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Abstract— Triple modular redundancy (TMR) with repair
is a commonly employed mitigation strategy used on SRAM
field-programmable gate arrays (FPGAs) to reduce the effects of
ionizing radiation and improve a circuit’s sensitive cross section.
This article examines TMR circuits, where the I/O ports of the
circuit have not been triplicated, but the internal circuitry has.
Such circuits introduce single-point failures (SPFs) into the circuit
that limit the neutron cross-sectional improvement offered by
TMR to only 3× for the b13 benchmark circuit used in this
article. This article proposes two different mitigation techniques
to address SPFs, which alter the placement and routing of the
circuit. These mitigation techniques reduce the neutron cross
section by 26× over the unmitigated circuit while minimally
affecting the circuit’s maximum clock frequency and resource
utilization.

Index Terms— Configuration scrubbing, fault injection,
field-programmable gate arrays (FPGAs), radiation testing,
single-point failure (SPF), single-event effects (SEEs), single-event
upset (SEU), triple modular redundancy (TMR).

I. INTRODUCTION

SRAM field-programmable gate arrays (FPGAs) are inte-
grated circuits (IC) that can implement any digital logic

function, given enough resources. An FPGA consists of lookup
tables (LUTs), flip-flops (FFs), block memories (BRAMs),
and other special resources (digital signal processors (DSPs),
multigigabit transceivers (MGTs), and so on) coupled with
a large configurable routing network to programmatically
connect all of these resources. The FPGA also consists of
a large memory (SRAM cells for an SRAM FPGA) called
the configuration memory (CRAM), which defines the oper-
ation of all of the resources and the routing network on the
device [1].

FPGAs are being increasingly considered for use in many
harsh environments, such as in space, high-energy physics
experiments, and high-altitude environments. While in these
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environments, FPGAs are exposed to ionizing radiation and
subject to numerous types of single-event effects (SEEs),
such as single-event upsets (SEUs), single-event transients
(SETs), single-event latchup (SEL), and single-event function
interrupts (SEFIs) [2], [3]. SRAM FPGAs are particularly
sensitive to SEUs, as SEUs typically occur in the large
CRAM (approaching 1 Gb on the newest devices) potentially
changing the circuit’s implementation [4], [5]. SEUs within
the CRAM could flip an LUT value which could change
the circuits functionality or occur in the routing network and
connect/disconnect physical wires on the device.

Triple modular redundancy (TMR) with repair is a com-
monly employed strategy to mitigate against the effects of
SEUs on FPGAs [6]. In TMR, the circuit is replicated three
times and voters are inserted on the outputs so that only
the majority logic value, as voted on by the three redundant
circuits, is propagated from the device. By only propagating
the majority value, any failures limited to one of the redundant
circuits are masked. Applying TMR with repair to an entire
circuit (including triplicating all the I/O ports) has shown to
greatly increase the mean time to failure (MTTF) of the circuit
by 50–100× [7], [8] and, in this article, is shown to improve
the neutron cross section by 86×.

However, [7], [8], and other works study the impact of TMR
with repair when the circuit has been completely triplicated.
When the circuit is completely triplicated, all I/O ports are
triplicated along with all of the internal resources, including
any BRAMs, MGTs, or DSPs that are used by the circuit.
In many applications, such triplication may not be possible.
Whenever an unmitigated circuit utilizes more than 1/3 of any
one resource, that resource cannot be triplicated.

Even when a circuit cannot be completely triplicated,
the designer may still want to improve a circuit’s radiation
sensitivity [9]. When TMR is applied in these scenarios,
the designer introduces single-point failures (SPFs) into the
circuit that will limit how much TMR can improve a circuit’s
radiation sensitivity. SPF occurs in the regions of the circuit
that are untriplicated, as failures in these regions will not be
masked by a majority voter.

Not triplicating the I/O ports (common-IO) is common
for FPGA circuits, as FPGAs are generally employed in a
system to interface with many devices or because the device
interfacing with the FPGA does not have I/O triplication.1

1When the I/O on an FPGA is triplicated, the I/O device connecting to
those ports must be able to read/write the triplicated I/O.
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Fig. 1. Triple modular redundancy.

In the common-IO version of TMR for the b13 circuit studied
in this article, the neutron cross section improved only 3×
over the unmitigated version, which was much less than 86×
cross-sectional improvement observed for the triplicated I/O
(trip-IO) TMR version of the circuit.

The goal of this article is to develop and validate mitigation
techniques for SPF to reduce the sensitive cross section in
TMR circuits, where the I/O ports are not triplicated. This
article develops two separate mitigation techniques called
split-clock and split-IO. These techniques mitigate SPF by
altering the placement and routing of the circuit. By applying
these techniques to a Xilinx Artix-7 200T FPGA, the neutron
cross section improves by 26× over the unmitigated design,
about an order of magnitude improvement over the base
common-IO design.

II. BACKGROUND

TMR can be used to triplicate the circuitry within the FPGA,
as shown in Fig. 1. When a failure occurs in one of the TMR
domains, it is limited to that domain as the redundant copies
will successfully mask the failure. TMR is usually applied to
the circuit using automated tools by directly modifying the
circuit’s netlist. The tool we use for this article is called the
BL-TMR tool [10].

To increase a circuit’s MTTF, a repair element is needed in
addition to TMR. Repairing a system refers to bringing the
broken module into a correct operating state after it has failed
and then resynchronizing it with the other modules. Depending
on the repair speed relative to the failure rate, the TMR with
a repair system can greatly improve the reliability and MTTF
of a circuit.

There are two components to implementing repair for an
FPGA circuit. The first step is to restore upset CRAM bits
to their original value to “repair” the original circuit func-
tionality. This is done through configuration scrubbing, where
a scrubber continually corrects the original bitstream to its
proper value [11]. There are a variety of ways to implement
configuration scrubbing, including blind scrubbing with a
golden copy, readback scrubbing with an external scrubbing
circuit, or the use of an error-correcting code (ECC).

The second component is to provide repair for the dynamic
memory elements in the circuit, such as the FFs and BRAMs,
called resynchronization. For memory that is written every
cycle (such as FFs), TMR voters can be added along the

Fig. 2. TMR with an SPF reliability model.

feedback paths, which will automatically resynchronize the
memory as soon as the CRAM is scrubbed, called feedback
TMR [12]. ECCs can also be used for larger memories [13].

A. Related Work

Despite adding TMR with repair to SRAM FPGAs, upsets
within some single CRAM bits have been shown to cause
circuit failures even when the design is completely tripli-
cated [14]–[17]. These bits that affect the operation of more
than one TMR domain are referred to as common-mode
failures (CMFs). In these previous works, the authors improve
TMR by altering the placement and routing. Sterpone and
Violante [14] proposed the reliability-oriented place and route
algorithm (RoRA). This group measured their improvement to
be on the order of 350–650× during fault injection. The same
group created the VERI-Place tool, which also includes an
estimator to predict a circuit’s sensitivity to SEUs [18]–[20].
Cannon et al. [16], [17] proposed mitigation techniques called
striping and PCMF (used in this article) and showed a neutron
cross-sectional improvement up to 350×.

The main difference between this article and previous works
is that this article seeks to mitigate SPF in TMR systems
with nontriplicated I/O ports. The goal of this article is to
make TMR with repair improve the cross section as much as
possible, despite the limitation imposed by SPF. Because SPF
will always be part of the system, the improvements measured
in this article will never be as good as the improvements seen
when the circuit is completely triplicated.

B. Reliability Modeling TMR With SPF

Mathematical models are often used to represent the reliabil-
ity of systems and potential fault-tolerant techniques. Markov
chains are useful because reliability metrics such as reliability
as a function of time and the MTTF can be derived [21]. The
Markov chain for a TMR with repair system and SPF can be
modeled, as shown in Fig. 2. This is the same chain that was
used in [17]. In the model, λ represents the failure rate of one
of the redundant TMR circuits, μ represents the circuit repair
rate, and λSPF represents the SPF rate.

The MTTF and maximum improvement can be calculated
using the model [21]

MTTF = 5λ + λSPF + μ

6λ2 + 5λλSPF + λ2
SPF + μλSPF

.

Assuming a repair rate that is much greater than the redundant
circuit failure rate (i.e., μ � λ) yields

MTTF = 1

λSPF
.
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Fig. 3. Example of the TMR FPGA circuit with SPF in the I/O.

Fig. 4. Example of the TMR FPGA circuit with SPF in a limited resource.

Thus, the MTTF of this system is limited by its SPF rate.
By reducing the cross section of the SPF regions of the circuit,
the reliability and MTTF of the system can be improved.

III. SINGLE POINT FAILURES

For the purpose of this article, an SPF is defined to be an
upset in any one bit in the CRAM that causes TMR failure,
where that one bit corresponds to an untriplicated compo-
nent/resource in the circuit. By the definition of SPF, SPF can
only occur in a TMR circuit that is not completely triplicated.
Thus, the only way to completely remove SPF is to completely
triplicate the circuit. Even though the presence of SPF places a
limit on the total cross-sectional improvement TMR can offer,
it can still be partially mitigated. SPF mitigation techniques
can be developed by understanding how SPF occurs.

Fig. 3 shows the example of a TMR circuit with untripli-
cated I/O pins on an FPGA. There are five locations in this
diagram, where an SPF can occur, labeled 1–5. Two of the
five locations are the I/O themselves (#1 and #5). Two other
locations occur on the routes leading to/from the I/O (#2 and
#4). The net coming from the input I/O is a single route before
it eventually splits to feed each individual TMR domain. Then,
when going to the output I/O, there is a single route from the
reduction voter to the output. The final location is the single
reduction voter (#5). Because there is only a single output,
the output of the three TMR domains needs to be reduced to
a single net for the device output. This is done through the
use of a single voter.

SPF can also occur when other resources in the circuit
are not triplicated, such as when these designs use a sin-
gle resource. Such resources could be the MGTs, DSPs,
or BSCAN. Like I/O, there are relatively a few of these
resources on the FPGA compared with the relatively large
number of LUTs and FFs. If the untriplicated design uses
more than 1/3 of these resources, then they all may not be
triplicated. An example of such a circuit is shown in Fig. 4.
There are four locations in the limited resource circuit, where
SPF can occur: in the single voter (#1), in the route leading to
the resource (#2), in the resource (#3), and in the route leading
from the resource (#4).

Fault injection [22], [23] can be used to test a circuit’s
sensitivity to single-bit upsets (SBUs) and each bit that caused

TABLE I

SPF IN COMMON-IO TMR CIRCUITS

Fig. 5. Data nets in the b13 circuit (black lines) with failures found during
fault injection mapped on top (red squares) showing the sensitivity of these
nets. (a) High fan-out input pin net. (b) Reduction output net.

a failure can be analyzed to determine what low-level archi-
tecture was affected. There are several types of failures.

• Routing Failure: A failure within the routing network.
This can occur either from the input pad or going to the
output pad from the reduction voter. A routing failure can
further be split into a nonclock routing failure or a clock
routing failure. It is useful to make this distinction on an
FPGA, as the routing for nonclock and clock signals is
distinct and uses separate resources.

• Voting Failure: A failure that occurs within the reduction
voter that is used to drive a single signal output of the
chip. This occurs in the LUT that is used for the voting
logic.

• CMF: A CMF as explained in [17].
• Other Failure: Any other form of failure that is unknown.

Using these failure types, all the failures from the
fault-injection results for the common-IO TMR version can
be classified and are presented in Table I (the results from the
fault injection test can be found in Section V).

These results show that routing failures, both nonclock and
clock, are by far the largest cause of SPF. This is because input
nets can have a large fan-out, making them more susceptible.
It is possible to map the location of failures onto the physical
design implementation to visualize what part of the circuit is
being affected by the failure. Fig. 5, for example, shows an
input pin that has a large fan-out and red dots that show the
location of several failures observed during fault injection on
the b13 circuit. As the figure shows, this particular route is
quite sensitive. There are many more nets similar to this one
in the circuit, which make the circuit quite sensitive. Similarly,
output nets are also sensitive to SPF, as shown in the figure.
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Fig. 6. Triplicating clocks.

Voter failures occur much less frequently, because there
are fewer configuration bits that control the voting logic.
Since voters take three input signals (from the three domains),
it would be implemented as an LUT3 or a three-input LUT.
Only eight bits are needed to implement an LUT3, meaning
there are eight potential sensitive bits.

IV. MITIGATION STRATEGIES

In an FPGA circuit, each I/O pin can either be a clock net or
a nonclock net. Each type of net needs to be treated differently
due to the different resources used to route them through the
device. We developed two techniques to mitigate SPF: split
clock and split-IO. These techniques are all implemented as
tool command language (TCL) scripts. TCL can be used in
the vendor’s CAD tool for low-level manipulation of a circuit.

A. Split Clock

An input pin for a clock is first routed through a clock
buffer, as shown in Fig. 6. Buffers are used to drive the clock
signal onto the clock-specific routing network and to minimize
the skew across the clock network. There are different clock
buffers available on the device, which are used to drive
different regions on the device. The most common type of
buffer is a global buffer (BUFG). In a typical design, the clock
would be routed through a BUFG, or similar buffer, and then
routed to each cell in the design.

In a common-IO TMR design, there would only be one
clock signal for each clock in the original design. To internally
triplicate each clock, they can each be routed to three buffers,
one for each domain. Then, the output of each buffer is routed
to the cells associated with that particular clock and TMR
domain. This mitigation technique is shown in Fig. 6.

As shown in the figure, there are a few locations where SPF
can occur in the original design, denoted by the red “x”s. The
first location is from the input pin to the buffer and the second
location is from the buffer to the cells of each domain. While
the figure only shows one red “x,” it is likely that each of these
nets uses multiple wire segments, which would correspond
to multiple configuration bits. After buffer triplication, there
is only one location where SPF can occur, on the net from
the input pin to each of the buffers. The possibility for SPF
has been removed from the design implementation after the
buffers.

B. Split-IO

Similar to split clocks, nonclock input pins can also be split,
as shown in Fig. 7. The net routes from the input pin through

Fig. 7. Split I/O technique.

Fig. 8. Pass-through LUTs.

any number of wire segments before it splits to feed each
TMR domain. As the figure shows, SPF can occur before the
net splits denoted with the red “x”s. SPF can be mitigated by
splitting the net early so that SPF is limited to occurring near
the input pin.

Splitting the nonclock nets must be performed differently
than splitting the clock nets. Unlike clock nets which pass
through a buffer before being routed to the cells, nonclock nets
are routed directly from the input pin to each corresponding
cell. To mitigate SPF, the net should be split as early as
possible. Just how early the net is able to split is dependent
on the device architecture as there may be local routing that
needs to be performed before the net can be routed onto the
general routing network.

There are two steps to implementing the split-IO tech-
nique within the vendor tool. The first step is to introduce
a pseudobuffer into the netlist. This pseudobuffer can be
inserted for each separate domain to force the net to split. This
pseudobuffer is implemented as a pass-through LUT, which is
a single-input LUT, whose function is to copy the logic value
of the input wire onto the output wire. The split-IO technique
using pass-through LUTs is shown in Fig. 8. The second step
to the split-IO technique is to constrain these pseudobuffer
LUTs to be placed in the CLB tile closest to the input pin.

Implementing the split-IO technique can impact device uti-
lization in two ways. First, there is a need for three additional
LUTs to serve as the pseudobuffers. This would increase the
number of LUTs by three times the number of logic input
pins in use for a given circuit. Second, this would increase the
routing utilization and congestion. Without the pseudobuffers,
the tool is free to split the net as close to the sink cells as
it would like. With the pseudobuffers in place, the tool must
route three copies of the net to the sink cells. The increase
in routing congestion would be dependent on the number of
sink cells for the net and how close they are placed to the
pseudobuffers on the device.

C. Output Placement

Mitigating SPF for an output net is more difficult to perform.
This is because the net is coming from the redundant circuitry
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Fig. 9. Untriplicated output net.

and needs to be reduced to a single output wire. TMR ceases
at the reduction voter, which is used to propagate the majority
value from the TMR domains to the output pin, as shown
in Fig. 9. Anywhere from the reduction voter to the output
pin could fail from SPF. The easiest strategy is to ensure
that the path from the reduction voter to the output pin is
as small as possible. This is done by placing the reduction
voter in the CLB tile closest to the output pin, just like
the pseudobuffers were placed in the CLB tile closest to the
input pin. No additional cells are needed to implement this
technique. For the results, output placement will be combined
with split-IO.

D. Early Split (ES)

All these techniques, split clock, split-IO, and output place-
ment, can be used together. When used together, they are
referred to as ES. When strictly considering SBUs, these
mitigation techniques would be most effective when used
together. However, certain missions/environments may dictate
otherwise. For example, there may be environments where
parts of the FPGA may be more susceptible to failure than
other parts. Or, there may be enough resources to implement
split-IO, but there may not be enough resources to implement
split clock.

E. Combined With CMF Mitigation Techniques

Both PCMF and striping mitigation techniques developed
in [17] can be used in tandem with the SPF mitigation
techniques to increase the reliability of common-IO TMR.
To use the PCMF technique, the clock must be triplicated
since the failure mechanism involves multiple clocks. While
striping can be used without any SPF techniques, doing so has
little practical sense, as the failure cross section will usually
be dominated by SPF. Before applying any CMF technique,
the most effective SPF techniques should first be applied.

V. RELIABILITY TESTING AND ANALYSIS

Four different benchmark circuits were used to evaluate the
techniques described in the previous section. The first of the
circuit, the b13, design comes from the ITC’99 benchmark
suite and is a simple finite-state machine that interfaces with
a weather station. We chose the relatively small b13 circuit
because this circuit is commonly used as a benchmark by a
number of researchers investigating the effects of radiation
on FPGA designs [20]. Ideally, results from this article can be
compared to others if the same benchmark circuit is used. The

circuit is replicated 256× because it is so small. If only a single
instance was used, then we would have much less failure data
(and thus worse statistics). In addition, the common effects
of I/O and other global issues can be spread across multiple
b13 instances rather than a single instance giving a more
accurate per instance result. It was selected as the only circuit
tested in radiation due to the limited availability of beam
time.

Three other circuits were also used for this article: the
md5, sha3, and aes128. These other circuits are different types
of hashing and encryption algorithms. They have also been
replicated to increase the circuit utilization. All the circuits
and all the TMR variations of the circuits were clocked at
50 MHz.

In total, 12 different TMR variations were tested for each
circuit.

• Unmitigated: The original circuit with no mitigation
techniques applied to it.

• Common-IO: The original circuit with TMR applied to
it but without any of the input or output pins being trip-
licated. This design is further subdivided into one-voter
and three-voter designs, where only one voter is used for
each partition or where three voters are used for every
partition.

• Split-IO: The common-IO three-voter circuit with the
split-IO mitigation technique and output placement tech-
nique applied.

• Split Clock: The common-IO three-voter circuit with the
split-clock mitigation technique applied.

• Split-Clock-PCMF: The split-clock circuit with PCMF
also being applied.

• ES: The common-IO three-voter circuit with the split-IO,
split clock, and output placement techniques applied.

• ES-PCMF: The ES circuit with PCMF also being applied.
• Trip-IO: The original circuit with TMR applied to it,

where all the input and output pins are triplicated. Like
the common-IO circuits, these are also subdivided into
one-voter and three-voter designs.

• PCMF: The trip-IO circuit with PCMF applied [17].
• Striped: The trip-IO circuit with striping applied [17].

The last two TMR variations are CMF mitigation strategies
specifically for trip-IO TMR circuits. These are included
to show the tradeoffs involved when choosing between
common-IO and trip-IO TMR circuits. Routing was not able to
complete for the striping technique for the md5 and sha3 cir-
cuits.

A. Performance Analysis

Five metrics were chosen to study the implementation
impacts of each of the techniques. The first metric is the
maximum achievable frequency for the circuit. This metric
helps measure how each technique impacts the ability to meet
timing. The second metric is the number of routing nodes. The
number of routing nodes is the number of electrical nodes
on the FPGA device that are driven by nets in the circuit.
This metric directly relates to power consumption and routing
congestion, which impact routeability. The third, fourth, and
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TABLE II

MEAN IMPLEMENTATION METRICS

TABLE III

BASE CIRCUIT UTILIZATION

fifth metrics are all area measurements. They measure the
number of cells, sites, and tiles used by the circuit.

We developed a TCL script to find the maximum fre-
quency. Once the maximum frequency is found, the number
of routing nodes, cells, sites, and tiles is reported for the
maximum frequency implementation. The geomean change
(over the unmitigated design) across all circuits can be found
in Table II, while the baseline utilization (the number of LUTs,
LUTRAMs, FFs, and I/O) is shown in Table III. For the
geomean change, a higher change is better for the maximum
frequency, while a lower change is better for all of the other
metrics.

As Table II shows, the geomean maximum clock frequency
is not affected by the proposed SPF mitigation techniques
(over the common-IO three-voter design). Of course, the indi-
vidual circuit results do vary. The md5 circuit was negatively
affected, while the other circuits were positively affected in
the maximum clock frequency. The other metrics were also
slightly affected by the SPF mitigation techniques. This table
also shows that the SPF mitigation techniques have a minimal
impact on the circuit size. This means that if the designer
is already willing to pay the price for common-IO TMR
(three voters), then applying the SPF mitigation techniques
has minimum additional impact on the circuit.

B. Experimental Setup

For the reliability testing (fault injection and neutron radi-
ation testing), this article uses a golden copy with the device
under test (DUT) structure for testing. In this setup, there
are two different chips, the golden copy and the DUT, both
running the same copy of the circuit. The only difference
between the two chips is that the DUT is exposed to errors,
whether that be through fault injection or radiation testing,
while the golden copy is not subject to any errors. The boards
are run in lockstep so that failures in the DUT can be detected
in real time. All detection logic is implemented on the golden
copy, so that all failures occur from the circuit on the DUT.

Fig. 10. TURTLE setup.

A setup called the TURTLE is used for this article. The
boards contain an Artix-7 200T FPGA chip, shown in Fig. 10.
In the TURTLE setup, the golden copy and DUT are imple-
mented on separate boards, the Nexys Video Artix-7 boards
available from Digilent. The boards are connected via an FMC
coupler card, which handles all communications between the
boards. Configuration and scrubbing are handled through the
JTAG port using the JTAG configuration manager (JCM),
which was designed to handle these tasks [24].

The TURTLE setup is designed to be stacked on top of
each other to aid in data collection. Fig. 10 shows the standard
five-board stack that is used for the majority of the tests. This
allows data to be collected approximately 5× faster than nor-
mal, as five fault-injection tests can be running simultaneously
and five experiments will run simultaneously during neutron
radiation testing. The collection of more data allows for more
event observations, which tightens the confidence intervals.

C. Fault-Injection Results

All the circuits and TMR variations were tested using fault
injection [22], [25]. During our fault-injection experiments,
faults were randomly injected into any bit from the type 0 logic
frames of the device. This fault was allowed to propagate for
1 ms and then scrubbed, and if no failure was detected, fault
injection continued by selecting a new random bit.

To understand the relative value of each technique,
the total number of injections and detected failures is reported
in Table IV. This table also reports the geometric mean for the
techniques sensitivities and their improvement. The goal of the
geometric means is to provide an idea for which techniques
are usually more effective for any general circuit. The specific
results for each benchmark circuit and mitigation technique
are shown in Fig. 11.

The main takeaway from this table and plot is that the
SPF mitigation techniques do reduce the circuit’s sensitivity
to SBUs. In addition to the main takeaway, there are a few
general trends from the plot and table.

• The ES-PCMF mitigation technique offered the most
improvement for common-IO TMR circuits.
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TABLE IV

FAULT-INJECTION MEAN RESULTS

Fig. 11. Fault-injection sensitivity of designs/circuits.

• The split-IO and split-clock-PCMF mitigation techniques
offer about the same improvement for common-IO TMR
circuits.

Since the fault-injection results for the mitigation techniques
are promising, the next step is to validate these mitigation
techniques through radiation testing.

D. Radiation Testing Results

Radiation testing can be used to measure the response of
a circuit (such as an FPGA) in the presence of ionizing
radiation [26], [27]. Neutron radiation testing took place at
the Los Alamos Neutron Science Center (LANSCE) in Ice
House I and II [28]. The beam at LANSCE is a wide-energy
neutron beam that approximates the terrestrial environment,
but at much higher flux. Neutrons with an energy greater than
10 MeV are counted toward the fluence.

For the radiation test, the TURTLE was setup incident to
the beam and run at room temperature. Additionally, the beam
was collimated to 2 in. so that only the DUT FPGA and a few
surrounding components were exposed to the full beam flux.
TMR was applied to the golden copy circuit, since the golden
copy device is close to the beam. Additionally, when a failure
is detected, the golden copy is scrubbed so a posttest analysis
can filter out any failures that can be attributed to the golden
copy (no failures on the golden copy were observed for this

Fig. 12. Neutron cross section of designs.

experiment). This helps to ensure that observed failures are
due to the DUT.

The results from the LANSCE neutron tests are shown
in Table V and are graphically plotted in Fig. 12. Since beam
time is limited, only the b13 circuit and only some of the
mitigation techniques were tested.

The major takeaway from beam testing is that the mitigation
techniques improve the cross section of the circuit. The
improvements in radiation testing are not as high as they were
in fault injection, but this is because SBUs are not the only
cause of circuit failure. In addition, there are several other
takeaways from the data.

• The common-IO circuit only showed a 3× improvement
over no mitigation.

• The ES-PCMF was the best mitigation technique for
common-IO circuits with an improvement of 26×.

• The trip-IO circuit performed better than all the mitigation
techniques for common-IO circuits.

• PCMF performed better than striping in radiation testing
(as was explored in [17]).

E. Radiation Test Analysis

To further understand the failures observed during radiation
testing, the radiation test logs can be used to perform a
“replay” using fault injection. During each iteration, the JCM
logs any faults in the configuration memory and whether or
not the DUT failed. This process repeats until the end of the
radiation test.

Using the information provided by the logs, each scrub cycle
where a failure occurred can be “replayed.” A radiation replay
is a form of fault injection, but instead of a single bit being
injected during each iteration, the upset bits logged during a
scrub cycle are all injected during each iteration. If a failure
occurs during the replay, then the failure in that scrub cycle
was caused by SEUs in the configuration memory. When a
failure does not occur during the replay, then the failure was
caused by other radiation effects.

If the replay determines that the cause of failure was due to
SEUs in the configuration memory, then fault injection can be
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TABLE V

NEUTRON RADIATION TESTING RESULTS

done at a finer granularity. When fault injection is performed
at a finer granularity, every combination of upset bits can be
injected to determine which subset caused the failure.

When multiple bits are determined to be the cause of a
failure, then further analysis can be used to determine if the
multiple bits are the result of an MCU or multiple SEUs. If an
MCU is the cause of the failure, then the circuit failed from a
single event. However, if multiple SEUs (SEU accumulation)
are the cause of a failure, then the circuit failed from multiple,
independent events.

Determining the difference between SEU accumulation and
MCUs is difficult as logically adjacent bits are not necessarily
physically adjacent on the device. Statistical methods can be
employed to determine which upsets have a high probability
of being an MCU. This is done by using the aggregate data
across the entire test to observe common upset patterns. Due
to the random nature of the test, most upset patterns should
only occur a few times, and thus, patterns that occur many
times are highly unlikely to be random. These patterns can be
used to identify MCUs for every scrub cycle. This is still an
active area of research, but a tool built on these principles has
been employed for this article [30].

The results of the radiation replay are presented in Table VI.
This table shows how many failures can be attributed to SBUs,
MCUs, and SEU accumulation or other for each TMR design.
Other upsets were likely caused by errors in unmonitored areas
of the device, such as the user memory. As expected, applying
the SPF and CMF mitigation techniques reduces the impact of
SBUs with the striped and PCMF designs showing no failures
due to SBUs.

The cross sections from the radiation test can be updated
to filter out failures that were caused by SEU accumulation.
SEU accumulation is much more likely to happen in the
accelerated testing environment because upsets are happen-
ing at an accelerated pace. This increases the likelihood of

TABLE VI

CLASSIFICATION OF FAILURES FROM RADIATION TEST

observing multiple independent events in the same scrub
cycle. In a deployed environment where the repair rate easily
outpaces the bit upset rate, SEU accumulation is much less
likely. The filtered results and their improvements are included
in Table V. Using the filtered results, the common-IO circuit
shows a 3.1× cross-sectional improvement and the ES-PCMF
technique shows a 31× cross-sectional improvement.

VI. CONCLUSION AND FUTURE WORK

Mitigating SPFs for TMR circuits on FPGAs has shown
significant improvement. Neutron testing has shown that the
SPF mitigation techniques can provide up to a 26× reduction
in the sensitive cross section over the unmitigated design,
which translates to about an order of magnitude improvement
over TMR without triplicated I/O. These techniques will
be beneficial to the design engineer weighing the tradeoffs
between circuit utilization, power, and reliability.

These techniques have been shown for the Xilinx 7-Series
generation of FPGAs. We are currently planning future work
to use these techniques on other generations, such as the Xilinx
UltraScale FPGAs, and to test these mitigation techniques
on other benchmark circuits. Future mitigation strategies will
explore ways to address the effects of MCUs. We would
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also like to explore the possibility of using custom place-
ment and/or routing to perform some of these mitigation
techniques.
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