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Abstract—As the design space for high-performance computer 
(HPC) systems grows larger and more complex, modeling and 
simulation (MODSIM) techniques become more important to bet- 
ter optimize systems. Furthermore, recent extreme-scale systems 
and newer technologies can lead to higher system fault rates, 

which negatively affect system performance and other metrics. 
Therefore, it is important for system designers to consider the 
effects of faults and fault-tolerance (FT) techniques on system 
design through MODSIM. 

BE-SST is an existing MODSIM methodology and workflow 
that  facilitates  preliminary  exploration  &  reduction  of  large 

design  spaces,  particularly  by  highlighting  areas  of  the  space 
for detailed study and pruning less optimal areas. This paper 
presents the overall methodology for adding fault-tolerance 
awareness (FT-awareness) into BE-SST. We present the process 
used to extend BE-SST, enabling the creation of models that 
predict the time needed to perform a checkpoint instance for the 

given system configuration. Additionally, this paper presents a 
case study where a full HPC system is simulated using BE-SST, 
including application, hardware, and checkpointing. We validate 
the models and simulation against actual system measurements, 
finding an average percent error of less than 17% for the instance 
models and about 20% for system simulation, a level of accuracy 

acceptable for initial exploration and pruning of the design space. 
Finally, we show how FT-aware simulation results are used for 
comparing FT levels in the design space. 

Index Terms—fault-tolerance  aware system design and evalu- 
ation, System-level modeling and simulation, high-performance 
computing, design space exploration 

 

I.  INTRODUCTION 

Designing high-performance computing (HPC) systems in- 

volves evaluating the various options (e.g., hardware compo- 

nents, applications, libraries) within a design space to meet 

system objectives, such as performance, cost, and power. Re- 

cently, the growth of this design space has accelerated, due to 

trends such as larger systems (e.g., greater node count, greater 

bandwidth, larger application problem size) and more system 

diversity (e.g., co-processors, newer programming models). 

This growth places greater importance on the field of mod- 

eling and simulation (MODSIM), which can facilitate system 

design by predicting system metrics and behavior before and 
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throughout system design and construction, leading to a more 

informed design process. Different MODSIM methods address 

this large design space with various techniques, each with 

different strengths and weaknesses. At one extreme, cycle- 

accurate simulators can provide extremely precise and detailed 

results for individual components and sub-systems, but the 

complexity and simulation time increases very quickly with 

system scale. At the other end of the spectrum, a purely ana- 

lytical modeling approach provides quick results turnaround, 

but can fail to capture more nuanced system behavior and 

interaction. There a spectrum of MODSIM techniques with 

advantages and trade-offs. 

The trends driving design space growth are predicted to lead 

to an increased number of system faults as well, further com- 

plicating the design space [1]–[3]. System faults can cause er- 

rors that negatively affect system operation, such as application 

crashes or data corruption. Many systems employ a wide range 

of fault-tolerance (FT) techniques to mitigate these negative 

effects [4]–[6]. Common techniques include checkpoint-restart 

(C/R), error correcting codes (ECC), algorithm-based fault- 

tolerance (ABFT), and process replication [7], [8]. However, 

fault-tolerance techniques incur some degree of overhead by 

consuming additional system resources. This overhead can 

directly or indirectly affect system metrics and behavior, such 

as an FT technique that adds compute time or memory require- 

ments to an application, reducing the effective performance 

or scaling behavior. In some cases, increasing the level of 

parallelism can reduce performance, as the negative effect of 

additional fault sources overshadows additional parallelism. 

[9],  [10].  As  a  result,  it  is  important to  better  understand 

the balance between the benefit and cost of various FT 

techniques, in order to predict their effects on performance 

and other objectives. Critically, this balance depends on how 

the system components, i.e., the architecture, application, and 

fault-tolerance techniques, interact and affect each other. For 

example, GPUs have different fault vulnerabilities, such as a 

higher potential for data corruption to spread [11], [12]. This, 

combined with GPUs different performance profiles, affect 

the cost-benefit relationship evaluated during DSE. Therefore, 

when performing MODSIM for emerging and future systems, 

it is increasingly important to investigate how the relationship 

between architecture, application, and fault-tolerance affect the 
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system. 

This paper presents an FT-aware extension to our previous 

work, BE-SST, a MODSIM tool, methodology, and workflow 

developed at a DOE PSAPP-II Center and used for multiple 

validated full system experiments [13]. BE-SST was devel- 

oped as a coarse-grained, multi-level MODSIM methodology 

and workflow, and is used to accelerate the exploration and 

reduction of  a  large  design  space.  BE-SST  achieves rapid 

DSE through Behavioral Emulation (BE), an approach to 

MODSIM that uses coarse-grained models of applications and 

architectural components to construct and simulate candidate 

HPC system designs [13]. This abstract modeling approach 

allows for faster DSE by accelerating both the process of 

creating models and simulating systems, while maintaining an 

acceptable level of accuracy for design space exploration and 

reduction. 

Specifically, this paper presents an expansion to the Model 

Development phase of the BE-SST workflow, allowing the 

creation of models for different levels of fault-tolerance via 

checkpointing. Additionally, we demonstrate the methodology 

by  presenting an  analysis and  validation of  the  models  at 

the  function  level.  These  validated  models  are  then  used 

in  a  system-level case  study  using  the  BE-SST  simulator. 

The simulation results using the FT-aware system models are 

compared to the original system models, which are not FT- 

aware, in order to demonstrate the impact of fault-tolerance 

awareness predictions of system performance and scalability, 

and, thus, DSE. 

The contributions of this paper are as follows: 

• A  presentation of  the  fault-tolerance aware extensions 

to our existing coarse-grained MODSIM methodology, 

workflow, and simulation platform, as well as plans for 

additional extensions. 

• An analysis and validation of the performance models 

for the application and checkpointing, based on real 

benchmarking data. The models are also used for pre- 

diction of the performance of the functions running on 

larger, notional systems. The level of accuracy allows for 

design space pruning & further study with more detailed 

simulators. 

• A full system case study using the BE-SST simulator, 

contrasting the FT-aware and non-FT-aware system pre- 

dictions with different levels of checkpointing for a full 

application run on Quartz, an HPC system housed at 

Lawrence Livermore National Lab. 

The rest of the paper is organized as follows. Section 2 

discusses related works, particularly other MODSIM research 

efforts that are also fault-tolerance aware. Section 3 describes 

the background on the MODSIM workflow that we extend, 

BE-SST, as well as methodology for incorporating fault- 

tolerance awareness into  that  workflow. Section 4  presents 

a  DSE  case  study  using  the  extended workflow, including 

the experimental setup, comparison of non-FT-aware and FT- 

aware performance models, validation and analysis of the 

models, and the use of these models for scaling predictions via 

BE-SST simulation. Section 5 summarizes our contributions 

and details our future directions. 
 

II.  RELATED WORKS 

There are a large variety of MODSIM techniques used for 

HPC system DSE, often to maximize system performance. 

Because of the recognition of faults as a performance concern, 

recent works have begun to integrate fault-tolerance awareness 

into their performance models to better optimize runtime [9], 

[10], [14]–[16]. In this section, we will discuss these fault- 

tolerance aware MODSIM approaches. 

Cavelan, et al. [15] modifies Amdahl’s law to find the 

optimum number of processes to minimize execution time 

while considering the effects of faults and the overhead of 

checkpoint-restart. Zheng, et al. [9], [10] perform similar 

studies, but extends Gustafson’s law in addition to Amdahl’s, 

to model and predict strong and weak scaling. Both works 

verify these models with fault injection simulations. These 

works highlight the significant effect of faults on performance 

by showing the difference between model predictions for a 

system assumed to be fault free, a system with faults, and a 

system with faults and fault-tolerance. They find that faults can 

greatly decrease the predicted system speedup, but checkpoint- 

restart can mitigate these losses. An important finding of these 

works is that while the original Amdahl’s and Gustafson’s laws 

have monotonically increasing speedup as the number of nodes 

increases, additional nodes can also increase the system-wide 

failure rate. As a result, an increase in number of nodes can 

actually result in a decrease in performance. While these works 

offer great insight into how faults affect performance on HPC 

systems, their basis in Amdahl’s and Gustafson’s law make 

the works very abstract, though applicable to many systems. 

By leveraging BE-SST’s more concrete MODSIM approach, 

our methodology workflow for predicting performance under 

faults is more specific and can capture more nuanced system 

behavior. 

Hussain, et al. [14] builds upon the idea of FT-aware 

performance models by modifying Amdahl’s law to include 

dual replication as a fault-tolerance technique, along with 

checkpoint-restart. Through analytical models and simulations, 

they find that replication allows for a greater maximum 

speedup than checkpoint-restart alone, due to the higher fault 

rate of more nodes being mitigated. This work differs from 

others in that while replication is a well-known fault-tolerance 

technique, it is much less studied than C/R. Similar to the 

works mentioned earlier, our work is more concrete, capturing 

more of the system behavior. However, we focus on more 

studied C/R techniques. 

Jin et al. [16] presents an analytical queuing model to 

maximize application performance. They seek to optimize 

performance by finding optimal values for processes, check- 

point frequency, and spare nodes. They also use this model 

for exploring the design space and giving directives for scal- 

able HPC systems. This work is  similar to  ours, but,  like 

others, takes an abstract view of applications, whereas we 

gather application benchmark data from real systems to build 
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our models. Additionally, the analysis of spare nodes as a 

fault-tolerance method is helpful in understanding how less 

prevalent fault-tolerance methods affect performance, as C/R 

is already widely studied. 
 

III.  METHODOLOGY 

As  previously  stated,  this  work  involves  extending  our 

current BE-SST methodology to be fault-tolerance aware. BE- 

SST is a simulator framework and coarse-grained model de- 

velopment methodology and workflow developed at the DOE 

PSAAP-II  Center  for  Compressible Multiphase  Turbulence 

[13]. The simulator leverages the Structural Simulation Toolkit 

(SST) from Sandia National Lab, which provides a framework 

for component-based, parallel discrete-event simulation [17]. 

The behavioral emulation (BE) MODSIM philosophy focuses 

on abstracting away fine-grained system details, thereby accel- 

erating the model generation process and reducing simulation 

time. However, BE-SST can use models at various levels of 

granularity to more finely balance speed and accuracy. This in 

turn facilitates faster evaluation of large numbers of candidate 

system designs in  the design space while still maintaining 

acceptable accuracy. After the reduction of the design space, 

slower, more detailed fine-grained simulators can be used to 

further evaluate the promising candidate designs, if necessary. 

BE-SST provides a distributed parallel simulation library for 

Behavioral Emulation, as well as the framework for developing 

coarse-grained BE models. The workflow supports plug-and- 

play DSE with different architecture and application subsys- 

tems  (e.g.,  node  architecture, interconnect topology, kernel 

libraries, etc.) which facilitates studying abstract, emerging, 

and  notional  systems.  Fig.  1  shows  previously  published 

benchmarking and validation results collected using BE-SST 

workflow and simulator as an example DSE case [13]. Here, 

BE-SST is being used to simulate the Vulcan HPC system, 

previously operational at Lawrence Livermore National Lab- 

oratory.  The  application  under  test  is  CMT-bone,  a  proxy 

app version of  CMT-nek, which is  based on  the Nek5000 

computational fluid  dynamics solver  [18].  The  scatter  plot 

on  the left side of  Fig. 1  shows both actual benchmarked 

performance results (in orange) and simulation results (in blue) 

of the system. Execution time is measured and simulated for 

different parameter combinations of MPI ranks and application 

problem size. Furthermore, because actual machine perfor- 

mance is  non-deterministic due to noise and other factors, 

BE-SST implements Monte Carlo simulations to capture the 

variance that exists in the calibration samples, to better emulate 

real machine behavior. As such, each of the points on the graph 

represent a distribution of results for performance runtime of 

one timestep. This is illustrated by the pop-out on the right 

side of Fig. 1. 

Additionally, once simulations have been validated for exist- 

ing machines, BE-SST can be used to perform predictions of 

notional machines. An example of a simple notional extension 

to an existing machine is to increase the number of ranks 

beyond the number of cores in the actual machine. This can 

be  seen  in  Fig.  1,  where  validation  was  performed  up  to 

 

 
 
Fig. 1.   BE-SST Simulation Results used for DSE of CMT-bone-BE Proxy 
Application on Vulcan Supercomputer [13] 

 
 
our allocation of 128,000 cores (blue and orange points) and 

predicted up to 1 million cores (blue only). Physically, Vulcan 

had a total of   400,000 CPU cores. However, we were able 

to perform simulations of Vulcan’s architecture up to the max 

size of the machine, and beyond, by using models validated at 

smaller sizes. This capability of BE-SST allows us to explore 

more hypothetical areas of the design space. 

BE-SST also facilitates DSE through the plug-and-play 

nature of SST to perform notional system simulation. With 

BE-SST,  models  from  different  machine  subsystems  (e.g., 

node architecture, network topology, memory system, etc.) can 

be used together to construct and simulate full notional system 

designs. The Behavioral Emulation (BE) workflow, illustrated 

in Fig. 2, consists of two major phases: (1) Model Devel- 

opment on the left, which includes the design, validation, and 

calibration of performance models, and (2) Hardware/Software 

Co-Design on the right, which uses the validated models from 

the previous phase for full system simulation and performance 

prediction. The rest of this section will give in-depth explana- 

tions of the two workflow phases, as well as the fault-tolerance 

awareness extensions to each phase. 
 

A. Model Development Methodology 

The individual steps of the Model Development phase can 

be seen in the left side of Fig. 2. The output models of this 

phase are Behavioral Emulation Objects (BEOs) for both the 

application and the hardware architecture, which are called 

AppBEOs and ArchBEOs, respectively. An AppBEO is a list 

of  abstract  instructions that  represents the  major  functions 

and control flow of the application under study. An ArchBEO 

describes the system hardware architecture that is simulated, 

defines system operations, and connects the performance mod- 

els to the instructions listed in the AppBEO. To create an 

AppBEO, we identify the significant computation blocks and 

communication patterns in the source code at the desired 

granularity level. These are then translated into the abstract 

instructions for the AppBEO. The instructions are created to 

only  accept  parameters that  affect  the  performance, which 

can be decided from previous benchmarking or knowledge 

of the application. When an abstract instruction is executed 
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Fig. 2.  Existing BE-SST Workflow, with Fault-Tolerance Aware Extensions in Red 
 

 

by the BE-SST simulator, the simulator calls the associated 

performance model to return the predicted run time, rather 

than actually carrying out what could be a costly computation 

or communication call during real execution. The simulation 

clock is then updated to reflect the time. 

To  create  an  ArchBEO,  we  begin  by  instrumenting the 

application  code  under  study  with  timer  calls  correspond- 

ing to the same blocks and patterns used for the AppBEO 

and running the code on existing machines or fine-grained 

simulators  to  collect  benchmarking  data  as  shown  in  the 

left side of Fig. 2. We collect multiple timing samples for 

each system parameter combination in the design space to 

account for system noise and other sources of variation. These 

samples are used to create models using one of two currently 

implemented methods: interpolation and symbolic regression. 

For our interpolation method of modeling, the training data 

is organized into lookup tables based on the corresponding 

system parameters. When a function from the AppBEO is 

called during simulation, the corresponding lookup table is 

searched for the function arguments, and one of many samples 

is selected for a runtime prediction. If the parameters in the 

current function call do not have an existing sample for this 

combination, the simulator estimates a value by using one 

of several implemented methods to interpolate a data point 

between two existing data values. We also use a second method 

of modeling, which is used in the case study experiments 

presented in this paper, based on symbolic regression [19]. In 

the symbolic regression method, the benchmarking data is split 

into training data and testing data. The training data is used as 

input to our symbolic regression tool to create models through 

an iterative process. The testing data is used to evaluate model 

accuracy at each iteration. 

With either method, (interpolation or symbolic regression) 

the simulator returns a predicted execution time for each 

function call. The modeling process is designed to incorporate 

and mimic the interactions of the whole system (e.g., hardware 

architecture, libraries, interconnect, etc.) into the performance 

models. The simulator then advances the simulation time by 

the amount predicted. This holistic modeling approach allows 

for more accurate results for system-level DSE. 

In order to develop FT-aware performance models, the exist- 

ing BE-SST Model Development process was extended to add 

fault-tolerance aware computation and communication blocks 

to the BEOs, as well as additional FT-aware benchmarking pa- 

rameters. These extensions to the model development process 

are visualized in the left side of Fig. 2 (labelled ”A”). The goal 

is to maintain the creation of models that capture interactions 

between hardware and software, but now include interactions 

with a new dimension of the design space, fault-tolerance. 

The specific alterations vary depending on the fault-tolerance 

techniques being benchmarked or simulated. The fault-tolerant 

version of an application may include changes to the source 

code, such as alternate algorithms that are more resilient, or 

checkpointing subroutines. Changes may extend to the control 

flow structure as well. As a result, the AppBEO must be 

updated to include the abstract instructions to reflect these 

source code changes. Also, the changes must be included in 

the instrumentation process to collect benchmarking data used 

to develop the corresponding ArchBEOs and their performance 

models. 

Fig. 3 provides a visual example of a simple fault-tolerance 

extension to an application, as well as visualizing how the 

Model Development process is affected. A common fault- 

tolerance strategy for applications is checkpoint-restart, where 

critical application data is periodically backed up, to be 

restored in the event of an error or crash. The performance 

of this added checkpointing function must be modeled for 

this  application.  Moreover,  the  parameters  that  will  affect 

this checkpoint function must be identified. These parameters 

may not have been factors for any functions in the non-fault 

aware versions of the application. For example, a parallel 

application that consists primarily of local, compute bound 
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Fig. 3.  Fault-Tolerance Aware Iterative Solver 

 
 

functions may demonstrate good weak scaling performance; 

as such, the number of nodes has a minor effect on overall 

application time to solution if no FT method is used. However, 

a coordinated checkpoint-restart function can introduce com- 

munication overhead, which is much more dependent on the 

number of ranks, and network limitations [20]. Given the size 

of the FT design space, consisting of different strategies, which 

themselves consist of different libraries and implementations, 

this can lead to multiple performance models for the same 

application, all of which can be explored and compared in the 

Co-Design phase. 
 

B. Hardware/Software Co-Design Methodology 

The BEOs and models developed and validated from the 

Model  Development  phase  can  be  used  in  the  Co-Design 

phase for design space exploration (DSE) of applications on 

existing architectures (algorithmic DSE), as shown in the right 

side of Fig. 2 (labelled ”B”). Furthermore, by modifying and 

extending the ArchBEO simulation parameters (e.g., network 

bandwidths, latencies, or topology) or replacing BEOs models 

with  other  validated  BEO  models,  it  becomes  possible  to 

perform architectural DSE, including DSE of notional systems. 

Algorithmic DSE involves interchanging models to deter- 

mine how different algorithms affect the performance of the 

overall  application.  Different  algorithms  can  serve  similar 

functions but have different scaling behaviors, depending on 

their  design,  the  system,  and  other  factors.  For  example, 

an  application that includes computation of  a  Fast Fourier 

Transform can have several algorithms from which to choose 

[21].  This  could  range  from  the  commonly  used  Cooley- 

Tukey algorithm to a bespoke implementation provided by 

the FFTw libraries. These two example algorithms may have 

performance profiles that differ depending on the size and 

type  of  the  input  dataset  (e.g.,  real  vs.  complex,  single- 

precision  vs.  double-precision)  or  the  details  of  the  node 

architecture (e.g., cache size, accelerator). Once the models for 

multiple algorithms have been created, we can use simulation 

to determine their performance under different conditions and 

recommend one for the system without having to run on the 

system. This can be helpful if runs are prohibitively long, or 

if the system does not yet exist. 

To include fault-tolerance awareness for algorithmic DSE, 

specific fault and FT parameters should be considered. As an 

example, C/R has its own set of parameters separate from the 

application, including implementation, scale, memory/storage 

level, etc. These parameters can interact with the application, 

hardware and software design spaces, which ultimately affects 

the performance of the entire system. In the case study of this 

paper, we show an example of how an FT-aware application 

can have its checkpointing cost modeled and evaluated, and 

how the application parameters affect checkpoint behavior. 

Additionally, including fault-tolerance awareness in the ar- 

chitecture under study requires incorporating FT-aware hard- 

ware parameters, such as hardware fault rates and recovery 

times, into the ArchBEOs, as shown in the bottom right of 

Fig. 2 (labelled “C”). Different hardware components (e.g. 

processors, memory technologies, etc.) have failure rates that 

can be found through various means, such as documentation 

or failure logs [3]. Co-design involves balancing hardware and 

software trade-offs to maximize performance, but changing 

system scale, hardware architecture and algorithms are all 

decisions that can affect the fault rate and fault-tolerance of a 

system and can therefore affect system-level performance. 

Other fault-tolerance techniques can be added for more 

intentional fault-tolerance aware algorithmic design space ex- 

ploration, such as algorithm-based fault-tolerance (ABFT). 

ABFT takes the form of alternate algorithms that perform the 

same operations but with more resilience and overhead, such 

as using a checksum in a matrix-based code to guard against 

silent data corruption. This can lead to direct performance 

overhead due to time needed to compute the checksum, or 

indirect overhead due to memory usage to store the checksum 

information, which harms performance. These factors can vary 

by application and parameters, which requires more trade-offs 

for study. 
 

C. BE-SST Simulator 

The BE-SST simulator (shown in  the middle of  Fig. 2) 

must be extended to integrate fault-tolerance awareness for 

the system-level simulation, shown at the bottom of Fig. 2 

(labelled ”D”). This consists of two steps: FTA model integra- 

tion, and fault injection/simulation capability. Currently, BE- 

SST performs simulations of systems without fault-tolerance 

awareness or fault injections; this is visualized as Case 1 in 

Fig. 4. The simulator “executes” the abstract instructions in the 

AppBEO. Each instruction in the AppBEO causes the simula- 

tor to poll the ArchBEO to determine the runtime for that event 

and advance the simulator clock for that rank, communicating 

with other ranks if necessary. Our work integrating FT-aware 

models into BE-SST allows for simulating Case 3, systems 

with  FT-aware performance models.  By  doing  so,  we  can 
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TABLE I  

 

 
 

CHECKPOINTING LEVELS OF THE FAU LT TOLERANCE INTERFACE (FTI) 

 
Checkpoint Level Checkpoint Method 

Level 1 Checkpoint file saved on local node 
Level 2 Checkpoint file saved on local node 

AND sent to neighbor node in group 
Level 3 Checkpoint files encoded 

via Reed-Solomon (RS) erasure code 
Level 4 All checkpoint files flushed . 

to parallel file system 
 
 
 

Fig. 4.  Different Fault Assumption Cases for BE-SST DSE 

 
 

determine expected system scaling behavior based on the dif- 

ferent overhead of fault-tolerance techniques and parameters. 

As previously noted, with fault-tolerance becoming a greater 

concern in emerging systems, this feature becomes a more 

important addition to BE-SST. Moving forward, adding the 

capability to inject faults into the BE-SST simulator will allow 

the simulation of Case 2, systems with different fault profiles, 

and Case 4, systems with both faults and fault-tolerance. 

Adding both fault awareness and fault-tolerance awareness 

allows for added versatility for exploring a fault aware design 

space. 

The case study in the following section presents results of 

the FT-aware extensions to the Model Development phase of 

the BE-SST workflow, along with the extensions to algorithmic 

DSE in the Co-Design phase. Together with our ongoing work 

on the other proposed extensions to the co-design phase, (i.e., 

architecture DSE and BE-SST simulator capabilities to support 

fault injection and fault aware simulation) these extensions 

will allow greater design space exploration by modeling and 

simulating how fault-tolerance design choices influence and 

interact with hardware and software design choices, how FT 

is affected in return, and how these choices and interactions 

affect performance and other metrics. 
 

IV.  FAULT-TOLERANCE AWA RE DSE CASE STUDY 

This section presents a case study illustrating FT-aware DSE 

enable via the aforementioned fault-tolerance extensions BE- 

SST. 
 

A. Experimental Setup 

The target architecture for our case study is Quartz, an Intel 

Xeon machine housed at Lawrence Livermore National Lab- 

oratory (LLNL). The machine consists of 2,988 nodes, each 

with 2 Intel Xeon E5-2695v4 CPUs, for 36 total cores, and 

128 GB of memory. The nodes are connected in a two-stage 

bidirectional fat-tree topology using Omni-Path interconnect 

technology. 

The  application  used  for  the  case  study  is  the  Liver- 

more Unstructured Lagrangian Explicit Shock Hydrodynamics 

(LULESH) application, which was developed as part of the 

DARPA Ubiquitous High Performance Computing (UHPC) 

program  [22],  [23].  LULESH was  designed  as  a  compute 

focused, weak scaling hydrodynamic proxy application, which 

lends itself to high-performance computing design space ex- 

ploration. It has been used to explore traditional and emerging 

programming  models,  and  has  been  implemented  in  over 

10 languages and programming models, including C++ with 

MPI+OMP, the version used in this case study [24]. LULESH 

has one main parameter: the problem size, or elements per 

rank (epr). The problem size determines how many individual 

elements, or spatial regions, will be assigned to each rank for 

computation. The other parameter used for our case study is 

the number of MPI ranks, which allows solving hydrodynamic 

problems with a larger spatial domain or higher resolution. 

The overall cubic domain for the entire application run is 

divided into a single cubic subdomain per rank, and the 

subdomains are in turn divided into elements, corresponding 

to the problem size parameter. Because of the decomposition 

algorithm divides the cubic subdomain into smaller cubes, 

LULESH is limited to running only on a number of ranks 

that are perfect cubes (e.g., 8, 27, 64, ...). 

The Fault Tolerance Interface (FTI) is a checkpointing 

library which provides access to multiple levels of check- 

pointing, fault-tolerance regions, and other parameters that can 

be tailored towards a system [25]. FTI includes 4 different 

checkpointing levels, which determine how the checkpoint is 

stored, including the level of fault-tolerance (i.e., the amount 

and kinds of failures that can be tolerated by a system). These 

checkpoint files allow an interrupted application to be resumed 

at a later time, either after the failure has been corrected, or 

using new hardware. Generally, as the levels increase from 1 

to 4, the resilience of the system increases as well. However, 

the performance overhead and demand on system components 

increase as well. Each level allows for parameters such as 

the checkpointing frequency to be set independently, allowing 

for flexibility in balancing fault-tolerance and performance 

overhead. 

Table I acts as a quick reference of each checkpoint level. 

Level 1 saves the checkpoint file to the node locally. If the node 

experiences a failure that halts its progression, the application 

can restart from the most recent successful checkpoint on all 

nodes. Level 2 and level 3 both make use of FTI groups, 

which are collections of nodes that keep their own checkpoints, 

as well as checkpoint files from other nodes in the group. 

This creates semi-independent fault-tolerant regions that can 

tolerated  multiple  failures  between  them.  The  number  of 

nodes per group is set using FTI’s group size parameter. For 
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Level 2 checkpointing, each node saves its checkpoint locally, TABLE II  

 

as in Level 1, but also sends it to two neighboring nodes 

within the group. Therefore, if a node fails and loses its 

checkpoint file, recovery is possible as long as one of the two 

neighboring nodes retain the copy of the lost checkpoint. Level 

3 checkpointing uses Reed-Solomon codes to encode and 

partition a single node’s checkpoint file among all members of 

a group. If any node fails and loses its checkpoint file, the file 

can be recreated through the encoded partition on the group’s 

other nodes. Through this process, any FTI group, and thus 

the application, can tolerate and recover from up to ½ of the 

nodes concurrent failures and loss of checkpoint in one group 

and still recover. Level 4 checkpointing involves flushing the 

checkpoint to the parallel file system (PFS), where checkpoints 

are the least likely to be lost. 

As previously stated, each level of checkpointing has a 

different amount of overhead, and can recover different kinds 

and numbers of failures. These different checkpointing levels 

and parameters change the resilience and performance profiles 

of the application, and the system as a whole, growing the 

design space. The performance overhead depends not only 

on FTI parameters, such as the group size and checkpoint 

frequency, but also, indirectly, on other system parameters. 

This can include the level of parallelism (e.g., the number of 

ranks and nodes used to run the application) and application 

parameters (e.g., problem size increasing the amount of data 

saved in a checkpoint file). Additionally, the speed of system 

components, such as local storage (Level 1), communication 

and network congestion (Level 2), computational performance 

(Level 3) and write speed to the parallel file system (Level 4) 

also affect overhead, depending on which levels are imple- 

mented. System performance parameters and fault rates can 

determine what level of fault-tolerance is necessary to optimize 

performance. As a result, these new parameters and operations 

further increase the scope of the design space. The exploration 

of this expanded, fault-tolerance design space using BE-SST’s 

accelerated modeling and simulation workflow is presented in 

the remainder of section IV. 

The  version  of  LULESH  with  FTI  integration  that  was 

used for this paper was found in a publicly available GitHub 

repository owned by Maxime Kermarquer [26]. For this work, 

we focused on the checkpointing levels 1 and 2, the levels with 

the least amount of communication, which do not require ex- 

tensive communication modeling. While we have constructed 

and validated communication models for other HPC systems, 

Quartz requires additional modeling of the Fat Tree network. 

We intend to model and validate Quartz communication in the 

future, at which point we can more fully explore the higher 

levels of fault-tolerance. 

As the case study involved measuring runtime for the 

application  and  the  fault-tolerance routine,  this  case  study 

falls under Case 3 of Fig. 4 (i.e., fault-tolerance without fault 

injection), which illustrates the overhead performance cost of 

using a FT method. The parameters used for the case study are 

listed in Table II. For this study, we elected to keep both the 

group and node sized fixed at low values, 4 and 2 respectively. 

CASE STUDY PARAMETERS 

 
Parameters Values 
Problem Size (epr) 5 10 15 20 25 
Ranks 8 64 216 512 1000 
Group Size 4 
Node Size 2 

 
 
Changing either FTI parameter could potentially affect com- 

munication patterns, and while communication at Level 1 and 

2 is minimal, we did not want to risk introducing additional 

variance without modeling the communication. Additionally, 

it should be noted that FTI requires the number of ranks to be 

a multiple of group size*node size. Coupled with LULESH’s 

perfect cube number of ranks requirement, we ran on every 

perfect cube number of ranks that is evenly divisible by 8. 

All possible perfect cube number of ranks that would fit on 

our allocation of the Quartz partition were run, maxing out at 

1000 ranks. The experiments were run for every combination 

of problem size and number of ranks, leading to 25 unique 

parameter combinations. 
 

B. Validation of Performance Models 

This subsection presents the validation of the performance 

models BE-SST workflow. We perform this validation by com- 

paring the modeled, or predicted, runtime for different problem 

sizes and numbers of ranks against the measured runtime for 

the same parameters, using Mean Average Percentage Error 

(MAPE) as an error metric As previously mentioned, we want 

to ensure that the models can predict both the performance 

and the trends of the machine with acceptable accuracy, as 

the models are used for low-cost simulations. This subsection 

also contains an example using the models for prediction of 

larger parameter values than were benchmarked, where both 

the problem size and the number of ranks are beyond our 

ability to run on Quartz, acting as a demonstrative step towards 

notional system prediction. 

Figs. 5-6 present the scaling behavior for LULESH and the 

2 levels of checkpointing. Both figures present the same data, 

with Fig. 5 showing scalability primarily by problem size, and 

Fig. 6 by number of ranks. In both graphs, the vertical black 

dashed line demarcates the boundary between validation on the 

left (both benchmarked and modeled data), and prediction on 

the right (only modeled data). The predicted region of Fig. 5 

predicts runtime of a larger problem size, simulating a notional 

system with more memory per node. The prediction region of 

Fig. 6 simulates a system with 1331 ranks, above the 1000 

rank limit we encountered on Quartz. 

In Figs. 5-6, it is clear that the relative costs of the functions 

stay mostly ordered. The LULESH timestep takes the least 

amount of time and scales the most slightly with either param- 

eter, problem size or number of ranks. This is consistent with 

LULESH being a computationally focused, weak-scaling mini- 

app. As expected, both checkpointing levels have a higher time 

cost, and scale much more quickly with either parameter, most 

likely due to FTI being a coordinated checkpointing solution 
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TABLE III  

 

 
 

 
 

 
 
 

 

MODEL VALIDATION VIA MEAN AVERAGE PERCENT ERROR 

 
Kernel MAPE 
LULESH Timestep 
Level 1 Checkpointing 
Level 2 Checkpointing 

6.64% 
16.68% 
14.50% 

 
 

and 6D, 25 epr and 1000 ranks respectively, these areas are 

highlighted by BE-SST as areas of interest for more detailed 

study with fine-grained simulators. However, the models cover 

the majority of the other points on the design space in this 

low-cost manner. 
 

Fig.  5.   Model  Validation for  LULESH  FTI  Checkpointing  and  Timestep 
Functions vs Problem Size (epr) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.  6.   Model  Validation for  LULESH  FTI  Checkpointing  and  Timestep 
Functions vs Number of Ranks 

 

 
that touches storage and communication, thus scaling with 

level of parallelism and amount of data to store respectively. 

Furthermore, we observe that the model predictions follow 

the trends for the real data quite well. This can be seen through 

the MAPE of 6.64% for the LULESH timestep models, and 

17% and 15% for L1 and L2 checkpointing, respectively. The 

checkpoint error may be higher due to complications from 

communication and secondary storage, or the parameters used 

for symbolic regression generation, all of which can be refined 

via finer grained modeling. However, as checkpointing occurs 

much less frequently than the timestep function in iterative 

solvers (e.g., 1 checkpoint per 10-100 timesteps) this error is 

less problematic for overall runtime. This is further verified in 

the full system simulation runs of the next section. 

From Figs. 5-6, it is clear that the models follow the trends 

of the real data for the majority of the data points, primarily in 

the center of the graphs. The benchmarks and models diverge 

at 2 key outlier areas: Figs. 5A, 5D and 6D. These are all 

extreme areas of design space, which are the most difficult 

to prune. For Fig. 5A, 8 epr, this area is low priority, as it 

is a low cost run. It has an extremely small runtime, which 

is more easily affected by noise. However, actual runs can be 

used quite easily for data. For the high cost runs, Figs. 5D 

C. Full System Case Study using BE-SST with Fault-Tolerance 

Awareness 
 

As discussed earlier, BE-SST has been used with perfor- 

mance models to predict full system performance of appli- 

cations and systems. By using the validated application and 

checkpointing performance models discussed in the previous 

section as input to the BE-SST simulator, BE-SST can be 

used to simulate performance overheads for different levels of 

fault-tolerance. 

Figs. 7-8 show the total application runtime for 200 

timesteps under three different fault-tolerance scenarios: 1) no 

fault-tolerance, 2) level 1 checkpointing 1, and 3) levels 1 & 

2 checkpointing. Scenario 1 (shown in blue) is used as the 

baseline, representing simulation of the system without any 

fault-tolerance awareness (i.e., the traditional BE-SST work- 

flow). Scenarios 2 & 3 (shown in red and green, respectively) 

are possible due to the FT-aware extensions to the BE-SST 

methodology and workflow, and serve to expand the design 

space further. Both Level 1 and Level 2 have a checkpointing 

period of 40 timesteps, marked by the black dots on Figs. 7-8. 

Similar to  the individual functions, the accuracy for the 

system-level simulations can be seen in how well the sim- 

ulations follow the benchmarked data, or in the MAPE levels 

of in Table IV, of  20%, 17% and 14% for no fault-tolerance, 

L1, and L1 & L2 respectively. This full system simulation case 

study leads to 2 important insights. 1). Predicting full appli- 

cation performance does not significantly increase error 

over individual timestep prediction. The error values of the 

full system simulations are comparable to the single function 

runs, as seen in tables III and IV. This is most likely due 

to aggregate error: since the full system simulation involves 

BE-SST predicting each individual model call, error can add 

up for larger predictions. However, as long as the variance 

is centered around the mean of the prediction, positive and 

negative error should cancel this out long-term, as Fig. 8 shows 

more divergence between prediction and measured values as 

more timesteps pass. 2). The percent error from the FT- 

aware scenarios are lower than the non-FT-aware scenario. 

This is most likely due to the benchmarked and measured 

values of scenario 1 being much smaller than scenarios 2 and 

3, and, therefore more susceptible to machine variation and 

other sources of noise. 
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Fig. 7.   Full Application  Runtime  Prediction  for 64 Ranks 

 

 
 

Fig. 8.   Full Application  Runtime  Prediction  for 1000 Ranks 

 
 
 

As mentioned, a major facet of BE-SST workflow is facil- 

itating DSE. With the full system simulations, the results can 

be used to predict how much overhead will result from each 

configuration without having to run the configuration. Fig. 9 

demonstrates this by displaying the amount of overhead for 

different points in the design space based on the problem size, 

number of ranks, and fault-tolerance level, allowing a quick 

overview of how these factors affect system behavior. 

 
TABLE IV 

VALIDATION FOR FULL SYSTEM SIMULATION 

 
Fault-Tolerance Level MAPE 
LULESH + No Fault-Tolerance 
LULESH + Level 1 Checkpointing 
LULESH + Levels  1  & 2 Checkpointing 

20.13% 
17.64% 
14.54% 

 

 

 
 

Fig. 9.  Overhead Prediction for Full System Simulation 

 
Using this new extended workflow, BE-SST is now capable 

of  simulating  full  systems  with  fault-tolerance. While  this 

case study only looked at one fault-tolerance method and 

implementation, this methodology opens the door to simula- 

tion and evaluation of fault-tolerance aware systems multiple 

checkpointing implementations, as well as other FT methods 

such as algorithm based fault-tolerance. This, in turn grants 

a greater design space to explore. In future work, we plan to 

implement fault injection, which will allow us to optimize for 

different fault rates and scenarios as well. 
 

V.  CONCLUSION & FUTURE WORK 

In this paper, we have presented a methodology to extend 

our  current BE-SST workflow and  platform to  incorporate 

fault awareness. A case study was used to demonstrate how 

the extended methodology can create and validate FT-aware 

performance models, which predict checkpoint overhead for 

different system parameters, and use these models for system- 

level simulation. Specifically, we used LULESH, an HPC 

proxy application, to show how fault-tolerance aware perfor- 

mance models can be used to perform DSE within the BE- 

SST workflow. We presented and validated both fault-tolerance 

aware performance models and checkpoint performance mod- 

els, with average errors of less than 17% for individual func- 

tions, and 21% for full system runs. We analyzed the trends 

of these models, and showed predictions, demonstrating how 

they could be used for predictive DSE of notional systems, 

specifically for use predicting the effect of fault-tolerance on 

performance. 

Currently, we are integrating the HW/SW Co-Design phase 

of our workflow with fault-tolerance awareness. We will also 

further our ability to explore the fault-tolerance aware design 

space by investigating other fault-tolerance techniques. The 

latter is  interesting because BE-SST is  already being used 

to study multiple applications and architectures, but we will 

incorporate a more formal methodology for including and 

comparing differing checkpointing libraries and algorithm 

based fault-tolerant methods, as well as building up those 

libraries for BE-SST. Finally, by including the capabilities of 

fault injection and checkpoint-restart into the BE-SST simula- 

tor, we can perform full system simulations to determine how 

both faults and fault-tolerance affect performance predictions 

and the overall design space. 
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