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Abstract Machine-learning algorithms are employed in a
wide variety of applications to extract useful information
from data sets, and many are known to suffer from super-
linear increases in computational time with increasing data
size and number of signals being processed (data dimension).
Certain principal machine-learning algorithms are commonly
found embedded in larger detection, estimation, or classifi-
cation operations. Three such principal algorithms are the
Parzen window-based, non-parametric estimation of Proba-
bility Density Functions (PDFs), K-means clustering and
correlation. Because they form an integral part of numerous
machine-learning applications, fast and efficient execution of
these algorithms is extremely desirable. FPGA-based recon-
figurable computing (RC) has been successfully used to
accelerate computationally intensive problems in a wide
variety of scientific domains to achieve speedup over
traditional software implementations. However, this potential
benefit is quite often not fully realized because creating
efficient FPGA designs is generally carried out in a
laborious, case-specific manner requiring a great amount of

redundant time and effort. In this paper, an approach using
pattern-based decomposition for algorithm acceleration on
FPGAs is proposed that offers significant increases in
productivity via design reusability. Using this approach, we
design, analyze, and implement a multi-dimensional PDF
estimation algorithm using Gaussian kernels on FPGAs.
First, the algorithm’s amenability to a hardware paradigm
and expected speedups are predicted. After implementation,
actual speedup and performance metrics are compared to the
predictions, showing speedup on the order of 20× over a
3.2 GHz processor. Multi-core architectures are developed to
further improve performance by scaling the design. Porta-
bility of the hardware design across multiple FPGA plat-
forms is also analyzed. After implementing the PDF
algorithm, the value of pattern-based decomposition to
support reuse is demonstrated by rapid development of the
K-means and correlation algorithms.
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1 Introduction

Machine learning is a general term that has been used to
refer to a large and diverse set of methods for extracting
patterns from data. In general, it encompasses portions of
statistical and adaptive signal processing, probabilistic
decision theory, such as Bayes Rule, and meta-heuristic
strategies, such as the genetic algorithm. As computational
capacity has increased over the past few decades, machine-
learning algorithms have become widely used for problems
such as detection, estimation, and classification, involving
diverse data types, including time series, image, and video
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(spatio-temporal) data [1]. Raw audio, image, and video
data do not explicitly contain high-level information and
thus generally require an abstraction process to extract
useful information from the data. This process is often
accomplished via a sequence of data segmentation algo-
rithms [1, 2]. Clustering algorithms are the most common
type of algorithms used for segmenting data points into
groups and employ various measures of similarity. Proba-
bilistic algorithms can then be employed to represent the
segmented data as Probability Density Functions (PDFs)
rather than single data points (e.g., cluster centers). Such
data representations are essential in applications involving
decision-making based on probabilistic reasoning [3–5].
Alternatively, certain multimedia analysis tools use statis-
tical methods to model relationships between segmented
datasets as a function of the separation between them
(dissimilarity). These methods are useful for applications
such as video content retrieval and indexing [6], video
segmentation, and automatic speech recognition systems
[7, 8] that benefit from quantitative measures of the
statistical relationships between features.

Many of the machine-learning algorithms mentioned
above are primarily based on a data-driven approach
wherein the computational burden is heavily impacted by
the volume of data being processed. The Parzen-based non-
parametric PDF estimation algorithm is one such algorithm
that is computationally intensive, yet necessary for many
applications in pattern recognition, such as fingerprint
recognition, Bayesian classification, feature extraction [5],
bioinformatics [3], networking [9], stock market prediction
[10, 11], and image processing [4]. The high computational
burden arises because most problems involve large volumes
of data and require complex computations to be performed
in a high-dimensional space. To mitigate this problem,
application researchers have investigated ways to approx-
imate the solution by either solving the problem under a
reduced dimensional space or providing alternative meth-
ods like the Fast Gauss Transform (FGT) [12]. The FGT
addresses the dimensionality issue to a certain extent by
reducing the number of computations in each dimension.
Irrespective of the approximation method used, the
computation involved still grows exponentially with
increasing dimensionality. Thus, fast execution of the
PDF algorithm is important for solving high-dimensional
problems without structural (algorithmic) approximations
and within reasonable timeframes. Further, according to
Amdahl’s law [13], significant improvements to the
overall execution time of the multimedia analysis tool
are obtained only when significant portions of it are
improved. In other words, overall efficiency gains are
most likely to occur when the principal (or most often
used) portions of the machine learning tasks are
improved.

An emerging method for accelerating these algorithms
involves the use of reconfigurable computing (RC) based
on Field-Programmable Gate Array (FPGA) technology.
FPGAs lie between general-purpose processors and ASICs
(application-specific ICs) on the spectrum of processing
elements in that they are highly flexible (like processors)
and also have potential for high performance (hardware
acceleration). Commonly used, deterministic benchmarking
cores, such as Fast Fourier Transforms (FFTs) [14],
convolution, Lower-Upper triangular matrix Decomposition
(LUD) [15], and Basic Linear Algebra Subprograms
(BLAS), have been effectively implemented on FPGAs by
virtue of their inherent multi-level functional and data
parallelism. In addition to these benchmarking cores,
significant performance gains have been achieved with
FPGAs by selecting, developing, and testing diverse appli-
cations from various fields in signal and image processing.

However, developing FPGA designs is often time-
consuming and not every algorithm is amenable to
hardware acceleration. Preliminary analyses should be
performed to predict the algorithm’s amenability to a
hardware paradigm before undertaking a lengthy develop-
ment process. In contrast to the general computing domain,
there is a relatively modest variety of FPGA-based
hardware platforms from which a designer can choose.
These platforms primarily vary in the type of FPGA they
house and the manner in which data is communicated
between the FPGA and host processor; each platform can
vary with respect to the number of constraints on the
application design and performance. For example, decisions
regarding bit precision, design architecture, memory utiliza-
tion, and storage depend on the FPGA’s resource availability
and the size of the hardware design. The presence of
dedicated arithmetic blocks also dictates the implementation
options for certain mathematical instructions. Thus, it is best
to determine the expected performance attainable at an early
stage when migrating an algorithm to an FPGA platform by
employing simple performance prediction tools.

Another barrier to successfully using FPGA-based RC
technology for algorithm acceleration is the prohibitive
time and effort that is required to develop the necessary
FPGA core designs in a custom, case-specific manner. A
more desirable approach would be to recognize and exploit
common patterns in terms of computational structure and
data flow across a variety of algorithms and prove that
those design patterns are indeed suitable for use in other
FPGA implementations. The primary goal is hence to
develop a concise set of design patterns that can be
formally used to represent the decomposition of an
algorithm for parallel implementation. If the hardware
design of an algorithm can be represented at a high level
graphically via composite patterns (mixture of computation
and communication patterns), then other algorithms having
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a similar high-level representation can reuse the existing
design with only minimal customization. Such a high-level
description is also desirable to aid inexperienced FPGA
designers (e.g., domain scientists) so they can easily
comprehend and reuse existing hardware designs while
developing new applications. Pattern-based descriptions of
designs could be used to effectively disseminate and share
hardware cores as well. Such an approach can hence lead to
a significant increase in productivity via design reusability.
Several important machine-learning algorithms, such as PDF
estimation using Parzen windows, K-means clustering,
correlation, and information-theoretic measures, have very
similar underlying algorithmic and dataflow structures and
thus could potentially benefit from such an approach. In
general, the similarity in dataflow in many machine-learning
algorithms is due to the fact that application data (input to the
learning system) is compared with several representative
values (parameters of the learning system) to perform
inference. In addition to being structurally similar, most of
these algorithms are often applied to very large volumes of
data and impose difficult constraints on memory.

This paper describes the pattern-based decomposition,
analysis, and implementation of a scalable and portable
architecture for multi-dimensional, non-parametric PDF esti-
mation using Gaussian kernels on FPGAs. The work also
showcases the rapid development of two other algorithms, in
particular K-means clustering and correlation, by reusing the
structural and communication architecture developed for PDF
estimation due to similarities in the composite patterns
describing the respective algorithm decompositions.

The remainder of this paper is organized as follows.
Section 2 discusses background on some related signal
processing algorithms that are amenable for implementation
on FPGAs, prior work on machine-learning for multimedia
analysis, and discussions on relevant performance prediction
methods and design patterns for Reconfigurable Computing
(RC) used in this paper. The case-study algorithms and their
underlying similarities are discussed in Section 3. An
overview of design patterns and the motivations for pattern-
based algorithm decomposition are given in Section 4.
Preliminary analyses, the design methodology, and the basic
architecture for PDF estimation are presented in Section 5
with discussions on results and performance analysis.
Section 6 illustrates the concept of architecture reuse with
K-means clustering and correlation used as case-study
algorithms. We conclude the work in Section 7 by reviewing
insights gained and potential for future work.

2 Background

Previous works have discussed the importance of non-
parametric PDF estimation, K-means clustering, and corre-

lation in multimedia analysis. The authors in [7] employ
cross-modal correlations for clustering features in an image-
audio dataset. Clustering and feature extraction methods are
applied for video content retrieval and analysis in [16]. A
novel video segmentation technique was presented in [2]
based on correlating audio and video data. A simplified
probability-based methodology using histograms was pro-
posed in [6] for video analysis. Hence, a large number of
applications can benefit from fast computations of PDF
estimation, K-means clustering and correlation, especially
in time-critical missions. Previous works have also dis-
cussed the feasibility of targeting some structurally similar
algorithms for FPGAs. In [17], the authors use a Gaussian
kernel estimator as one of their case studies in presenting a
MATLAB-to-VHDL application mapper. It is a subset of
the algorithm considered here, in that our work employs
Gaussian kernels to estimate general PDFs and is hence
more computationally intensive. In [18], the authors present
simpler algorithmic variants of the K-means algorithm by
considering Manhattan and Max distances instead of
Euclidean distance for an efficient hardware implementa-
tion. Significant acceleration of the algorithm with accept-
able accuracy was achieved in clustering a sample dataset.
This work is different from [18] in that Euclidean distance
is used for implementing K-means (which is the preferred
method in most machine-learning applications) and, more-
over, the primary motivation is to accelerate a set of
machine-learning algorithms used in different stages of
multimedia data processing by reusing hardware designs
leading to shorter design times. Previous work in parallel
processing for large data volumes is also relevant to this
work. An object-recognition application was developed in
[19] by traversing huge volumes of data in a parallel fashion.
The paper showcased how a data-parallel programming
model can be used to solve a general set of data-intensive
algorithms. In many of these examples, the applications
could achieve significant performance gains if there was a
way to rapidly compute multi-dimensional PDFs. PDF
estimation enables the computation of metrics such as noise,
error rates, and uncertainties that are very important for
researchers in the application domain [3–5, 20].

The authors in [21] and [22] had developed several
signal-processing applications on FPGAs in order to obtain
speedup and discussed tradeoffs in solution accuracy and
resource utilization. However, these papers only predict
performance factors in a relatively limited setting. Various
performance prediction tools have been proposed [23, 24]
that base their techniques on parameterizing the algorithm
and target FPGA platform. Algorithms are decomposed and
analyzed to determine their total size (in terms of resources)
and computational density. Computational platforms are
primarily characterized by their memory structure and
capacity and interconnect bandwidth. In particular, the RC

J Sign Process Syst



Amenability Test (RAT) presented in [23] is a simple
methodology that suggests a step-by-step procedure to
predict the performance, in terms of speedup, of a specific
design for an application on a specific platform before
coding begins. This pre-implementation test also helps the
designer to understand the strengths and weaknesses of a
particular algorithm towards parallel implementation. Com-
munication and computation parameters in RAT are
quantified based upon algorithm and FPGA platform
characteristics. An estimate of performance in terms of
execution time in hardware is then derived from the
analytical models embedded in RAT. Comparing the
hardware prediction against a known execution time for a
software baseline leads to the overall speedup estimation. In
this work, we use RAT to predict performance of an
algorithm on multiple FPGA platforms.

Building a good reconfigurable design requires skill and
effort, and is often accompanied by a steep learning curve
for designers without prior FPGA design experience. In
[25], the authors emphasize the importance of identifying
and cataloging an exhaustive list of design patterns to solve
recurring challenges in reconfigurable computing and
increase productivity. In this work, we validate the utility
of design patterns by identifying and classifying primitive
patterns relevant to this work. The patterns are then
quantified and applied for algorithm decomposition and
performance prediction using RAT.

3 Machine-learning Algorithms for Segmentation

Knowledge of the algorithm’s data flow and computational
complexity is essential in order to make strategic decisions
during design development. In this section, we provide an
overview of the algorithms used in the case studies in this
work and investigate the commonalities in their structures.

3.1 PDF Estimation

The common parametric forms of PDFs (e.g., Gaussian,
Binomial, Rayleigh distributions) represent mathematical
idealizations and, as such, are often not well matched to
densities encountered in practice. In particular, most of
these classical parametric densities are unimodal (having a
single local maximum), whereas many practical problems
involve multimodal densities. Furthermore, because of
correlations among the data features, it is unusual for
high-dimensional density functions to be accurately repre-
sented as a simple product of one-dimensional densities, the
latter of which are significantly easier to compute. Thus, an
estimate of the joint (multi-dimensional), non-parametric
PDF (i.e. a PDF that assumes no particular functional form)
is often required. The computational complexity of the

Parzen window-based PDF estimation algorithm is O(Nnd),
where N is the total number of data points, n is the number
of discrete points at which the PDF along a dimension is
estimated (i.e. bins) and d is the number of dimensions.
Table 1 illustrates the computational burden incurred in
terms of time elapsed (where code is executed on a 3.2 GHz
single-core Xeon processor) in computing PDFs of increas-
ing dimension (number of signals considered) using the
Parzen window technique and Gaussian kernels. The entries
for the estimated elapsed time were made by scaling the
number of computations exponentially corresponding to
increasing dimensions. The total number of data samples
processed was set at 204,800 (N) and the support size on
each dimension, n, was set as 256. Mathematically, the
probability that point i falls in a d-dimensional space is
given by,

p ið Þ ¼ 1

n1 ::: nd

Xn1
j1¼1

:::
Xnd
jd¼1

ϕ xi; x
j1 ; h

� �
::: ϕ yi; y

jd ; h
� �

ð1Þ

where h is the bin size, which acts as a tuning parameter for
resolution of the PDF estimate, the set (x j,...y j) represents the
d subsets of bin centers at which the PDF is estimated, and
the set (xi,...,yi) represents the ith input data point in a d-
dimensional space, where i ranges from 1 to N.

The kernel function 8 could be as simple as a histogram
function, a more general rectangular kernel, or the widely
favored Gaussian kernel. The first two cases fall under the
class of naïve estimators. In the first case (histogram
function), the data range is divided into a set of successive
and non-overlapping intervals (bins), and the frequencies of
occurrence in the bins are plotted against the discretized
data range. The rectangular kernel case is similar except
that overlapping intervals are permitted. In either case, the
bin size should be chosen such that a sufficient number of
observations falls into each bin. The resulting PDF estimate
depends on the bin size as well as the discretized dataset’s
range and is discontinuous at the bin boundaries.

Although naïve estimators yield discontinuous results,
the construction can be easily generalized to achieve
continuous PDF estimates by employing different kernel
functions. The smooth reproduction of the underlying

Table 1 Time elapsed on a 3.2 GHz single-core Xeon processor in
estimating PDFs using Parzen windows.

D Time elapsed Factor increase in elapsed time

1 0.578 s 1
2 158.75 s ~275
3 ~12 h (est.) ~2752

4 ~139 days (est.) ~2753

J Sign Process Syst



Gaussian process in Fig. 1a clearly shows the advantages of
Gaussian kernels in this aspect and is thus the motivation
for its use here. The mathematical formula for a Gaussian
kernel is defined in Eq. (2)

ϕ xi; x
j; h

� � ¼ 1ffiffiffiffiffi
2p

p
h
e�

xi�xjð Þ2
2h2 ; ð2Þ

where h plays the role of the standard deviation. The
resulting expression for the 1-D Parzen window PDF
estimate is,

p xj
� � ¼ 1ffiffiffiffiffi

2p
p

hn

Xn
j¼1

e�
xi�xjð Þ2
2h2 ð3Þ

Computing complex exponentials is challenging in
hardware because it requires significant hardware resources.
To make the algorithm more suitable for hardware, a
truncated second-order Taylor series expansion replaces the
exponential function for the development of the core in
hardware, as defined in Eq. (4).

f xi; x
j

� � ¼ 1ffiffiffiffi
2p

p
h

1� xi�xjð Þ2
2h2

� �
; for 1� xi�xjð Þ2

2h2

� �
� 0

0 ; otherwise

(

ð4Þ

The degree to which this quadratic approximates the true
Gaussian kernel in Eq. (2) decreases for data points that
yield large values of |xi−xj|. But that condition is avoided by
giving zero weight to points that cause the argument
1−(xi−xj)2/2h2 to be less than zero, which occurs when
|xi−xj| is greater than √2h. The plot in Fig. 1a for the
Gaussian kernel employs the approximation given by Eq.
(4). Additional management of approximation error is

achieved by pre-scaling the kernel to unity variance prior
to computations on the FPGA. The datasets xi and xj are
scaled by √2h before being transferred from the processor
to the FPGA, which reduces the factor 1−(xi−xj)2/2h2 to
1−(xi−xj)2, thus making the computational error due to the
use of the Taylor series representation on the FPGA
independent of the particular choice of h. The dynamic
range of the dataset can further be reduced by considering
only the higher order bits during computation. This method
is a simple task to implement since FPGAs are extremely
efficient at performing bit-level manipulations.

3.2 K-Means Clustering

In any data analysis problem given a training set of points,
unsupervised learning algorithms are often applied to
extract structure from them. Typical examples of unsuper-
vised learning tasks include the problem of image and text
segmentation [1]. A simple way to represent data is to
specify similarity between pair of objects. If two objects
share the same structure, it should be possible to reproduce
the data from the same prototype. This idea underlies
clustering methods that form a rich subclass of unsuper-
vised algorithms. The K-means algorithm is a popular
unsupervised clustering algorithm that partitions N data
points into m clusters by finding m mean vectors μ1, μ2,…,
μm representing the centroids of the clusters (see Fig. 1b for
an illustration of data points represented by two features
partitioned into four clusters). It is an iterative algorithm
that tries to minimize the total intra-cluster variance, or, the
squared error function

V ¼
Xm
j¼1

X
xi2Sj

xi � mj

� �2
ð5Þ
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Figure 1 Illustration of a 1-D PDF estimation using three different
kernels, and b K-means clustering. For the Gaussian kernel, the Taylor
series approximation is used. In general, PDFs can be highly non-
Gaussian (e.g., bimodal) as shown here. Parzen estimates using

rectangular, and in particular Gaussian kernels, generally provide
estimates of the true underlying PDF that are far superior to the
histogram function. In the case of data clustering, it is desired to
partition complex data sets in groups that share similar feature values.
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where there are m clusters Sj, j = 1, 2,…, m and μi is the
centroid of all the points xi in Sj.

To begin with, the data points are partitioned into m initial
sets, either at random or using some heuristic approach. The
centroid of each set is then computed and a new partition is
constructed by associating each data point with the closest
centroid. The centroids are then recalculated for the new
clusters. This process is repeated until data points no longer
switch clusters or alternatively centroids remain unchanged.
The computational complexity of the algorithm is O(NdmT)
where d is the number of features representing the data
point and T is the number of iterations.

3.3 Correlation

Correlation computes a measure of similarity between two
datasets (e.g., audio signals) as they are shifted by one
another across time. Correlation is often used to measure
the delay between two signals having the same shape with
one delayed relative to the other. Autocorrelation is the
correlation of a signal with itself while cross-correlation is
the correlation between two different signals. The correla-
tion result reaches a maximum at the time when the two
signals match best. For example, if the two signals are
identical, this maximum is reached at t=0 (i.e. no delay).
Autocorrelation is useful for finding repeating patterns in a
signal, such as determining the presence of a periodic signal
that has been buried under noise, or identifying the funda-
mental frequency of a signal that does not actually contain that
frequency component but implies it with many harmonic
frequencies. Mathematically, the correlation between two
discrete signals xi and yi with n samples each, where τ is
the delay and m is the maximum delay, is given by,

R tð Þ ¼
Xn
i¼1

xiyiþt ; 0 � t � m; m < n ð6Þ

3.4 Algorithm Similarity

Although the algorithms overviewed in the previous sections
address different problems, involve different computations,
and appear at different stages during data analysis, the
underlying data flow within each algorithm has significant
similarity. The data flow in these algorithms follows an
exhaustive data permutation pattern wherein the interaction
between every sample in two input vectors I1 and I2 affect
the value of every sample in an output vector O.

In PDF estimation, it is between the data points (I1) and
the points at which the PDF is estimated (I2). In K-means
clustering it is the Euclidean distance between the data
points (I1) and the cluster centers (I2), and in correlation it is
the multiplication of two signals (I1 and I2) shifted over

different time delays. Fig. 2 illustrates the dataflow and
computations involved in each of the three algorithms in a
common framework.

4 Pattern-Based Algorithm Decomposition

Designers who have achieved success in attaining orders of
magnitude increase in performance (e.g., speed and power)
through hardware acceleration of algorithms are in a select
group and are typically highly skilled at exploiting FPGA-
based systems and related tools (e.g., hardware description
languages (HDLs), logic design, and performance predic-
tion tools). To significantly increase the productivity of
FPGA design and development in general, we must
improve the productivity of designers who are not FPGA
experts. High-level language tools, popularly known as
application mappers (e.g., Impulse C, AccelDSP, Carte C,
C2H), translate high-level language code to HDL versions,
thereby improving productivity. Unfortunately, performance
in such scenarios is highly dependent on the mapper’s
efficiency in extracting parallelism from the algorithm
structure. The mapper also dictates algorithm decomposition
for a parallel implementation, restricting the designer’s
freedom to explore different decomposition strategies.

Another way of improving design productivity is to
reuse and leverage existing hardware designs. One of the
primary motivations behind this work is to represent FPGA
designs at a higher level of abstraction, thus making them
more readable and therefore reusable. Design patterns [26]
were introduced in the software engineering domain as
common solutions to recurring problems and have success-
fully formed the basis for creating and exploring designs,
reusing solutions for similar software applications. More
recently, there have been efforts to apply pattern-based
design to FPGA-based reconfigurable computing [27, 28].
In [25], the authors identified and cataloged an extensive
list of design patterns that can be used to solve a broad
range of problems spanning diverse fields. By decomposing
algorithms in terms of simple design patterns, a developer
is able to understand the dataflow and structure behind the
parallel implementation without delving into the details of a
hardware circuit. In our work, we have identified a list of
primitive design patterns and categorized them in such a
manner that is most appropriate for our use for the design of
machine-learning algorithms and for efficiently exploring
the designs using performance prediction tools like RAT
[23]. Two of the most important categorizations of patterns
and their examples are shown in Table 2: computation
patterns and communication patterns. While computation
patterns deal with extracting and implementing parallelism
in the algorithm, communication patterns provide different
means of regulating data flow to keep the computation

J Sign Process Syst



patterns busy. Note that the patterns listed in Table 2 are
primitive patterns. A variety of composite patterns can then
be constructed from these primitive patterns to solve
potentially any complex problem. For example, a wavefront
pattern [25] can be constructed using a datapath replication
pattern with each parallel datapath comprising of pipeline
patterns of different lengths.

4.1 Pattern Description

The pipeline and datapath replication patterns are described
in this section using a standard format suggested in [25].
These two primitive patterns are highly important in that
any composite pattern for the purpose of expressing and
implementing parallelism can be constructed from a
combination of pipeline and datapath replication patterns.

4.1.1 Pipeline Pattern

& Intent: Used for implementing programming structures
wherein successive/intermediate instructions overlap in

execution. The instruction throughput is increased by
executing a number of instructions per unit of time
resulting in a lesser number of net clock cycles spent
during processing.

& Motivation: The primary motivation is to achieve
faster processing speeds. When a program runs on a
processor, the basic assumption is that each instruc-
tion in the program is executed before the execution
of a subsequent instruction is begun. However, in
many cases the instruction throughput could be
increased if the program allows the possibility to
execute more instructions per unit of time. Each
instruction is computed and linked into a ‘chain’ so
each instruction’s output is an input to a subsequent
instruction.

& Applicability: This pattern is intended for program
structures where different instructions in the program
execution could operate over different data concurrently.

& Participants: A communication pattern regulates data-
flow; partial/intermediate results may need to be
accumulated or buffered for subsequent usage.

Table 2 List of primitive patterns and their description.

Pattern name Description

Computation patterns
1. Pipeline Increases throughput by overlapping execution of independent computations
2. Datapath replication Exploits parallelism by duplicating computational kernels
3. Loop fusion Alleviates potential pipeline stalls in nested loops by fusing them
4. Tree [27] Provides computational structure for implementing tree-based algorithms
5. Mesh [27] Provides templates for implementing image-based or 2-D problems
6. Look-up tables [28] Reduces run-time computation of complex operators by simpler lookup ops

Communication patterns
1. Scatter Distributes data among many computational kernels
2. Gather Collects data (results) from many computational kernels
3. Broadcast Replicates data to many computational kernels
4. Round robin Scatters equally-sized blocks of data in sequential order among all kernels
5. Memory resolution Resolves memory contention problems by inserting pipeline stages & buffers

Computation Kernels

PDF Estimation

Input 1 (I1)

Input 2 (I2)

Loop over I2

Loop over I1

Output (O)

…

…
… …

…

…
… …

…

…
… …

Computeϕ (I1,I2) Compute p(I2)

K-means Clustering 

Compute (I1-I2)
2 Assign cluster Update centers 

Correlation Measure 

Compute I1 x I2(τ) Compute R(I1,I2)

I1 : Data points
I2 : Points at which PDF is estimated

I1 : Data points 
I2 : Cluster set and their centers

I1,I2 : Datasets
k : Time lag (-  < τ < )

Figure 2 Dataflow and computational structure of PDF estimation, K-means clustering, and correlation.
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& Collaborations: A communication pattern regulates
dataflow and keeps data fed to the pipeline.

& Consequences

1. When all instructions in the program execution are
not independent, the pipeline control logic (i.e. the
controller) must insert a stall or wasted clock cycle
into the pipeline until the dependency is resolved.

2. While pipelining can theoretically increase perfor-
mance over a non-pipelined core by a factor of the
number of stages (assuming the clock frequency also
scales with the number of stages), in reality, design
limitation will not always lead to ideal execution.

3. The instruction latency in a non-pipelined design is
slightly lower than in a pipelined equivalent. This is
due to the fact that extra flip flops must be added to
the data path of a pipelined design.

& Known uses: Any algorithm/program that has indepen-
dent instructions in its structure (e.g., PDF estimation,
Correlation).

4.1.2 Datapath Replication Pattern

& Intent: Used for exploiting computational parallelism
observed in sequential programming structures such as
computational loops.

& Motivation: The primary motivation is to achieve faster
processing speeds. Parallelism observed in computations
can be efficiently exploited using custom logic. Compu-
tational structures such as loops iterate over the same set
of processing instructions multiple times. In case of zero
data dependencies between iterations (or limited data
dependency), the processing instructions can be replicat-
ed in hardware to perform multiple iterations of the loop
in parallel.

& Applicability: This pattern is intended for exploiting
parallelism in computational structures such as loops. An
important consideration for implementing the pattern is
data dependencies between loop iterations. Depending on
the individual case, the implementation may need
intermediate buffers or communication links between
parallel implementations of computational kernels.

& Participants: Apart from the replicated kernels, a
communication pattern regulates dataflow with possible
requirements of additional buffers.

& Collaborations: Communication patterns regulating
dataflow and the total number of iterations required on
the kernel instances implemented in hardware.

& Consequences

1. Since the pattern implements an area-time tradeoff,
higher processing speeds achieved via parallel

instances of the kernel come at the cost of increased
implementation footprint in hardware.

2. Additional overhead in terms of parallel data
communication and control logic are present.
Depending on the FPGA platform and implemen-
tation, the problem may be communication-bound,
limiting the number of parallel kernels that can be
fed with data in parallel.

& Known uses: PDF estimation, Molecular dynamics,
K-Means clustering, Sorting algorithms.

4.2 Quantifying Design Patterns

Since design patterns provide a formalized way to represent
algorithm decomposition and the associated communication
for parallel implementation, they can be quantified and used
in analytical models like RAT to predict the algorithm’s
amenability to hardware acceleration (to be described in
Section 5.1), before undertaking a lengthy (and possibly
fruitless) development process. We can analyze the impact
of each design pattern in terms of throughput and/or
overhead contribution to design performance. In this work,
throughput of a design pattern is defined as the maximum
number of operations that it can perform per clock cycle.
Latency is defined as the number of cycles spent in data
transfers before any useful computation is performed. For
example, a pipeline pattern has a throughput equal to the
number of pipeline stages and contributes an equal cycle
count on latency (i.e. clock cycles spent in filling up the
pipeline stages). The throughput, latency, and graphical
notation of patterns relevant to this work are given in
Table 3. Having decomposed the algorithm as a composite
of primitive patterns, the net throughput and latency can be
inferred from the structure and behavior of the constructed
composite pattern.

5 A Scalable and Portable Architecture for PDF
Estimation

Having investigated and analyzed the commonalities shared
by the three case-study algorithms in this work (see Section 3)
we suggest that an efficient FPGA design developed for
one of the algorithms, say PDF estimation, can be
effectively reused for computing the others. For this
reason, an in-depth explanation of the design and
performance evaluation of a suitable architecture for only
the PDF estimation algorithm will be given in the
following sub-sections. Then, in Section 6, we will discuss
how the architecture developed for PDF estimation can be
effectively adapted by reusing most of its design for
developing other similar algorithms.
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The general architecture of the 1-D PDF estimation
algorithm based on pattern-based decomposition is shown
in Fig. 3. A computational kernel updates the PDF value at
a particular point x (i.e. a bin) based on the value of a
particular data sample xi (where xi є I1 and x є I2). The
Parzen window technique is an embarrassingly parallel
algorithm where the PDF values at multiple points can be
evaluated at the same time by replicating the computational
kernel (datapath replication pattern). The kernels in the
parallel datapath are seeded with different values in I2 via a
scatter communication pattern. Thus, data samples can be
broadcasted across kernels that can then process data
independently in parallel (see Fig. 3). Each kernel can also
benefit from a pipelined implementation while performing
all the operations (see Eq. 4) required on every data sample
(pipeline pattern). The PDF values are computed in 8(I1,I2),
accumulated in p(I2) and stored in output memory O. Load
balancing and reduction of communication and synchroni-
zation requirements are necessary to ensure that hardware

outperforms its sequential software counterpart. In estimating
multi-dimensional PDFs, computation of the kernel functions
8 in each dimension are independent of the others and hence
performed in a parallel fashion within each pipeline. Internal
registering for each bin keeps a running total of all processed
data; these cumulative totals comprise the final estimation of
the PDF function.

The development stages in the system design are
highlighted in Fig. 4 and explained briefly in the following
bullets for a 1-D PDF design. The same can be extended for
higher-dimensional PDF estimation with suitable modifica-
tions made to the computational kernel.

& Performance Prediction—Based on a preliminary de-
sign of the algorithm (in the form of design patterns
shown in Fig. 3a) and the basic resources available for a
selected FPGA-based computing platform (in the form
of parameter values to quantify the design patterns), the
attainable speedups are predicted using RAT. Numerical
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Table 3 Throughput, latency
and notations of primitive
patterns.

Pattern Throughput (ops/cycle) Latency (cycles) Notation

Pipeline Tp = no. of pipeline stages Lp = no. of pipeline stages

Datapath replication Td  = no. of replications N/A

Broadcast N/A N/A

Scatter N/A Ls = buffer length

Gather N/A Lg = buffer length

Tp

Td

bcast
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analysis was conducted and a suitable fixed-point
implementation is chosen because probability values
lie between 0 and 1, negating the need for the
dynamic range features of a floating-point format.
Details of RAT’s performance prediction are provided
in Section 5.1.

& Kernel and core design—The basic task of a kernel in
the 1-D case is the computation of the kernel function
8 =1-(xi-x)

2. A core contains a number of kernels (k)
with each kernel in the design performing the
aforementioned computation for a different x (i.e.
different seed). The computation increases in com-
plexity while estimating higher-dimensional PDFs
(refer Section 5.3). The parameter k is chosen based
upon the preliminary resource analyses performed
earlier. Details concerning the kernel and core designs
are given in Section 5.2.

& Test bench and simulation—Memory instantiations for
x and xi are made, test bench files are generated, and
functional simulations are performed to validate the
design.

& Overall system design, verification, and visualization—
Integration of the core with the host processor (middle-
ware design) is developed followed by verification of
the computed PDF.

5.1 Performance Prediction

Although FPGAs have much to offer in terms of flexibility
and performance, they are not amenable for all algorithms.
RAT [23] is a simple methodology developed for predicting
the performance of a specific algorithm design on a specific
platform. By parameterizing a particular design strategy and
a platform selection into RAT, the developer can analyze
and predict likely speedups attainable. For RAT, speedup is
defined as the ratio of execution time on a relevant general-
purpose processor (tGPP) to the execution time on an FPGA
(tRC).

speedup ¼ tGPP
tRC

ð7Þ

For ease of predicting speedup, the RAT analytic models
take the form of a worksheet, reproduced in Table 4, and
feature two important steps. The first step deals with
estimating the communication burden (tcomm) involved in
transferring data in and out of the FPGA. The entries in the
worksheet related to this step are the communication
parameters (throughputideal, αwrite, αread) and the dataset
parameters. The second step involves the estimation of time
spent in performing computation (tcomp) over the data
transferred (Nelements) on the FPGA. In the original formu-

Performance 
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core design 
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verification 

System 
design 

Test 
bench

Functional 
simulation

Figure 4 Development stages in system design.

Table 4 RAT input parameters for analysis of 1-D and 2-D PDF estimation algorithms.

Dataset parameters 1-D PDF 2-D PDF

Nelements, input (elements) 512 1024
Nelements, output (elements) 1 65536
Nbytes/elements (bytes/elem) 4 4
Communication parameters 1-D PDF 2-D PDF
throughputideal (MB/s) 1000 1000
αwrite 0<α<1 0.37 0.37
αread 0<α<1 0.16 0.16
tcomm (sec) 6.0E-6 1.6E-3

Computation parameters 1-D PDF 2-D PDF
NOps/element (ops/elem) 768 393216
Td (ops/cycle) 8 16
LatencyNET (cycles) 515 131072
Tp (ops/cycle) 3 3
fclock (MHz) 150 100
tcomp (sec) 1.2E-4 4.3E-2

Software parameters 1-D PDF 2-D PDF
tGPP (sec) 0.578 158.8
Niter (iterations) 400 400

Predicted speedup 11.5 9.0
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lation of RAT, parameters Nops/element, fclock, throughputproc
and Nelements determine computation time. The total time
spent on the FPGA (tRC) to execute the entire algorithm is
calculated (see [23] for details) as,

tRC ¼ Niter tcomm þ tcomp
� �

tcomm ¼ tread þ twrite

tread=write ¼
Nelements � Nbytes=element

aread=write � throughputideal

tcomp ¼
Nelements � Nops=element

fclock � throughputproc

ð8Þ

The memory available on the FPGA or the board hosting
the FPGA is often much smaller than what is required for
storing all of the application data. Niter denotes the number
of iterations of communication and computation required to
process all available data. The authors in [23] suggest that
the parameter throughputproc be approximately chosen
based upon the number of data samples that can be
processed in parallel. This is not trivial to estimate in many
cases and might lead to suboptimal predictions if carelessly
chosen. A pattern-based design embeds the parallelism
(throughput) and the accompanying overhead (latency)
during algorithm decomposition and would help better
parameterize RAT while estimating tcomp. Latency effects in
pipelines and buffers are easily extracted from the patterns
as against manual interpretation. For example, in the PDF
design (see Fig. 3), tcomp is computed as,

tcomp ¼ Latencynet þ
Nelements � Nops=element

throughput

� �
� 1

fclock

Latencynet ¼ Ls þ Lp þ Lg
throughput ¼ Tp � Td

ð9Þ
The worksheet in Table 4 shows the input parameters for

the RAT analysis for the 1-D and 2-D PDF estimation
algorithms. The communication parameters model a Nalla-
tech H101-PCIXM card containing a Xilinx V4LX100 user
FPGA connected to a Xeon host processor over a 133 MHz
PCI-X bus. Although the entire application involves
204,800 data samples, each iteration of the 1-D PDF
estimation on the FPGA will involve only a portion of that
data (512 data samples, or 1/400 of the total set) because of
memory constraints on the FPGA. A corresponding input
buffer size of 512 is chosen for entry in the worksheet.
Since the computation is performed in a two-dimensional
space for a 2-D PDF, twice the number of data samples (in
blocks of 512 words for each dimension) is sent to the
FPGA. The number of output elements in the RAT table
corresponds to the number of outputs for every call to the
FPGA. In the 1-D case, the estimated PDF values at 256

points are returned from the FPGA after all calls to the
FPGA are complete (i.e. after Niter calls). There is sufficient
block RAM on the FPGA to hold the results of the 1-D
PDF algorithm. Since the PDF output elements need not be
sent for each call, we account for the communication time
by distributing the total number of output elements over
Niter calls. From Table 4, we understand that the FPGA is
called 400 times resulting in an average value of <1 output
element per call. We round this to the next largest integer
(1 in this case). In the 2-D case, the PDF values are
computed over 256×256 (i.e. 65536 in the worksheet)
points and are sent back to the host for every call made to
the FPGA due to insufficient block RAM to store results
between calls.

The computational density of the algorithm is defined in
terms of Nops/element. Each data sample in the 1-D PDF case
requires three operations at each of the 256 points at which
the PDF is estimated, resulting in 768 operations. In the
2-D PDF algorithm, each data sample requires 6 operations
at each of the 256×256 points leading to 393216
operations. The computational throughputs for the 1-D
and 2-D designs are estimated using FPGA clock frequen-
cies of 150 MHz and 100 MHz, respectively. The
throughput of the design is determined based on the
constructed composite pattern (see Fig. 3)—eight parallel
datapaths, each comprising of a 3-stage pipeline, leads to a
net throughput of 24 ops/cycle. Ls and Lg equal 256 (i.e.
size of I2 used to seed the parallel datapaths) and Lp equals
three leading to a net latency of 515 cycles. For the 2-D
PDF design, the latency Ls and Lg increase to 65536 (256×
256 seeds) >while the number of replicated datapaths
equals 16 (i.e. eight for each dimension). The software
baseline (tGPP) for computing speedup values was mea-
sured from an optimized C program (optimization flag was
set to O3) executed on a 3.2 GHz single-core Xeon
processor using single-precision floating point. The trun-
cated Taylor series expansion was used in place of the
exponential in the C program as well. RAT predictions are
then estimated to determine an attainable execution time
and later compared against experimentally measured soft-
ware results to compute speedup. The predicted speedup for
the 1-D and 2-D PDF algorithms was 11.5 and 9.0,
respectively.

5.2 1-D PDF Design

A design of a 1-D PDF relies heavily on the availability of
dedicated arithmetic units and memory blocks. Not only
should the available resources be efficiently used but also
the design should scale well with application complexity.
Taking these points into account, a multi-core design with a
key design parameter k (the number of kernels or parallel
datapaths in a core) is proposed. The support size of the
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PDF is 256 along one dimension (I2) and the number of
data samples processed for every call to the FPGA is 512
(I1). The multi-core aspect of the design is developed with
consideration toward future extensions to multi-FPGA
systems. Larger FPGAs would be able to house more
kernels and hence process more data in parallel leading to
faster computations. In the following sections, single- and
dual-core designs are described, along with a discussion of
scalability with respect to the number of cores.

5.2.1 Single-Core Design

The FPGA receives data (I1 and I2) over an interconnect
(e.g., PCI-X, PCI-Express, RapidIO) and the core accesses
data from the FPGA memory. The basic blocks in the
design are pictorially represented in Fig. 6a and the host-
centric execution flow is illustrated in Fig. 7a. A set of data
samples (I1) is first loaded onto the FPGA that is then
signaled to start the computation. As the FPGA processes
data, the host processor polls for a “process complete”
signal from the FPGA. The FPGA sends the “process
complete” signal once the computation is finished and the
host sends in the next set of data samples (I1) until all data
are processed. Data and control flows to the parallel kernels
housed in the core are regulated by a finite-state machine
explained as follows (see Fig. 5). The set of seeds x
scattered to the k parallel kernels in the core are represented
by I2, the data samples xi by I1, and the PDF values by p in
the state machine description.

& Idle—Remain in idle state until activation signal GO=0;
transition to scatter state if GO=1.

& Scatter—Distribute k values of I2 and p(I2) to the
parallel kernels; transition to compute state.

& Compute—Broadcast data samples I1 sequentially,
compute 8(I1,I2), and update p(I2); transition to scatter
state to load subsequent k values of I2, else move to
Gather state.

& Gather—Update p in FPGA memory; transition to done
state.

& Done—Send “process complete” signal done=1 to host;
transition to idle state when GO=0.

5.2.2 Dual-Core Design

The architectural details and the execution flow of the dual-
core design are illustrated in Figs. 6b and 7b, respectively.
The state machine for a single-core design and the
corresponding core are replicated with changes made to
the data flow in the software control program at the host
end. Since multiple cores share the same interconnect,
arbitration for bus access is performed while loading data
onto the on-chip memory of the FPGA and the subsequent
polling for the “process complete” signal. The FPGA
systems used in this work have a host processor for
explicitly managing data movement in and out of the
FPGA. Data is written to the first core and, while the first
core processes the data, the next set of data samples is
loaded to the second core to process. The host then polls
the first core for the “process complete” signal as the
second core processes its data. There could be a situation
where the host cannot poll one of the cores while it is
loading data to the other core. The core that is not being
polled would sit idle during this contention period.

5.3 2-D PDF Design

In the 2-D case, the PDF is evaluated at a matrix of points
or bins (n1 rows of x values × n2 columns of y values).
The number of computation grows from (N - n)2 + c to
(N - n1)

2 + (N - n2)
2 + c and the basic kernel computation

expands to 1-((xi-x)
2 + (yi-y)

2) where xi, yi represent one
data sample. Despite the added complexity of the 2-D PDF
algorithm, the increased quantity of parallelizable operations
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makes this algorithm still amenable to the RC paradigm,
assuming sufficient quantities of hardware resources are
available. To perform the 2-D PDF estimation, the basic
architecture designed for the 1-D case is extended with
modifications made primarily to the kernel design (see
Fig. 8) and the control flow. Due to the limited amount of
FPGA memory, the PDF matrix is computed one column at a
time (i.e. for all x and one y, represented by p(I2x,y)). This
partial PDF matrix is returned to the host before a subsequent
call to the FPGA is made. The kernels in the 2-D PDF
design are initialized with two sets of seeds (x and y).

The finite-state machine regulating the data and
control flow is illustrated in Fig. 9 and explained as
follows. The set of seed values x and y scattered to the
parallel kernels (k in number) in the core are represented
by I2x and I2y, the data samples xi and yi by I1x and I1y, and

the PDF column values by p(I2x,y) in the state machine
description.

& Idle—Remain in idle state until activation signal GO=0;
transition to scatter state if GO=1.

& Scatter—Distribute y, k values of I2x, and p(I2x,y) to the
parallel kernels; transition to compute state.

& Compute—Broadcast data samples I1x and I1y concur-
rently and update p(I2x,y); transition to scatter state to
load subsequent k values of I2x, else move to Gather
state.

& Gather—Update p(I2x,y) (i.e. column of PDF matrix) in
FPGA memory; transition to done state.

& Done—Set the “process complete” signal done=1; when
GO=0 transition to scatter state if CNT(I2y)≤256 (point
to next element in y), else move to idle state.
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5.4 Experimental Results

In this section, experimental results with the PDF FPGA
designs are presented and analyzed. The experimental
platform used throughout these experiments contains the
Nallatech H101 board with V4LX100 FPGA. This
Xilinx chip has dedicated DSP48 arithmetic blocks
capable of performing rapid 18-bit multiplies and
multiply-accumulates compared to logic-based MAC
cores. The board communicates with the host processor
over a PCI-X interconnect. A 32-bit wide communica-
tion channel is used of which 9 bits were allocated for
the fixed-point fractional segment. Function-level simu-
lation was performed in ActiveHDL from Aldec, and
H101 implementation was rendered using DIMEtalk
from Nallatech.

5.4.1 Speedup and Resource Utilization

One of the primary objectives in this work is to obtain
speedups in execution by exploiting parallelism at the
hardware level when compared to the sequential version
execution on a high-end CPU. The single-core 1-D and 2-D
PDF designs operated at FPGA clock speeds of 150 MHz
and 100 MHz, respectively. The number of kernels, k, in the
core was set to 8. The basic criterion was to develop an
efficient design where the resources (e.g., DSP48s, block
RAMs, slices) are uniformly consumed. It should be noted
that, since the algorithm is embarrassingly parallel, im-
proved performance can be achieved by scaling the design,
i.e. processing more data in parallel by increasing k until
on-chip resources are exhausted.

Actual speedup and resource utilization factors for the
1-D and 2-D PDF algorithms are presented in Table 5. It
can be seen from the comparisons made in Table 6 that the
actual speedups obtained are reasonably close to the
predicted speedups using RAT (originally shown in
Table 4). The deviation between the values is primarily
due to inaccuracies in the estimate of tcomm values.
Although the channel efficiency values (αwrite, αread)
chosen for our RAT analysis are a reasonable assumption
for large data transfers, they tend to be lower for smaller
data transfers as in this scenario. The tcomp predictions are
relatively close to the experimental values validating the
advantage of employing design patterns for algorithm
decomposition and performance prediction. The number
of DSP48s scales linearly with the number of kernels k in
the core. In the 2-D PDF scenario, each kernel uses twice
the number of DSP48s as was consumed in the 1-D case
because the computation is conducted along two dimen-
sions. Although the total amount of FPGA memory
consumed by the PDF core is moderate, a significant
percentage of it is consumed by DIMEtalk’s interface to
buffer and transfer data to and from the host and FPGA.
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5.4.2 Data Verification

Even though significant speedup was shown in the previous
section, speedup is meaningless if the results are not
accurate. In this section, we verify the accuracy of the data
provided by our FPGA designs. Data samples from a
bimodal mixture of Gaussian distribution and from a two-
dimensional uni-modal Gaussian distribution were generated
in MATLAB to verify the functionality of the 1-D and 2-D
PDF designs. PDF values were computed by generating
800 KB (N=204,800) of data samples (n=256 for 1-D PDF;
n1=256 and n2=256 for 2-D PDF). The computed PDF
values were read and error in the solution was computed as
the difference in FPGA and GPP estimates. Maximum error
E of 3.8% and 0.57% were obtained for the 1-D and 2-D
algorithms respectively (see Eq. 10), which are reasonable
for most real-time applications that involve decision-making
based on probabilistic reasoning. The errors in the estimates
are due to the Taylor series truncation of the exponential
function rather than the fixed-point effects (the exponential
function was not truncated in the GPP estimates for this
study). The resulting PDFs shown in Figs. 10 and 11 were
plotted in MATLAB for verification.

E ¼ max pðxÞRC � pðxÞGPP
�� ��� �

p xð ÞGPP
ð10Þ

5.4.3 Scaling to Multiple Cores

Since the PDF algorithm is embarrassingly parallel,
significant speedup can be achieved by scaling the design

to multiple cores. In this work, dual-core architectures were
developed and evaluated to study inherent characteristics
for scalability on single- or multiple-device systems. The
dual-core results for the 1-D and 2-D cases are summarized
and compared to the single-core implementation in Table 7.
Design frequencies of 150 MHz and 70 MHz were obtained
for the 1-D and 2-D algorithm designs, respectively. The
reduction in frequency was primarily because of increased
routing delays attributed to a larger design. Consumption of
a greater percentage of DSP48 slices is also bound to
increase routing delays as the DSP48 slices are located at
specific areas across the IC. An important point to note here
is that speedup does not double in a dual-core design (as
compared to the single-core design) due to interconnect
contention as discussed in Section 5.2.2 and a reduced
frequency in the 2-D PDF case. These parameters would
potentially differ from one platform to another depending
upon the system interconnect bandwidth and its architec-
ture. Also, the dual-core 1-D PDF design offered a higher
increase factor in speedup when compared to the dual-core
2-D PDF design because time spent on data communication

Table 5 Speedup & utilization for single-core designs.

Description 1-D PDF 2-D PDF

DSP48s (%) 8 16
BRAM (%) 12 15
Slices (%) 11 13
Actual Speedup 7.8 7.1

Table 6 Performance factors for single-core designs.

Description Predicted Actual

1-D PDF 2-D PDF 1-D PDF 2-D PDF

tcomm(sec) 6.0E-6 1.6E-3 2.5E-5 1.1E-2
tcomp(sec) 1.2E-4 4.3E-2 1.4E-4 4.4E-2
tRC (sec) 5.1E-2 1.7E+1 7.4E-2 2.2E+1
Actual Speedup 11.5 9.0 7.8 7.1
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could be effectively hidden under time spent on computa-
tion in the 1-D PDF case. This outcome was not achievable
in the 2-D PDF designs due to longer communication times
(columns of the PDF matrix are sent back to the host after
every call to the FPGA) and more importantly a reduced
frequency of operation.

5.4.4 Portability Considerations

In addition to having scalability impacts, application
characteristics also contribute greatly to platform selection
and performance. In this work, optimum choice of the
number of kernels per core, k, should be made based upon
the interconnect bandwidth and FPGA resources available.
An important byproduct of the RAT methodology, not
mentioned earlier, is the computation and communication
utilization factors given in Eq. 11.

utilcomm ¼ tcomm
tcomm þ tcomp

; utilcomp ¼ tcomp
tcomm þ tcomp

ð11Þ

These metrics indicate the nature of a particular design in
terms of whether it is communication-bound or computa-
tion-bound. If there are a variety of platforms to choose
from, the designer could make use of these metrics to
modify architecture selection for achieving optimum
results. The primary resource-limiting factor in increasing
the value of k in this algorithm design is the number of
dedicated multiplier blocks in the FPGA. While platforms
with FPGAs having more multipliers (e.g., the Cray XD1
with Virtex-2 Pro FPGAs) and faster theoretical intercon-
nects (e.g., RapidArray in XD1) might intuitively suggest
improvements in speedup by performing more computa-
tions in the PDF algorithm in parallel, these could be
negated by poor read and write efficiencies (αread, αwrite)
during data communication. This case was particularly true
with the Cray XD1 system. Due to extremely low read
speeds on CPU-initiated transfers from FPGA-host memory
(~4 MB/s for small data transfers), RAT predicted a smaller
speedup number (see Table 8) in migrating the 2-D PDF
algorithm to the XD1 system even though it housed a
theoretically faster interconnect. In comparison to the
Nallatech platform, the utilization factors in Table 8
illustrate the fact that in the XD1 more time is spent in data

communication as compared to algorithm computation for
the 2-D PDF design. On the contrary, since the computed
PDF values are sent to the host after all FPGA iterations are
complete, fewer read operations are required in the 1-D PDF
design resulting in the XD1 offering more than double the
speedup achieved on the Nallatech platform.

6 Composite Patterns for Design Reuse

As discussed earlier, it is often the case that most of the
multimedia analysis tools employ different algorithms at
different stages of data analysis. To be highly productive in
creating efficient hardware designs for each of those
algorithms, it is essential that we reuse existing hardware
designs. One of the goals of design patterns is to provide
the framework to realize this concept. In this section, we
exploit the commonalities between the algorithms described
in Section 3.4 and the similarities in the composite patterns
describing their decompositions by reusing the structural
and communication architecture developed for PDF esti-
mation. Also, state transition diagrams (see Figs. 5 and 9)
primarily deal with managing data flow and activate the
computations to execute at appropriate times. This task is
particularly cumbersome to design and debug, and any
means of reducing this burden would be helpful to design-
ers. Due to similarities in algorithm decomposition, the
state transition diagram developed for PDF estimation can
be effectively reused for the other two algorithms.

6.1 K-means Clustering

K-means clustering can be decomposed in a similar
fashion to that of PDF estimation. Computation of the
Euclidean distance between every data sample and the k
cluster centers can be done in parallel. The minimum
distance indicating the cluster closest to the data sample
can then be obtained hierarchically by comparing the
Euclidean distances pair-wise in a parallel fashion (see
Fig. 12). The basic update rule in K-means clustering for
the cluster to which the new sample belongs can be

Table 7 Speedup & utilization for dual-core designs.

Description Single-core Dual-core

1-D PDF 2-D PDF 1-D PDF 2-D PDF

DSP48s (%) 8 16 16 33
BRAM (%) 12 15 15 21
Slices (%) 11 13 16 22
Actual Speedup 7.8 7.1 13.4 8.3

Table 8 Speedup & utilization for single-core designs across
platforms.

Description Nallatech Cray XD1

1-D
PDF

2-D
PDF

1-D
PDF

2-D
PDF

utilcomm 0.14 0.20 0.03 0.38
utilcomp 0.86 0.80 0.97 0.62
RAT Predicted speedup 11.5 9.0 13.0 3.7
Actual Speedup 7.8 7.1 20.6 4.0
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defined as Δcenter = η (samplenew - centerold), where η is
the learning rate [29]. In this work, the cluster centers are
updated in the following manner, as and when a new data
sample is assigned to a particular cluster:

centernew ¼ centerold þ samplenew
2

ð12Þ

This approximate update rule (where η=1/2) is often used
for on-line clustering and is applicable to real-time scenarios
in which fast reaction to changing statistics is often desirable.
The update method reduces the computational requirements
to addition and right shift operations and eliminates the more
resource-consuming division operation. While this offers an
efficient hardware implementation, it can lead to slower
convergence for broadly distributed clusters due to its
relatively high sensitivity to each new sample. In such cases,
the traditional approach proposed by MacQueen [29] can be
used where η=1/nj (here, nj is the number of data points in
class Sj). This choice for η achieves a more gradual updating
of cluster centers as the number of data samples presented to
algorithm grows. The design developed in this work can be
extended to employ MacQueen’s approach with minimal
resource usage by the inclusion of a multiplier and look-up
table (for storing η values) to implement the update rule. All
the computations involved in the algorithm can further be
implemented as a pipeline. Analyzing the composite pattern
for decomposing K-means in Fig. 12, it can be inferred that
the architecture developed for PDF estimation can be
effectively reused for K-means clustering with minimal
modifications as explained in the following section. The
cluster centers (I2) are used to seed the parallel datapaths in
Fig. 3a (for the PDF estimation algorithm) and the data
samples (I1) are fed into the pipelines sequentially to
determine their cluster association. The number of parallel

datapaths and the length of I2 are both increased from 8 (in
the architecture of PDF estimation) to 64, corresponding to
the number of clusters. Upon convergence, the updated
cluster centers are read back by the host. Fig. 12 shows the
architecture for performing K-means clustering on a 1-D
dataset (N=102,400 and number of iterations for conver-
gence of the algorithm T=100) over 64 clusters. In the first
pipeline stage, the Euclidean distance between the cluster
centers and a data sample is computed. In the second stage,
the cluster closest to the sample is inferred and in the third
stage, the inferred cluster center is updated according to Eq.
12. It can be inferred that only the pipeline computations are
modified in Fig. 3b to implement the clustering algorithm
while retaining most of the communication fabric. More
importantly, the connection to the middleware design, which
is platform-specific and often a time-consuming process,
remains unchanged.

For the 1-D case (i.e. d=1) the architecture reduces the
computational complexity of the algorithm from O(NmT) to
O(NT), where m is the number of clusters. This reduction in
complexity is attainable as long as there are enough
multiplier resources (m multipliers) on the FPGA. The
experimental speedup and utilization for K-means cluster-
ing algorithm on the Nallatech platform is shown in Table 9.
The speedup obtained is considerably low for the extent of
parallelism extracted in the algorithm (i.e. all operations
required on a data sample are performed in one cycle). The
speedup is primarily affected by the overhead time spent in
transferring data from the CPU to the FPGA over a relatively
small-bandwidth low-efficient interconnect. While only 400
iterations (Niter in the RAT worksheet) of FPGA communi-
cation and computation were required for PDF estimation, a
total of 100×200 iterations are required for K-means
clustering (200 for processing all available data and 100 for
algorithm convergence) leading to a considerable increase in
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Figure 12 Architecture for K-
means clustering where k corre-
sponds to number of clusters, I1
is the set of data points, and I2
are the cluster centers.
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total RC time (tRC= Niter×(tcomm+tcomp)). The utilcomm factor
for K-means clustering is slightly higher in comparison to
that obtained for 1-D PDF estimation indicating a longer
time spent in data communication.

6.2 Correlation

The architecture developed for PDF estimation is also a
good fit for computing correlation on an FPGA. The
computations involved in calculating the cross-correlation
value at different lags τ can be decomposed and mapped in
a similar way as that of PDF estimation for a parallel
implementation (see Fig. 13b and 13c).

The similarity in dataflow between the two algorithms
cannot easily be deciphered until we analyze a decompo-
sition strategy for Correlation via design patterns. Consider
two vectors X=[x1,x2,x3,…,x512] and Y=[y1,y2,y3,…,y512]
whose cross-correlation needs to be computed. A number
of product terms involved in the computation can be
performed in parallel. In particular, the xi values (I2) seed
the parallel datapaths in Fig. 3a while the yi values (I1) are
fed sequentially in a pipeline flow. Due to resource

Table 9 Speedup & utilization for PDF estimation, K-means
clustering, and correlation.

Description Single-core

1-D
PDF

2-D
PDF

K-Means Correlation

DSP48s (%) 8 16 66 66
BRAM (%) 12 15 9 11
Slices (%) 11 13 9 11
utilcomm. 0.14 0.20 0.18 0.21
RAT predicted speedup 11.5 9.0 4.3 9.6
Actual speedup 7.8 7.1 3.2 8.1
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Figure 13 a Raster-like computation structure, b decomposition, and c design of cross-correlation.
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limitations (multipliers) on the FPGA, correlation values
are computed over 64 parallel datapaths (i.e. in blocks of 64
values of xi) and accumulated over until all xi values are
accounted for. While accumulating values every cycle, the
write address of output memory O is incremented by one to
match the raster-like pattern observed in computing
correlation at various lags (see Fig. 13a). Since the
underlying architecture is scalable and portable (see
Sections 5.4.3 and 5.4.4), the designs can be extended to
solve larger scale problems (i.e. clustering data points into
more clusters/computing correlation over longer datasets)
and across various platforms having bigger FPGAs with
minimal efforts. The experimental speedup and utilization
for the correlation algorithm on the Nallatech platform is
shown in Table 9.

7 Conclusions

In this paper we have identified the need for fast and
efficient execution of certain principal machine-learning
algorithms used often in multimedia analysis tools. In
proposing FPGA-based reconfigurable computing as a
suitable technology for hardware acceleration, we analyzed
various challenges faced while designing and developing
algorithms on FPGAs. Algorithm decomposition, perfor-
mance prediction, and design reuse for parallel implemen-
tation all need to be performed in an efficient and structured
manner for developing successful FPGA designs in a
productive manner. To address these challenges, we
proposed an approach for pattern-based decomposition of
algorithms for FPGA design and development.

Significant performance improvements in terms of
speedup were obtained by using FPGA-accelerated imple-
mentation of the Parzen window-based PDF estimation
algorithm decomposed using primitive RC design patterns.
Dual-core architectures were developed and evaluated on a
single-device system by exploiting the scalability in the
algorithm. Key design parameters were identified for tuning
the architecture to suit different platforms as well. Precision
effects were investigated and data verification along with
error statistics suggested a sufficient fixed-point configura-
tion for the algorithm. We also validated the benefit of
composite patterns for design reuse. With the successful
design of a scalable and portable architecture for the PDF
algorithm, rapid hardware development for the K-means
clustering and correlation algorithms was possible due to
the similarity of their underlying design patterns. Further,
the work also showcased the benefit of quantifying design
patterns in efficiently exploiting a performance prediction
tool, RAT, to predict an algorithm’s amenability to a
hardware platform before undertaking a lengthy develop-
ment process.

The architecture developed in this work was designed with
consideration toward future extensions to multi-FPGA sys-
tems. Further research is warranted in understanding the
potential improvements that can be achieved and bottlenecks
that might have to be addressed while migrating designs to
multi-FPGA systems. Directions for future work also include
investigating and developing design patterns for solving other
problem sets that have underlying similarity in their algo-
rithms. This would be a critical step in enabling FPGA-based
RC for solving a general class of computationally intensive
problems. This work has shown that one such general
architecture exists for a class of machine-learning algorithms.
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