
Authorized licensed use limited to: University of Florida. Downloaded on August 09,2022 at 23:10:01 UTC from IEEE Xplore. Restrictions apply.

2
0

2
1

 IE
EE

/A
C

M
 1

1
th

 W
o

rk
sh

o
p

 o
n

 F
au

lt
 T

o
le

ra
n

ce
 fo

r
H

P
C

 a
t

eX
tr

em
e

Sc
al

e
(F

TX
S)

 |
 9

78
-1

-6
65

4-
2

05
9

-4
/2

1
/$

31
.0

0
©

2
0

2
1

 IE
EE

 |
 D

O
I:

 1
0.

1
1

0
9/

FT
X

S5
4

5
8

0
.2

02
1

.0
00

0
8

2021 IEEE/ACM 11th Workshop on Fault Tolerance for HPC at eXtreme Scale (FTXS)

Incorporating Fault-Tolerance Awareness into

System-Level Modeling and Simulation

Trokon Johnson

Electrical and Computer Engineering Department

The University of Florida

Gainesville, Florida, USA

johnson2319@ufl.edu

Herman Lam

Electrical and Computer Engineering Department

The University of Florida

Gainesville, Florida, USA

hlam@ufl.edu

Abstract—As the design space for high-performance computer
(HPC) systems grows larger and more complex, modeling and
simulation (MODSIM) techniques become more important to bet-
ter optimize systems. Furthermore, recent extreme-scale systems
and newer technologies can lead to higher system fault rates,

which negatively affect system performance and other metrics.
Therefore, it is important for system designers to consider the
effects of faults and fault-tolerance (FT) techniques on system
design through MODSIM.

BE-SST is an existing MODSIM methodology and workflow
that facilitates preliminary exploration & reduction of large

design spaces, particularly by highlighting areas of the space
for detailed study and pruning less optimal areas. This paper
presents the overall methodology for adding fault-tolerance
awareness (FT-awareness) into BE-SST. We present the process
used to extend BE-SST, enabling the creation of models that
predict the time needed to perform a checkpoint instance for the

given system configuration. Additionally, this paper presents a
case study where a full HPC system is simulated using BE-SST,
including application, hardware, and checkpointing. We validate
the models and simulation against actual system measurements,
finding an average percent error of less than 17% for the instance
models and about 20% for system simulation, a level of accuracy

acceptable for initial exploration and pruning of the design space.
Finally, we show how FT-aware simulation results are used for
comparing FT levels in the design space.

Index Terms—fault-tolerance aware system design and evalu-
ation, System-level modeling and simulation, high-performance
computing, design space exploration

I. INTRODUCTION

Designing high-performance computing (HPC) systems in-

volves evaluating the various options (e.g., hardware compo-

nents, applications, libraries) within a design space to meet

system objectives, such as performance, cost, and power. Re-

cently, the growth of this design space has accelerated, due to

trends such as larger systems (e.g., greater node count, greater

bandwidth, larger application problem size) and more system

diversity (e.g., co-processors, newer programming models).

This growth places greater importance on the field of mod-

eling and simulation (MODSIM), which can facilitate system

design by predicting system metrics and behavior before and

This work is supported by the U.S. Department of Energy, National Nuclear
Security Administration, Advanced Simulation and Computing Program, as
a Cooperative Agreement under the Predictive Science Academic Alliance
Program, under Contract No. DE-NA0002378. The work was also supported
by the National Science Foundation under grant CNS-1718033.

throughout system design and construction, leading to a more

informed design process. Different MODSIM methods address

this large design space with various techniques, each with

different strengths and weaknesses. At one extreme, cycle-

accurate simulators can provide extremely precise and detailed

results for individual components and sub-systems, but the

complexity and simulation time increases very quickly with

system scale. At the other end of the spectrum, a purely ana-

lytical modeling approach provides quick results turnaround,

but can fail to capture more nuanced system behavior and

interaction. There a spectrum of MODSIM techniques with

advantages and trade-offs.

The trends driving design space growth are predicted to lead

to an increased number of system faults as well, further com-

plicating the design space [1]–[3]. System faults can cause er-

rors that negatively affect system operation, such as application

crashes or data corruption. Many systems employ a wide range

of fault-tolerance (FT) techniques to mitigate these negative

effects [4]–[6]. Common techniques include checkpoint-restart

(C/R), error correcting codes (ECC), algorithm-based fault-

tolerance (ABFT), and process replication [7], [8]. However,

fault-tolerance techniques incur some degree of overhead by

consuming additional system resources. This overhead can

directly or indirectly affect system metrics and behavior, such

as an FT technique that adds compute time or memory require-

ments to an application, reducing the effective performance

or scaling behavior. In some cases, increasing the level of

parallelism can reduce performance, as the negative effect of

additional fault sources overshadows additional parallelism.

[9], [10]. As a result, it is important to better understand

the balance between the benefit and cost of various FT

techniques, in order to predict their effects on performance

and other objectives. Critically, this balance depends on how

the system components, i.e., the architecture, application, and

fault-tolerance techniques, interact and affect each other. For

example, GPUs have different fault vulnerabilities, such as a

higher potential for data corruption to spread [11], [12]. This,

combined with GPUs different performance profiles, affect

the cost-benefit relationship evaluated during DSE. Therefore,

when performing MODSIM for emerging and future systems,

it is increasingly important to investigate how the relationship

between architecture, application, and fault-tolerance affect the

978-1-6654-2059-4/21/$31.00 ©2021 IEEE 31
DOI 10.1109/FTXS54580.2021.00008

mailto:johnson2319@u?.edu
mailto:johnson2319@u?.edu
mailto:hlam@u?.edu
mailto:hlam@u?.edu

Authorized licensed use limited to: University of Florida. Downloaded on August 09,2022 at 23:10:01 UTC from IEEE Xplore. Restrictions apply.

system.

This paper presents an FT-aware extension to our previous

work, BE-SST, a MODSIM tool, methodology, and workflow

developed at a DOE PSAPP-II Center and used for multiple

validated full system experiments [13]. BE-SST was devel-

oped as a coarse-grained, multi-level MODSIM methodology

and workflow, and is used to accelerate the exploration and

reduction of a large design space. BE-SST achieves rapid

DSE through Behavioral Emulation (BE), an approach to

MODSIM that uses coarse-grained models of applications and

architectural components to construct and simulate candidate

HPC system designs [13]. This abstract modeling approach

allows for faster DSE by accelerating both the process of

creating models and simulating systems, while maintaining an

acceptable level of accuracy for design space exploration and

reduction.

Specifically, this paper presents an expansion to the Model

Development phase of the BE-SST workflow, allowing the

creation of models for different levels of fault-tolerance via

checkpointing. Additionally, we demonstrate the methodology

by presenting an analysis and validation of the models at

the function level. These validated models are then used

in a system-level case study using the BE-SST simulator.

The simulation results using the FT-aware system models are

compared to the original system models, which are not FT-

aware, in order to demonstrate the impact of fault-tolerance

awareness predictions of system performance and scalability,

and, thus, DSE.

The contributions of this paper are as follows:

• A presentation of the fault-tolerance aware extensions

to our existing coarse-grained MODSIM methodology,

workflow, and simulation platform, as well as plans for

additional extensions.

• An analysis and validation of the performance models

for the application and checkpointing, based on real

benchmarking data. The models are also used for pre-

diction of the performance of the functions running on

larger, notional systems. The level of accuracy allows for

design space pruning & further study with more detailed

simulators.

• A full system case study using the BE-SST simulator,

contrasting the FT-aware and non-FT-aware system pre-

dictions with different levels of checkpointing for a full

application run on Quartz, an HPC system housed at

Lawrence Livermore National Lab.

The rest of the paper is organized as follows. Section 2

discusses related works, particularly other MODSIM research

efforts that are also fault-tolerance aware. Section 3 describes

the background on the MODSIM workflow that we extend,

BE-SST, as well as methodology for incorporating fault-

tolerance awareness into that workflow. Section 4 presents

a DSE case study using the extended workflow, including

the experimental setup, comparison of non-FT-aware and FT-

aware performance models, validation and analysis of the

models, and the use of these models for scaling predictions via

BE-SST simulation. Section 5 summarizes our contributions

and details our future directions.

II. RELATED WORKS

There are a large variety of MODSIM techniques used for

HPC system DSE, often to maximize system performance.

Because of the recognition of faults as a performance concern,

recent works have begun to integrate fault-tolerance awareness

into their performance models to better optimize runtime [9],

[10], [14]–[16]. In this section, we will discuss these fault-

tolerance aware MODSIM approaches.

Cavelan, et al. [15] modifies Amdahl’s law to find the

optimum number of processes to minimize execution time

while considering the effects of faults and the overhead of

checkpoint-restart. Zheng, et al. [9], [10] perform similar

studies, but extends Gustafson’s law in addition to Amdahl’s,

to model and predict strong and weak scaling. Both works

verify these models with fault injection simulations. These

works highlight the significant effect of faults on performance

by showing the difference between model predictions for a

system assumed to be fault free, a system with faults, and a

system with faults and fault-tolerance. They find that faults can

greatly decrease the predicted system speedup, but checkpoint-

restart can mitigate these losses. An important finding of these

works is that while the original Amdahl’s and Gustafson’s laws

have monotonically increasing speedup as the number of nodes

increases, additional nodes can also increase the system-wide

failure rate. As a result, an increase in number of nodes can

actually result in a decrease in performance. While these works

offer great insight into how faults affect performance on HPC

systems, their basis in Amdahl’s and Gustafson’s law make

the works very abstract, though applicable to many systems.

By leveraging BE-SST’s more concrete MODSIM approach,

our methodology workflow for predicting performance under

faults is more specific and can capture more nuanced system

behavior.

Hussain, et al. [14] builds upon the idea of FT-aware

performance models by modifying Amdahl’s law to include

dual replication as a fault-tolerance technique, along with

checkpoint-restart. Through analytical models and simulations,

they find that replication allows for a greater maximum

speedup than checkpoint-restart alone, due to the higher fault

rate of more nodes being mitigated. This work differs from

others in that while replication is a well-known fault-tolerance

technique, it is much less studied than C/R. Similar to the

works mentioned earlier, our work is more concrete, capturing

more of the system behavior. However, we focus on more

studied C/R techniques.

Jin et al. [16] presents an analytical queuing model to

maximize application performance. They seek to optimize

performance by finding optimal values for processes, check-

point frequency, and spare nodes. They also use this model

for exploring the design space and giving directives for scal-

able HPC systems. This work is similar to ours, but, like

others, takes an abstract view of applications, whereas we

gather application benchmark data from real systems to build

32

Authorized licensed use limited to: University of Florida. Downloaded on August 09,2022 at 23:10:01 UTC from IEEE Xplore. Restrictions apply.

our models. Additionally, the analysis of spare nodes as a

fault-tolerance method is helpful in understanding how less

prevalent fault-tolerance methods affect performance, as C/R

is already widely studied.

III. METHODOLOGY

As previously stated, this work involves extending our

current BE-SST methodology to be fault-tolerance aware. BE-

SST is a simulator framework and coarse-grained model de-

velopment methodology and workflow developed at the DOE

PSAAP-II Center for Compressible Multiphase Turbulence

[13]. The simulator leverages the Structural Simulation Toolkit

(SST) from Sandia National Lab, which provides a framework

for component-based, parallel discrete-event simulation [17].

The behavioral emulation (BE) MODSIM philosophy focuses

on abstracting away fine-grained system details, thereby accel-

erating the model generation process and reducing simulation

time. However, BE-SST can use models at various levels of

granularity to more finely balance speed and accuracy. This in

turn facilitates faster evaluation of large numbers of candidate

system designs in the design space while still maintaining

acceptable accuracy. After the reduction of the design space,

slower, more detailed fine-grained simulators can be used to

further evaluate the promising candidate designs, if necessary.

BE-SST provides a distributed parallel simulation library for

Behavioral Emulation, as well as the framework for developing

coarse-grained BE models. The workflow supports plug-and-

play DSE with different architecture and application subsys-

tems (e.g., node architecture, interconnect topology, kernel

libraries, etc.) which facilitates studying abstract, emerging,

and notional systems. Fig. 1 shows previously published

benchmarking and validation results collected using BE-SST

workflow and simulator as an example DSE case [13]. Here,

BE-SST is being used to simulate the Vulcan HPC system,

previously operational at Lawrence Livermore National Lab-

oratory. The application under test is CMT-bone, a proxy

app version of CMT-nek, which is based on the Nek5000

computational fluid dynamics solver [18]. The scatter plot

on the left side of Fig. 1 shows both actual benchmarked

performance results (in orange) and simulation results (in blue)

of the system. Execution time is measured and simulated for

different parameter combinations of MPI ranks and application

problem size. Furthermore, because actual machine perfor-

mance is non-deterministic due to noise and other factors,

BE-SST implements Monte Carlo simulations to capture the

variance that exists in the calibration samples, to better emulate

real machine behavior. As such, each of the points on the graph

represent a distribution of results for performance runtime of

one timestep. This is illustrated by the pop-out on the right

side of Fig. 1.

Additionally, once simulations have been validated for exist-

ing machines, BE-SST can be used to perform predictions of

notional machines. An example of a simple notional extension

to an existing machine is to increase the number of ranks

beyond the number of cores in the actual machine. This can

be seen in Fig. 1, where validation was performed up to

Fig. 1. BE-SST Simulation Results used for DSE of CMT-bone-BE Proxy
Application on Vulcan Supercomputer [13]

our allocation of 128,000 cores (blue and orange points) and

predicted up to 1 million cores (blue only). Physically, Vulcan

had a total of 400,000 CPU cores. However, we were able

to perform simulations of Vulcan’s architecture up to the max

size of the machine, and beyond, by using models validated at

smaller sizes. This capability of BE-SST allows us to explore

more hypothetical areas of the design space.

BE-SST also facilitates DSE through the plug-and-play

nature of SST to perform notional system simulation. With

BE-SST, models from different machine subsystems (e.g.,

node architecture, network topology, memory system, etc.) can

be used together to construct and simulate full notional system

designs. The Behavioral Emulation (BE) workflow, illustrated

in Fig. 2, consists of two major phases: (1) Model Devel-

opment on the left, which includes the design, validation, and

calibration of performance models, and (2) Hardware/Software

Co-Design on the right, which uses the validated models from

the previous phase for full system simulation and performance

prediction. The rest of this section will give in-depth explana-

tions of the two workflow phases, as well as the fault-tolerance

awareness extensions to each phase.

A. Model Development Methodology

The individual steps of the Model Development phase can

be seen in the left side of Fig. 2. The output models of this

phase are Behavioral Emulation Objects (BEOs) for both the

application and the hardware architecture, which are called

AppBEOs and ArchBEOs, respectively. An AppBEO is a list

of abstract instructions that represents the major functions

and control flow of the application under study. An ArchBEO

describes the system hardware architecture that is simulated,

defines system operations, and connects the performance mod-

els to the instructions listed in the AppBEO. To create an

AppBEO, we identify the significant computation blocks and

communication patterns in the source code at the desired

granularity level. These are then translated into the abstract

instructions for the AppBEO. The instructions are created to

only accept parameters that affect the performance, which

can be decided from previous benchmarking or knowledge

of the application. When an abstract instruction is executed

33

Authorized licensed use limited to: University of Florida. Downloaded on August 09,2022 at 23:10:01 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Existing BE-SST Workflow, with Fault-Tolerance Aware Extensions in Red

by the BE-SST simulator, the simulator calls the associated

performance model to return the predicted run time, rather

than actually carrying out what could be a costly computation

or communication call during real execution. The simulation

clock is then updated to reflect the time.

To create an ArchBEO, we begin by instrumenting the

application code under study with timer calls correspond-

ing to the same blocks and patterns used for the AppBEO

and running the code on existing machines or fine-grained

simulators to collect benchmarking data as shown in the

left side of Fig. 2. We collect multiple timing samples for

each system parameter combination in the design space to

account for system noise and other sources of variation. These

samples are used to create models using one of two currently

implemented methods: interpolation and symbolic regression.

For our interpolation method of modeling, the training data

is organized into lookup tables based on the corresponding

system parameters. When a function from the AppBEO is

called during simulation, the corresponding lookup table is

searched for the function arguments, and one of many samples

is selected for a runtime prediction. If the parameters in the

current function call do not have an existing sample for this

combination, the simulator estimates a value by using one

of several implemented methods to interpolate a data point

between two existing data values. We also use a second method

of modeling, which is used in the case study experiments

presented in this paper, based on symbolic regression [19]. In

the symbolic regression method, the benchmarking data is split

into training data and testing data. The training data is used as

input to our symbolic regression tool to create models through

an iterative process. The testing data is used to evaluate model

accuracy at each iteration.

With either method, (interpolation or symbolic regression)

the simulator returns a predicted execution time for each

function call. The modeling process is designed to incorporate

and mimic the interactions of the whole system (e.g., hardware

architecture, libraries, interconnect, etc.) into the performance

models. The simulator then advances the simulation time by

the amount predicted. This holistic modeling approach allows

for more accurate results for system-level DSE.

In order to develop FT-aware performance models, the exist-

ing BE-SST Model Development process was extended to add

fault-tolerance aware computation and communication blocks

to the BEOs, as well as additional FT-aware benchmarking pa-

rameters. These extensions to the model development process

are visualized in the left side of Fig. 2 (labelled ”A”). The goal

is to maintain the creation of models that capture interactions

between hardware and software, but now include interactions

with a new dimension of the design space, fault-tolerance.

The specific alterations vary depending on the fault-tolerance

techniques being benchmarked or simulated. The fault-tolerant

version of an application may include changes to the source

code, such as alternate algorithms that are more resilient, or

checkpointing subroutines. Changes may extend to the control

flow structure as well. As a result, the AppBEO must be

updated to include the abstract instructions to reflect these

source code changes. Also, the changes must be included in

the instrumentation process to collect benchmarking data used

to develop the corresponding ArchBEOs and their performance

models.

Fig. 3 provides a visual example of a simple fault-tolerance

extension to an application, as well as visualizing how the

Model Development process is affected. A common fault-

tolerance strategy for applications is checkpoint-restart, where

critical application data is periodically backed up, to be

restored in the event of an error or crash. The performance

of this added checkpointing function must be modeled for

this application. Moreover, the parameters that will affect

this checkpoint function must be identified. These parameters

may not have been factors for any functions in the non-fault

aware versions of the application. For example, a parallel

application that consists primarily of local, compute bound

34

Authorized licensed use limited to: University of Florida. Downloaded on August 09,2022 at 23:10:01 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. Fault-Tolerance Aware Iterative Solver

functions may demonstrate good weak scaling performance;

as such, the number of nodes has a minor effect on overall

application time to solution if no FT method is used. However,

a coordinated checkpoint-restart function can introduce com-

munication overhead, which is much more dependent on the

number of ranks, and network limitations [20]. Given the size

of the FT design space, consisting of different strategies, which

themselves consist of different libraries and implementations,

this can lead to multiple performance models for the same

application, all of which can be explored and compared in the

Co-Design phase.

B. Hardware/Software Co-Design Methodology

The BEOs and models developed and validated from the

Model Development phase can be used in the Co-Design

phase for design space exploration (DSE) of applications on

existing architectures (algorithmic DSE), as shown in the right

side of Fig. 2 (labelled ”B”). Furthermore, by modifying and

extending the ArchBEO simulation parameters (e.g., network

bandwidths, latencies, or topology) or replacing BEOs models

with other validated BEO models, it becomes possible to

perform architectural DSE, including DSE of notional systems.

Algorithmic DSE involves interchanging models to deter-

mine how different algorithms affect the performance of the

overall application. Different algorithms can serve similar

functions but have different scaling behaviors, depending on

their design, the system, and other factors. For example,

an application that includes computation of a Fast Fourier

Transform can have several algorithms from which to choose

[21]. This could range from the commonly used Cooley-

Tukey algorithm to a bespoke implementation provided by

the FFTw libraries. These two example algorithms may have

performance profiles that differ depending on the size and

type of the input dataset (e.g., real vs. complex, single-

precision vs. double-precision) or the details of the node

architecture (e.g., cache size, accelerator). Once the models for

multiple algorithms have been created, we can use simulation

to determine their performance under different conditions and

recommend one for the system without having to run on the

system. This can be helpful if runs are prohibitively long, or

if the system does not yet exist.

To include fault-tolerance awareness for algorithmic DSE,

specific fault and FT parameters should be considered. As an

example, C/R has its own set of parameters separate from the

application, including implementation, scale, memory/storage

level, etc. These parameters can interact with the application,

hardware and software design spaces, which ultimately affects

the performance of the entire system. In the case study of this

paper, we show an example of how an FT-aware application

can have its checkpointing cost modeled and evaluated, and

how the application parameters affect checkpoint behavior.

Additionally, including fault-tolerance awareness in the ar-

chitecture under study requires incorporating FT-aware hard-

ware parameters, such as hardware fault rates and recovery

times, into the ArchBEOs, as shown in the bottom right of

Fig. 2 (labelled “C”). Different hardware components (e.g.

processors, memory technologies, etc.) have failure rates that

can be found through various means, such as documentation

or failure logs [3]. Co-design involves balancing hardware and

software trade-offs to maximize performance, but changing

system scale, hardware architecture and algorithms are all

decisions that can affect the fault rate and fault-tolerance of a

system and can therefore affect system-level performance.

Other fault-tolerance techniques can be added for more

intentional fault-tolerance aware algorithmic design space ex-

ploration, such as algorithm-based fault-tolerance (ABFT).

ABFT takes the form of alternate algorithms that perform the

same operations but with more resilience and overhead, such

as using a checksum in a matrix-based code to guard against

silent data corruption. This can lead to direct performance

overhead due to time needed to compute the checksum, or

indirect overhead due to memory usage to store the checksum

information, which harms performance. These factors can vary

by application and parameters, which requires more trade-offs

for study.

C. BE-SST Simulator

The BE-SST simulator (shown in the middle of Fig. 2)

must be extended to integrate fault-tolerance awareness for

the system-level simulation, shown at the bottom of Fig. 2

(labelled ”D”). This consists of two steps: FTA model integra-

tion, and fault injection/simulation capability. Currently, BE-

SST performs simulations of systems without fault-tolerance

awareness or fault injections; this is visualized as Case 1 in

Fig. 4. The simulator “executes” the abstract instructions in the

AppBEO. Each instruction in the AppBEO causes the simula-

tor to poll the ArchBEO to determine the runtime for that event

and advance the simulator clock for that rank, communicating

with other ranks if necessary. Our work integrating FT-aware

models into BE-SST allows for simulating Case 3, systems

with FT-aware performance models. By doing so, we can

35

Authorized licensed use limited to: University of Florida. Downloaded on August 09,2022 at 23:10:01 UTC from IEEE Xplore. Restrictions apply.

TABLE I

CHECKPOINTING LEVELS OF THE FAU LT TOLERANCE INTERFACE (FTI)

Checkpoint Level Checkpoint Method

Level 1 Checkpoint file saved on local node
Level 2 Checkpoint file saved on local node

AND sent to neighbor node in group
Level 3 Checkpoint files encoded

via Reed-Solomon (RS) erasure code
Level 4 All checkpoint files flushed .

to parallel file system

Fig. 4. Different Fault Assumption Cases for BE-SST DSE

determine expected system scaling behavior based on the dif-

ferent overhead of fault-tolerance techniques and parameters.

As previously noted, with fault-tolerance becoming a greater

concern in emerging systems, this feature becomes a more

important addition to BE-SST. Moving forward, adding the

capability to inject faults into the BE-SST simulator will allow

the simulation of Case 2, systems with different fault profiles,

and Case 4, systems with both faults and fault-tolerance.

Adding both fault awareness and fault-tolerance awareness

allows for added versatility for exploring a fault aware design

space.

The case study in the following section presents results of

the FT-aware extensions to the Model Development phase of

the BE-SST workflow, along with the extensions to algorithmic

DSE in the Co-Design phase. Together with our ongoing work

on the other proposed extensions to the co-design phase, (i.e.,

architecture DSE and BE-SST simulator capabilities to support

fault injection and fault aware simulation) these extensions

will allow greater design space exploration by modeling and

simulating how fault-tolerance design choices influence and

interact with hardware and software design choices, how FT

is affected in return, and how these choices and interactions

affect performance and other metrics.

IV. FAULT-TOLERANCE AWA RE DSE CASE STUDY

This section presents a case study illustrating FT-aware DSE

enable via the aforementioned fault-tolerance extensions BE-

SST.

A. Experimental Setup

The target architecture for our case study is Quartz, an Intel

Xeon machine housed at Lawrence Livermore National Lab-

oratory (LLNL). The machine consists of 2,988 nodes, each

with 2 Intel Xeon E5-2695v4 CPUs, for 36 total cores, and

128 GB of memory. The nodes are connected in a two-stage

bidirectional fat-tree topology using Omni-Path interconnect

technology.

The application used for the case study is the Liver-

more Unstructured Lagrangian Explicit Shock Hydrodynamics

(LULESH) application, which was developed as part of the

DARPA Ubiquitous High Performance Computing (UHPC)

program [22], [23]. LULESH was designed as a compute

focused, weak scaling hydrodynamic proxy application, which

lends itself to high-performance computing design space ex-

ploration. It has been used to explore traditional and emerging

programming models, and has been implemented in over

10 languages and programming models, including C++ with

MPI+OMP, the version used in this case study [24]. LULESH

has one main parameter: the problem size, or elements per

rank (epr). The problem size determines how many individual

elements, or spatial regions, will be assigned to each rank for

computation. The other parameter used for our case study is

the number of MPI ranks, which allows solving hydrodynamic

problems with a larger spatial domain or higher resolution.

The overall cubic domain for the entire application run is

divided into a single cubic subdomain per rank, and the

subdomains are in turn divided into elements, corresponding

to the problem size parameter. Because of the decomposition

algorithm divides the cubic subdomain into smaller cubes,

LULESH is limited to running only on a number of ranks

that are perfect cubes (e.g., 8, 27, 64, ...).

The Fault Tolerance Interface (FTI) is a checkpointing

library which provides access to multiple levels of check-

pointing, fault-tolerance regions, and other parameters that can

be tailored towards a system [25]. FTI includes 4 different

checkpointing levels, which determine how the checkpoint is

stored, including the level of fault-tolerance (i.e., the amount

and kinds of failures that can be tolerated by a system). These

checkpoint files allow an interrupted application to be resumed

at a later time, either after the failure has been corrected, or

using new hardware. Generally, as the levels increase from 1

to 4, the resilience of the system increases as well. However,

the performance overhead and demand on system components

increase as well. Each level allows for parameters such as

the checkpointing frequency to be set independently, allowing

for flexibility in balancing fault-tolerance and performance

overhead.

Table I acts as a quick reference of each checkpoint level.

Level 1 saves the checkpoint file to the node locally. If the node

experiences a failure that halts its progression, the application

can restart from the most recent successful checkpoint on all

nodes. Level 2 and level 3 both make use of FTI groups,

which are collections of nodes that keep their own checkpoints,

as well as checkpoint files from other nodes in the group.

This creates semi-independent fault-tolerant regions that can

tolerated multiple failures between them. The number of

nodes per group is set using FTI’s group size parameter. For

36

Authorized licensed use limited to: University of Florida. Downloaded on August 09,2022 at 23:10:01 UTC from IEEE Xplore. Restrictions apply.

Level 2 checkpointing, each node saves its checkpoint locally, TABLE II

as in Level 1, but also sends it to two neighboring nodes

within the group. Therefore, if a node fails and loses its

checkpoint file, recovery is possible as long as one of the two

neighboring nodes retain the copy of the lost checkpoint. Level

3 checkpointing uses Reed-Solomon codes to encode and

partition a single node’s checkpoint file among all members of

a group. If any node fails and loses its checkpoint file, the file

can be recreated through the encoded partition on the group’s

other nodes. Through this process, any FTI group, and thus

the application, can tolerate and recover from up to ½ of the

nodes concurrent failures and loss of checkpoint in one group

and still recover. Level 4 checkpointing involves flushing the

checkpoint to the parallel file system (PFS), where checkpoints

are the least likely to be lost.

As previously stated, each level of checkpointing has a

different amount of overhead, and can recover different kinds

and numbers of failures. These different checkpointing levels

and parameters change the resilience and performance profiles

of the application, and the system as a whole, growing the

design space. The performance overhead depends not only

on FTI parameters, such as the group size and checkpoint

frequency, but also, indirectly, on other system parameters.

This can include the level of parallelism (e.g., the number of

ranks and nodes used to run the application) and application

parameters (e.g., problem size increasing the amount of data

saved in a checkpoint file). Additionally, the speed of system

components, such as local storage (Level 1), communication

and network congestion (Level 2), computational performance

(Level 3) and write speed to the parallel file system (Level 4)

also affect overhead, depending on which levels are imple-

mented. System performance parameters and fault rates can

determine what level of fault-tolerance is necessary to optimize

performance. As a result, these new parameters and operations

further increase the scope of the design space. The exploration

of this expanded, fault-tolerance design space using BE-SST’s

accelerated modeling and simulation workflow is presented in

the remainder of section IV.

The version of LULESH with FTI integration that was

used for this paper was found in a publicly available GitHub

repository owned by Maxime Kermarquer [26]. For this work,

we focused on the checkpointing levels 1 and 2, the levels with

the least amount of communication, which do not require ex-

tensive communication modeling. While we have constructed

and validated communication models for other HPC systems,

Quartz requires additional modeling of the Fat Tree network.

We intend to model and validate Quartz communication in the

future, at which point we can more fully explore the higher

levels of fault-tolerance.

As the case study involved measuring runtime for the

application and the fault-tolerance routine, this case study

falls under Case 3 of Fig. 4 (i.e., fault-tolerance without fault

injection), which illustrates the overhead performance cost of

using a FT method. The parameters used for the case study are

listed in Table II. For this study, we elected to keep both the

group and node sized fixed at low values, 4 and 2 respectively.

CASE STUDY PARAMETERS

Parameters Values
Problem Size (epr) 5 10 15 20 25
Ranks 8 64 216 512 1000
Group Size 4
Node Size 2

Changing either FTI parameter could potentially affect com-

munication patterns, and while communication at Level 1 and

2 is minimal, we did not want to risk introducing additional

variance without modeling the communication. Additionally,

it should be noted that FTI requires the number of ranks to be

a multiple of group size*node size. Coupled with LULESH’s

perfect cube number of ranks requirement, we ran on every

perfect cube number of ranks that is evenly divisible by 8.

All possible perfect cube number of ranks that would fit on

our allocation of the Quartz partition were run, maxing out at

1000 ranks. The experiments were run for every combination

of problem size and number of ranks, leading to 25 unique

parameter combinations.

B. Validation of Performance Models

This subsection presents the validation of the performance

models BE-SST workflow. We perform this validation by com-

paring the modeled, or predicted, runtime for different problem

sizes and numbers of ranks against the measured runtime for

the same parameters, using Mean Average Percentage Error

(MAPE) as an error metric As previously mentioned, we want

to ensure that the models can predict both the performance

and the trends of the machine with acceptable accuracy, as

the models are used for low-cost simulations. This subsection

also contains an example using the models for prediction of

larger parameter values than were benchmarked, where both

the problem size and the number of ranks are beyond our

ability to run on Quartz, acting as a demonstrative step towards

notional system prediction.

Figs. 5-6 present the scaling behavior for LULESH and the

2 levels of checkpointing. Both figures present the same data,

with Fig. 5 showing scalability primarily by problem size, and

Fig. 6 by number of ranks. In both graphs, the vertical black

dashed line demarcates the boundary between validation on the

left (both benchmarked and modeled data), and prediction on

the right (only modeled data). The predicted region of Fig. 5

predicts runtime of a larger problem size, simulating a notional

system with more memory per node. The prediction region of

Fig. 6 simulates a system with 1331 ranks, above the 1000

rank limit we encountered on Quartz.

In Figs. 5-6, it is clear that the relative costs of the functions

stay mostly ordered. The LULESH timestep takes the least

amount of time and scales the most slightly with either param-

eter, problem size or number of ranks. This is consistent with

LULESH being a computationally focused, weak-scaling mini-

app. As expected, both checkpointing levels have a higher time

cost, and scale much more quickly with either parameter, most

likely due to FTI being a coordinated checkpointing solution

37

Authorized licensed use limited to: University of Florida. Downloaded on August 09,2022 at 23:10:01 UTC from IEEE Xplore. Restrictions apply.

TABLE III

MODEL VALIDATION VIA MEAN AVERAGE PERCENT ERROR

Kernel MAPE
LULESH Timestep
Level 1 Checkpointing
Level 2 Checkpointing

6.64%
16.68%
14.50%

and 6D, 25 epr and 1000 ranks respectively, these areas are

highlighted by BE-SST as areas of interest for more detailed

study with fine-grained simulators. However, the models cover

the majority of the other points on the design space in this

low-cost manner.

Fig. 5. Model Validation for LULESH FTI Checkpointing and Timestep
Functions vs Problem Size (epr)

Fig. 6. Model Validation for LULESH FTI Checkpointing and Timestep
Functions vs Number of Ranks

that touches storage and communication, thus scaling with

level of parallelism and amount of data to store respectively.

Furthermore, we observe that the model predictions follow

the trends for the real data quite well. This can be seen through

the MAPE of 6.64% for the LULESH timestep models, and

17% and 15% for L1 and L2 checkpointing, respectively. The

checkpoint error may be higher due to complications from

communication and secondary storage, or the parameters used

for symbolic regression generation, all of which can be refined

via finer grained modeling. However, as checkpointing occurs

much less frequently than the timestep function in iterative

solvers (e.g., 1 checkpoint per 10-100 timesteps) this error is

less problematic for overall runtime. This is further verified in

the full system simulation runs of the next section.

From Figs. 5-6, it is clear that the models follow the trends

of the real data for the majority of the data points, primarily in

the center of the graphs. The benchmarks and models diverge

at 2 key outlier areas: Figs. 5A, 5D and 6D. These are all

extreme areas of design space, which are the most difficult

to prune. For Fig. 5A, 8 epr, this area is low priority, as it

is a low cost run. It has an extremely small runtime, which

is more easily affected by noise. However, actual runs can be

used quite easily for data. For the high cost runs, Figs. 5D

C. Full System Case Study using BE-SST with Fault-Tolerance

Awareness

As discussed earlier, BE-SST has been used with perfor-

mance models to predict full system performance of appli-

cations and systems. By using the validated application and

checkpointing performance models discussed in the previous

section as input to the BE-SST simulator, BE-SST can be

used to simulate performance overheads for different levels of

fault-tolerance.

Figs. 7-8 show the total application runtime for 200

timesteps under three different fault-tolerance scenarios: 1) no

fault-tolerance, 2) level 1 checkpointing 1, and 3) levels 1 &

2 checkpointing. Scenario 1 (shown in blue) is used as the

baseline, representing simulation of the system without any

fault-tolerance awareness (i.e., the traditional BE-SST work-

flow). Scenarios 2 & 3 (shown in red and green, respectively)

are possible due to the FT-aware extensions to the BE-SST

methodology and workflow, and serve to expand the design

space further. Both Level 1 and Level 2 have a checkpointing

period of 40 timesteps, marked by the black dots on Figs. 7-8.

Similar to the individual functions, the accuracy for the

system-level simulations can be seen in how well the sim-

ulations follow the benchmarked data, or in the MAPE levels

of in Table IV, of 20%, 17% and 14% for no fault-tolerance,

L1, and L1 & L2 respectively. This full system simulation case

study leads to 2 important insights. 1). Predicting full appli-

cation performance does not significantly increase error

over individual timestep prediction. The error values of the

full system simulations are comparable to the single function

runs, as seen in tables III and IV. This is most likely due

to aggregate error: since the full system simulation involves

BE-SST predicting each individual model call, error can add

up for larger predictions. However, as long as the variance

is centered around the mean of the prediction, positive and

negative error should cancel this out long-term, as Fig. 8 shows

more divergence between prediction and measured values as

more timesteps pass. 2). The percent error from the FT-

aware scenarios are lower than the non-FT-aware scenario.

This is most likely due to the benchmarked and measured

values of scenario 1 being much smaller than scenarios 2 and

3, and, therefore more susceptible to machine variation and

other sources of noise.

38

Authorized licensed use limited to: University of Florida. Downloaded on August 09,2022 at 23:10:01 UTC from IEEE Xplore. Restrictions apply.

Fig. 7. Full Application Runtime Prediction for 64 Ranks

Fig. 8. Full Application Runtime Prediction for 1000 Ranks

As mentioned, a major facet of BE-SST workflow is facil-

itating DSE. With the full system simulations, the results can

be used to predict how much overhead will result from each

configuration without having to run the configuration. Fig. 9

demonstrates this by displaying the amount of overhead for

different points in the design space based on the problem size,

number of ranks, and fault-tolerance level, allowing a quick

overview of how these factors affect system behavior.

TABLE IV

VALIDATION FOR FULL SYSTEM SIMULATION

Fault-Tolerance Level MAPE
LULESH + No Fault-Tolerance
LULESH + Level 1 Checkpointing
LULESH + Levels 1 & 2 Checkpointing

20.13%
17.64%
14.54%

Fig. 9. Overhead Prediction for Full System Simulation

Using this new extended workflow, BE-SST is now capable

of simulating full systems with fault-tolerance. While this

case study only looked at one fault-tolerance method and

implementation, this methodology opens the door to simula-

tion and evaluation of fault-tolerance aware systems multiple

checkpointing implementations, as well as other FT methods

such as algorithm based fault-tolerance. This, in turn grants

a greater design space to explore. In future work, we plan to

implement fault injection, which will allow us to optimize for

different fault rates and scenarios as well.

V. CONCLUSION & FUTURE WORK

In this paper, we have presented a methodology to extend

our current BE-SST workflow and platform to incorporate

fault awareness. A case study was used to demonstrate how

the extended methodology can create and validate FT-aware

performance models, which predict checkpoint overhead for

different system parameters, and use these models for system-

level simulation. Specifically, we used LULESH, an HPC

proxy application, to show how fault-tolerance aware perfor-

mance models can be used to perform DSE within the BE-

SST workflow. We presented and validated both fault-tolerance

aware performance models and checkpoint performance mod-

els, with average errors of less than 17% for individual func-

tions, and 21% for full system runs. We analyzed the trends

of these models, and showed predictions, demonstrating how

they could be used for predictive DSE of notional systems,

specifically for use predicting the effect of fault-tolerance on

performance.

Currently, we are integrating the HW/SW Co-Design phase

of our workflow with fault-tolerance awareness. We will also

further our ability to explore the fault-tolerance aware design

space by investigating other fault-tolerance techniques. The

latter is interesting because BE-SST is already being used

to study multiple applications and architectures, but we will

incorporate a more formal methodology for including and

comparing differing checkpointing libraries and algorithm

based fault-tolerant methods, as well as building up those

libraries for BE-SST. Finally, by including the capabilities of

fault injection and checkpoint-restart into the BE-SST simula-

tor, we can perform full system simulations to determine how

both faults and fault-tolerance affect performance predictions

and the overall design space.

REFERENCES

[1] N. DeBardeleben, “Extreme scale and bleeding edge technology lead to
a need for resilient high performance computing systems,” in 2016 IEEE
International Reliability Physics Symposium (IRPS). IEEE, 2016, pp.
3B–1.

[2] N. DeBardeleben, S. Blanchard, D. Kaeli, and P. Rech, “Field, experi-
mental, and analytical data on large-scale hpc systems and evaluation of
the implications for exascale system design,” in 2015 IEEE 33rd VLSI
Test Symposium (VTS). IEEE, 2015, pp. 1–2.

[3] D. Jauk, D. Yang, and M. Schulz, “Predicting faults in high performance
computing systems: An in-depth survey of the state-of-the-practice,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2019, pp. 1–13.

[4] D. Dauwe, S. Pasricha, A. A. Maciejewski, and H. J. Siegel, “An analysis
of resilience techniques for exascale computing platforms,” in 2017
IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW). IEEE, 2017, pp. 914–923.

39

Authorized licensed use limited to: University of Florida. Downloaded on August 09,2022 at 23:10:01 UTC from IEEE Xplore. Restrictions apply.

[5] B. Fang, P. Wu, Q. Guan, N. DeBardeleben, L. Monroe, S. Blanchard,

Z. Chen, K. Pattabiraman, and M. Ripeanu, “Sdc is in the eye of
the beholder: A survey and preliminary study,” in 2016 46th Annual
IEEE/IFIP International Conference on Dependable Systems and Net-
works Workshop (DSN-W). IEEE, 2016, pp. 72–76.

[6] R. A. Ashraf, R. Gioiosa, G. Kestor, R. F. DeMara, C.-Y. Cher, and
P. Bose, “Understanding the propagation of transient errors in hpc
applications,” in SC’15: Proceedings of the International Conference
for High Performance Computing, Networking, Storage and Analysis.
IEEE, 2015, pp. 1–12.

[7] N. B. S. H. N. H. J. D. M. Zounon, “Uniman) algorithm-based fault
tolerance techniques.”

[8] B. Fang, Q. Guan, N. Debardeleben, K. Pattabiraman, and M. Ripeanu,
“Letgo: A lightweight continuous framework for hpc applications under
failures,” in Proceedings of the 26th International Symposium on High-
Performance Parallel and Distributed Computing, 2017, pp. 117–130.

[9] Z. Zheng, L. Yu, and Z. Lan, “Reliability-aware speedup models
for parallel applications with coordinated checkpointing/restart,” IEEE
Transactions on Computers, vol. 64, no. 5, pp. 1402–1415, 2014.

[10] Z. Zheng and Z. Lan, “Reliability-aware scalability models for high

performance computing,” in 2009 IEEE International Conference on
Cluster Computing and Workshops. IEEE, 2009, pp. 1–9.

[11] A. R. Anwer, G. Li, K. Pattabiraman, M. Sullivan, T. Tsai, and S. K. S.

Hari, “Gpu-trident: efficient modeling of error propagation in gpu
programs,” in SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis. IEEE, 2020, pp. 1–15.

[12] L. B. Gomez, F. Cappello, L. Carro, N. DeBardeleben, B. Fang,
S. Gurumurthi, K. Pattabiraman, P. Rech, and M. S. Reorda, “Gpgpus:
How to combine high computational power with high reliability,” in
2014 Design, Automation & Test in Europe Conference & Exhibition

(DATE). IEEE, 2014, pp. 1–9.

[13] A. Ramaswamy, N. Kumar, A. Neelakantan, H. Lam, and G. Stitt,
“Scalable behavioral emulation of extreme-scale systems using structural
simulation toolkit,” in Proceedings of the 47th International Conference
on Parallel Processing, 2018, pp. 1–11.

[14] Z. Hussain, T. Znati, and R. Melhem, “Enhancing reliability-aware
speedup modelling via replication,” in 2020 50th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN).
IEEE, 2020, pp. 528–539.

[15] A. Cavelan, J. Li, Y. Robert, and H. Sun, “When amdahl meets

young/daly,” in 2016 IEEE International Conference on Cluster Com-
puting (CLUSTER). IEEE, 2016, pp. 203–212.

[16] H. Jin, Y. Chen, H. Zhu, and X.-H. Sun, “Optimizing hpc fault-tolerant
environment: An analytical approach,” in 2010 39th International Con-
ference on Parallel Processing. IEEE, 2010, pp. 525–534.

[17] A. F. Rodrigues, K. S. Hemmert, B. W. Barrett, C. Kersey, R. Oldfield,
M. Weston, R. Risen, J. Cook, P. Rosenfeld, E. Cooper-Balis et al.,
“The structural simulation toolkit,” ACM SIGMETRICS Performance
Evaluation Review, vol. 38, no. 4, pp. 37–42, 2011.

[18] T. Banerjee, J. Hackl, M. Shringarpure, T. Islam, S. Balachandar,
T. Jackson, and S. Ranka, “Cmt-bone—a proxy application for com-
pressible multiphase turbulent flows,” in 2016 IEEE 23rd International
Conference on High Performance Computing (HiPC). IEEE, 2016, pp.
173–182.

[19] S. P. Chenna, G. Stitt, and H. Lam, “Multi-parameter performance
modeling using symbolic regression,” in 2019 International Conference
on High Performance Computing & Simulation (HPCS). IEEE, 2019,
pp. 312–321.

[20] O. Subasi, F. Zyulkyarov, O. Unsal, and J. Labarta, “Marriage between
coordinated and uncoordinated checkpointing for the exascale era,” in
2015 IEEE 17th International Conference on High Performance Com-
puting and Communications, 2015 IEEE 7th International Symposium
on Cyberspace Safety and Security, and 2015 IEEE 12th International
Conference on Embedded Software and Systems. IEEE, 2015, pp. 470–
478.

[21] Y. Li, L. Zhao, H. Lin, A. C. Chow, and J. R. Diamond, “A performance
model for fast fourier transform,” in 2009 IEEE International Symposium
on Parallel & Distributed Processing. IEEE, 2009, pp. 1–11.

[22] I. Karlin, “Lulesh programming model and performance ports overview,”
Lawrence Livermore National Lab.(LLNL), Livermore, CA (United
States), Tech. Rep., 2012.

[23] I. Karlin, J. McGraw, E. Gallardo, J. Keasler, E. A. Leon, and
B. Still, “Memory and parallelism exploration using the lulesh proxy

application,” in 2012 SC Companion: High Performance Computing,

Networking Storage and Analysis. IEEE, 2012, pp. 1427–1428.
[24] I. Karlin, A. Bhatele, J. Keasler, B. L. Chamberlain, J. Cohen, Z. DeVito,

R. Haque, D. Laney, E. Luke, F. Wang et al., “Exploring traditional and
emerging parallel programming models using a proxy application,” in
2013 IEEE 27th International Symposium on Parallel and Distributed
Processing. IEEE, 2013, pp. 919–932.

[25] L. Bautista-Gomez, S. Tsuboi, D. Komatitsch, F. Cappello,
N. Maruyama, and S. Matsuoka, “Fti: High performance fault
tolerance interface for hybrid systems,” in Proceedings of 2011
international conference for high performance computing, networking,
storage and analysis, 2011, pp. 1–32.

[26] M. Kermarquer, “Fault tolerance interface.” [Online]. Available:
https://github.com/Maxime91860/LULESHF T I .

40

