)

Definition 2: A column checksum matrix AC is an initial

data matrix A that has been augmented with extra rows of

checksums. Such a matrix will have dimensions of (N +
1)×N and has the form:

AC =

[

A

ET

N
·A

]

(2)

Similarly, a row checksum matrix AR can be obtained

by augmenting a data matrix B with additional columns of

the following form:

AR =
[

A A · EN

]

(3)

Definition 3: The product of a column checksum ma-

trix A and a row checksum matrix B will produce a full

checksum matrix CF . Such a matrix will have dimensions

of (N + 1)× (N + 1) and the form:

AC ·BR =

[

A

ET

N
·A

]

·
[

B B · EN

]

=

[

A ·B A ·B · EN

ET

N
·A ·B ET

N
·A ·B · EN

]

=

[

C C · EN

ET

N
· C ET

N
· C · EN

]

= CF

(4)

The associative property of the matrix product allows

for verification of the multiplication procedure by simply

recalculating the checksums and comparing them with ones

obtained through the matrix multiplication. In general,

operations that preserve weighted checksums are called

checksum-preserving and the matrix product is an example

of such a function.

The ABFT method has also been expanded from matrix

multiplication to protect other algorithms comprised of

linear operations, such as QR decomposition or the Fast

Fourier Transform [7] [8]. Silva et al. investigated vulner-

abilities in traditional ABFT implementations and proposed

methods for improving fault coverage using a Robust ABFT

approach [9].

2.2. Alternative Fault-Tolerance Techniques

Traditionally, the primary methods for providing fault tol-

erance to FPGA systems have been TMR and configuration

scrubbing. TMR masks any single fault through majority

voting, and configuration scrubbing repairs faults to pre-

vent accumulation of multiple errors. Other fault-tolerance

strategies focus on similar redundancy-based techniques.

Duplication with compare (DWC) replicates an application

module and uses a simple comparison operator to detect

mismatches in output, requiring reconfiguration and re-

computation to correct the error [10]. Shim et al. used a
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Fig. 1. Matrix Multiplication Architectures

technique known as reduced-precision redundancy (RPR)

to reduce overhead in systems which can tolerate small

levels of noise [11]. RPR triplicates an application module

as in TMR, but the replicas have lower precision or only

operate on the most-significant bits of application data,

ensuring that the most-significant bits are protected and

errors in the least-significant bits are treated as noise in the

system. For applications that are not comprised of linear-

algebra operations, and therefore cannot be protected using

ABFT, these other fault-tolerance techniques can be used to

increase system reliability.

3. FPGA-BASED MATRIX MULTIPLICATION

Matrix multiplication (MM) is used as a key kernel in a large

number of signal-processing applications, and can benefit

from the performance of FPGAs. A matrix multiplication

module was created to examine the reliability of hardware-

based ABFT. For this analysis, 32-bit integer precision was

used in each design. This section discusses one possible

parallelization strategy for MM and the design decisions that

were made for the ABFT architecture.

3.1. Baseline, Serial Architecture

The minimal-hardware, serial architecture for the matrix

multiplication function consists of a single multiply-accumulator

(MAC), an address generation module, and three data stor-

age modules (RAM) as shown in Fig. 1(a). Two memories

are used to store the input matrices A and B, and one

memory is used for the resulting output matrix C. The

address generator iterates through the correct matrix indices,

sending data stored in the two input RAMs to the MAC, and

generates the appropriate address for output values. This

MM module can be used for any size matrix, the limiting

factor being data storage. This architecture requires N3 cy-

cles to fully calculate an output matrix. MM computational

throughput can be improved by exploiting parallelism with

additional MAC units.

3.2. Inner-Loop Parallel Architecture

The inner-loop parallel MM architecture unrolls the inner

loop of the MM algorithm as shown in Fig. 1(b). Each

element in the result matrix C is the dot product of a

row from matrix A and a column from matrix B. This

parallel architecture uses multiple processing elements to

compute the dot-product in parallel. With the fine-grained

parallel architecture shown in Figure 1(b), the output of

several multipliers are connected to an adder-tree structure,

allowing the parallel computation of partial dot-products,

which are then accumulated into the final, full dot product.

By fully parallelizing the dot product (using N multipliers),

the execution time of the full algorithm can be reduced from

O(N3) to O(N2). This method requires accessing multiple

memory elements in parallel, and may be limited by the total

number of memory elements on the FPGA.

3.3. ABFT Hardware Requirements

The addition of ABFT logic requires the creation of two

functions, ABFT checksum generation and ABFT check-

sum validation. Each of these functions requires a simple

accumulator (or a MAC for weighted checksums). Check-

sum generation sums each column of matrix A and writes

the checksum into the matrix A RAM. Next, checksum

generation does the same process for the rows of matrix

B. The checksum validation function sums the columns of

matrix C and compares the sum to the checksum value in

the matrix C RAM. If a mismatch is detected, an “error



Table 1. Resource Utilization and Overhead of MM Designs

Design Name Look-up LUT Flip-Flops FF BlockRAM BRAM DSP48 DSP48

Tables (LUT) Overhead (FF) Overhead (BRAM) Overhead Overhead

Baseline (logic) 3,431 – 1,039 – 48 – 0 –

Baseline (DSP48) 1,476 – 1,017 – 48 – 12 –

ABFT (shared MAC) 1,849 25% 1,119 10% 48 0% 12 0%

ABFT (extra MAC) 1,781 21% 1,265 24% 48 0% 15 25%

TMR 3,658 148% 1,873 84% 144 200% 36 200%

Hybrid ABFT 3,869 162% 1,465 44% 48 0% 15 25%

found” signal is asserted until the module is reset. For

some applications, such as image processing, data errors

that occur in low-significance bits may be ignored. ABFT

accomplishes this by comparing the difference of two gen-

erated checksums to a user-defined threshold value. For

maximum coverage, this threshold should be set to zero

for integer operations. Figure 1(c) shows an example of an

ABFT-enable MM architecture where an additional MAC is

used for the checksum generation and validation functions.

The MAC hardware that exists for the main MM operation

may be reused for creating checksums (shared-MAC), or an

additional accumulator can be used for this purpose (extra-

MAC). For the baseline architecture, an additional ABFT

accumulator would incur almost 100% overhead. However,

for parallel designs with multiple processing elements, the

overhead is amortized.

To implement ABFT error correction, the column and

row indices of faulty rows can be temporarily stored in

registers. The checksum generation module would then

recalculate the column checksum, ignoring the value at

the faulty row index. This sum would be subtracted from

the matrix C checksum value to obtain the correct value,

and stored in the matrix C RAM. Multiple errors can be

detected, but the correction algorithm may fail, depending

on the encoding matrix used for ABFT. The ABFT designs

discussed in Section 4 perform error detection only.

4. RESOURCE-OVERHEAD EXPERIMENTS

In this section we analyze the overhead of the architectures

presented in Section 3 and compare them to traditional fault-

tolerance mitigation strategies. For this analysis, we use

a 32-bit integer MM module with 4 processing elements.

This MM module can perform computation on matrices up

to 128×128 elements in size. This module is also the largest

module that will fit in the Xilinx V5LX110 FPGA when

using TMR. We compare a baseline inner-loop MM design

with several fault-tolerant designs (TMR, ABFT, and hybrid

TMR/ABFT). The results of this comparison are shown in

Table 1.

4.1. Hardware ABFT Resource Overhead

The baseline architecture uses 48 BlockRAMs to store

input and output data. When the design is implemented

completely in the FPGA logic fabric, 3,431 LUTs and

1,039 FFs are required. However, by changing synthesis

options in the Xilinx ISE tool, the multiply-accumulators

can be implemented in 12 DSP48 units (3 per 32-bit MAC),

reducing the needed LUTs by almost 2,000. The remaining

LUTs and FFs are used to create the counters and state

machines within the address generation unit.

The shared-MAC ABFT design does not require any

additional BRAM or DSP48 units over the baseline design.

The additional logic needed to handle addressing matrices

during checksum generation and validation increase the

required LUTs by 25% and FFs by 10%. The extra-MAC

ABFT design uses more DSP48s and FFs than the shared-

MAC design, while using fewer LUTs due to removed data

multiplexers.

For comparison, Table 1 also shows the resource usage

of a TMR design. This TMR design was created by

replicating the entire ABFT-MM core in the top-level VHDL

code and creating a majority voter for each of the outputs.

Alternative methods for creating TMR designs are available

from Xilinx [12], BYU-LANL [13], Mentor Graphics [14],

and others. As expected, 200% more BRAMs and DSPs

are required for TMR. However, the LUT and FF usage

did not increase as much as expected (but still much more

than in the ABFT designs). This difference may be caused

by optimization during the Xilinx synthesis or place-and-

route processes. We also examine a hybrid design based

on the extra-MAC design which uses TMR on the address

generator and all state machines within the design, but only

uses ABFT along the data path. This hybrid approach results

in a design that has approximately 162% overhead for LUTs

but only 25% overhead on the limited DSP48 resources.

4.2. Hardware ABFT Scalability

As more processing elements are used in the MM module,

the overhead created by the additional ABFT MAC unit

becomes extremely low. Additionally, the ABFT method



Table 2. Matrix Multiplication Fault-Injection Results

Design Name Faults Data System Vulnerable Vulnerable DVF

Injected Errors Hangs Config Bits (est.) RAM Bits (%)

Baseline (logic) 100,000 1,216 68 60,376 1,572,864 10.36%

Baseline (DSP48) 100,000 719 14 34,467 1,572,864 10.20%

ABFT (shared MAC) 100,000 351 67 17,111 0 0.14%

ABFT (extra MAC) 100,000 351 40 16,005 0 0.13%

TMR 100,000 42 12 5,158 0 0.041%

Hybrid ABFT 100,000 261 19 11,461 0 0.092%
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does not require additional BRAMs. For modules with

a large number of processing elements, the control logic

can be significantly more complicated than the baseline,

unprotected design. However, the MM design uses a very

small portion of the logic available on the FPGA, and the

design is limited only by BRAM and DSP48 availability.

Figure 2 compares the overhead of an ABFT design

to a TMR design while varying the number of processing

elements. For highly parallel designs, the ABFT extra-MAC

architecture has 6.25% DSP overhead with 0% BRAM

overhead. Meanwhile, the TMR design uses 200% more

of the limited BRAM and DSP FPGA resources. The TMR

design is limited to only 4 processing elements, while the

ABFT designs are able to scale up to 16 processing elements

before running out of DSP resources.

5. FAULT-INJECTION EXPERIMENTS

While Section 4 has shown that ABFT provides lower

overhead compared to other fault-tolerance strategies, the

reliability of ABFT must also be evaluated. In order to

validate our ABFT design, faults must be injected into

an executing system. In this section, we present FPGA

fault-injection results gathered using the Simple, Portable

Fault Injector (SPFI) [15]. SPFI performs fault injection by

modifying configuration frames within a design’s bitstream,

re-programming the FPGA, and comparing the resulting

output against known values. Partial reconfiguration is used

to reduce the time required to modify configuration memory

and to improve the speed of fault injection. However, due

to the length of time required to exhaustively test an entire

FPGA design, statistical sampling is used to estimate the

total number of vulnerable bits in a given design.

We implemented multiple fault-tolerant designs dis-

cussed in Section 3 on a Xilinx ML505 FPGA development

platform. Each design used a 32-bit integer MM module

with 4 processing elements. A UART was also implemented

on the FPGA to stream input test vectors to the MM

module and to report results back to a verification program.

During the design phase, the MM module is constrained to

a specified portion of the FPGA. The SPFI fault-injection

tool enables targeted injections, allowing the UART to be

avoided during fault injection. Table 2 shows the fault-

injection results for multiple fault-tolerant MM designs. For

each design, the table indicates the number of injections

performed and the number of data errors and system hangs

detected. In this analysis, bits resulting in false-positive

ABFT results were not considered vulnerable, since they

indicate an error in the validation logic being detected. The

measured percentage of faults is then scaled to the size of

the injection area to estimate the total number of vulnerable

bits. The fault vulnerability for each component is scaled to

the FPGA’s total number of configuration bits to estimate the

components’ design vulnerability factor (DVF). A design’s

DVF represents the percentage of bits that are vulnerable

to faults and can result in errors. Reliability of a given

design can then be calculated from the FPGA’s total fault

rate scaled by the design’s DVF. Most Xilinx FPGA designs

have a DVF that ranges from 1% to 10% [16] due to the

large amount of configuration memory devoted to routing.

The baseline MM design has approximately 60,376

vulnerable configuration bits. Additionally, the data stored

in BlockRAM is unprotected and can result in incorrect cal-

culations. The baseline MM design with DSP48 units has a

significantly lower amount of vulnerable configuration bits.

Using the built-in DSP48 units increases reliability of the

design because a DSP48 multiplier uses fewer configuration

bits than a multiplier implemented in the FPGA logic fabric.



Implementing addressing logic with DSP48 may enable an

even more reliable design.

The ABFT shared-MAC design has an estimated 17,111

vulnerable bits (about 50% of the unprotected design).

All of the BlockRAM data bits are protected through the

ABFT algorithm, resulting in a significantly lowered total

DVF. The vulnerable bits can affect address generation, the

checksum generation or validation, or the error detection

status register. By using an independent MAC unit for

checksum generation and verification, faults in the main

data-path do not affect checksum calculations, leading to a

more reliable design. As shown, the extra-MAC design has

fewer vulnerable bits than the shared-MAC design. Both

ABFT designs experience a similar amount of data errors,

but fewer faults cause the extra-MAC design to hang. An

examination of result matrices with data errors reveals that

many faulty matrices contained all zero values, producing

an incorrect result with a valid (zero) checksum. It may be

possible to further improve the reliability of ABFT designs

by modifying the ABFT encoding matrix to ensure that

output matrices cannot contain all zeros.

The TMR design has an estimated 5,158 vulnerable

bits and a DVF of 0.041%. The majority of these bits

are the result of routing faults or TMR majority voter

faults. This result represents a realistic lower bound on

total vulnerability of the MM design. However, using third-

party TMR design tools may result in higher-reliability

designs than our high-level TMR approach, since these tools

can perform TMR with finer granularity and more frequent

voting.

The hybrid ABFT design has approximately 30% lower

vulnerability than the extra-MAC design, but higher vulner-

ability than the TMR design. However, the hybrid design

has lower resource usage compared to the TMR design

(see Table 1). For applications where BRAM or DSP48

resources are used extensively, the hybrid ABFT design

provides a good compromise between low vulnerability

(0.09% DVF) and low DSP48 usage (25% overhead).

6. CONCLUSIONS

In this work, we have presented a novel analysis of ABFT

for low-overhead fault tolerance in FPGA systems. Several

matrix multiplication designs employing TMR and ABFT

fault-tolerance techniques were developed and tested using

a FPGA fault-injection tool. The results showed that ABFT

was capable of reducing the number of vulnerable configu-

ration bits in a design while also protecting all memory bits.

While the TMR fault-mitigation approach had the lowest

vulnerability, a hybrid ABFT/TMR design was able to

balance low design vulnerability (0.09%) with low resource

overhead (25%).

Future work will examine design techniques to further

improve the reliability of ABFT designs on FPGAs, such as

modifying the ABFT encoding matrix. We will also evaluate

the effectiveness of ABFT on other algorithms such as FFT

and QR decomposition.
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