
1

ON THE USE OF RAPID PROTOTYPING FOR DESIGNING
PCM/FM DEMODULATORS IN FPGAS

Michael Rice, Brent Nelson, Marc Padilla, Jared Havican
Department of Electrical & Computer Engineering

Brigham Young University, Provo, Utah, USA

ABSTRACT

This paper describes the use of an efficient FPGA design flow, called Ogre, developed at BYU
to design and implement PCM/FM demodulators. Ogre exploits the notion of reuse by taking
advantage of a library of specially designed cores parameterized by XML metadata. A judicious
choice of library cores, targeted to signal processing functions common to sampled data
modulators and demodulators, reduces the design and test cycle time. We demonstrate this by
using the tool to construct rapid prototypes of three different versions of FM demodulators and
show that the bit error rate performance is comparable to demodulators on the market today.

KEY WORDS

FPGA, PCM/FM, Demodulators, Bit Synchronization

INTRODUCTION

The signal processing functions associated with modulation and demodulation continue to
migrate from the continuous-time domain to the discrete-time domain. This trend is due to a
number of factors that exploit the advantages of sampled-data systems. Sampled data systems are
far more flexible than their continuous-time counterparts, especially in the functionality available
to the system designer. Sampled data systems also offer the prospect of reconfigurability which
enables highly efficient multimode operation for both modulators and demodulators. The key
factors that have enabled this trend are the availability of high rate, relatively high precision,
analog-to-digital converters (ADCs) and high-performance discrete-time processors such as
programmable DSPs, FPGAs, and ASICs.

The programmable DSP is the most flexible and the easiest to program, but achieves these
advantages at the cost of performance. The ASIC offers the best performance, but is not flexible
(at best, ASICs can provide limited parameterization) and the design process is very long and
costly. FPGAs offer an attractive middle ground: the FPGAs offer flexibility and
“reprogrammability” like the programmable DSP, and have performance that can rival that of the
ASIC.

2

Figure 1: PCM/FM demodulator block diagram, divided into sections based on clock domains.

However, there are challenges in developing communication systems with FPGAs. Design and
test processes can be lengthy and tedious. Design productivity can be increased through “reuse”
[1]. Reuse (or “using again”) leverages previous FPGA designs in much the same way a
computer programmer leverages subroutines available in a code library. The key to reuse is a
library of cores that offer sufficient flexibility to be useful and are not too small or too large.

To address this issue the Configurable Computing Laboratory at Brigham Young University has
developed a tool that enables rapid prototyping of radios. The tool, called Ogre, is a design flow
for FPGAs that exploits a library of parameterizable cores specifically designed for the tasks
needed by modulators and demodulators. Each core is also accompanied by XML metadata
providing a description of the core. The Ogre tool flow leverages this metadata to intelligently
interface cores which have been connected in a design.

This paper reports on the application of the Ogre tool to design PCM/FM demodulators. The
design flow and testing are described in the following sections. Laboratory experiments show
that the Ogre design flow is able to produce good PCM/FM demodulators in a matter of hours
without sacrificing performance.

BASIC PCM/FM DESIGN

The basic outline of the PCM/FM demodulator is illustrated in Figure 1. The 1 Mbit/s PCM/FM
signal at an IF of 70 MHz is presented to an ADC sampling at 100 Msamples/s. The sampled
signal is translated to I/Q baseband using a discrete-time quadrature mixer. The I/Q baseband
samples are downsampled to 20 Msamples/s and presented to the FM demodulator. The FM
demodulator output is downsampled to 4 Msamples/s to produce a PCM pulse train at 4
samples/bit. Timing synchronization is performed by a timing synchronization PLL. The target
platform for this design is the Nallatech XTremeDSP board illustrated in Figure 2.

FIR
LPF

cos(Ω0n)
− sin(Ω0n)

FIR
LPF

↓ 5

↓ 5

FM
Demod.

FIR
LPF

↓ 5
Timing
Sync
PLL

ADC

100 MHz

70 MHz IF

discrete-time “front end” I/Q baseband
demodulator

timingn syncrhronization
(discrete-time” bit sync”)

to output buffer
I(nT)

Q(nT)

3

Figure 2: The target platform for the PCM/FM demodulator: the Xilinx/Nallatech XtremeDSP board.

Three options for the FM demodulator were explored. Block diagrams of these options are
shown in Figure 3. We showed in [2] that the three options have the same SNR performance and
provide an area/clock-rate tradeoff. The options shown in Figure 3 (a) and (b) compute the
derivative of the instantaneous phase of the input I/Q sample pairs and represent the discrete-
time equivalent of the limiter discriminator demodulator. These circuits achieve the highest clock
rates, but also require the most area [2]. The option shown in Figure 3 (c) is a discrete-time phase
lock loop and requires the smallest circuit area but cannot operate at as high a clock rate as the
other two options [2].

The timing PLL is shown in Figure 4. It is a traditional discrete-time timing synchronizer using
the early-late timing error detector [3] operating at 4 samples/bit.

DESIGNING WITH THE OGRE TOOL

The PLL option of the FM demodulator was designed using the Ogre design tool. Since both
options (a) and (b) are made up of commonly used blocks – FIR filters, CoRDiC, divider,
multlipliers – these designs were assembled using cores from Xilinx CORE Generator. Xilinx
CORE Generator provides well-parameterized blocks for systems such as these. However, the
option (c) requires much different blocks, such as a direct digital synthesizer (DDS) and loop
filter. In this case, the Ogre tool was very useful in providing an environment in which blocks of
this type could be found and connected. A library of blocks had already been created
specifically targeting PLL-style radio systems (see [1]). A few blocks from this library were
used to create the final option (c) fm demodulator shown in Figure 1.

Virtex4 FPGA
(XC4VSX35-10FF668)!

ADC
(AD6645 14-bit)

4

Figure 3: The option for the FM demodulator.

derivative
filter

derivative
filter

z−L

z−L

divide
FIR filter

length 2L + 1
+

!

I(nT)

Q(nT)

y(nT)

tan-1(!)

(CoRDiC)

derivative
filter

I(nT)

Q(nT)

y(nT)

Im {·} F (z)

z−1
cos/
sin

LUT

DDS

loop filter

*
y(nT)

I(nT) + jQ(nT)

(a)

(b)

(c)

5

Figure 4: Detailed block diagram of the bit timing synchronization PLL.

The Ogre tool offers many benefits to the designer, some of which were used in the creation of
this design. One nice feature is that of connecting signals such as the clock input. This signal,
which is required by most blocks, does not have to be hooked up manually in the Ogre design. It
is simply left disconnected in the design. During the VHDL generation, all clock inputs are
merged into one top-level input. This is also true of the clock enable and reset signals. A screen
shot of the Ogre design environment for the discrete-time PLL-based FM demodulator of Figure
3 (c) is illustrated in Figure 5.

Along with merging common inputs, such as the clock, the Ogre tool generates a state machine
to enable every block at the correct time. It does this by creating a schedule, based on
information from the XML metadata, of when every block requires its inputs and when each
block’s outputs are ready. Once this schedule is created, VHDL is generated to enable the
validIn port for each block at the appropriate time. This feature is and has been especially useful
for pipelining designs which need to run at higher clock rates. The designer may simply add
registers anywhere in the design for timing closure to be met. These registers are taken into
account by the Ogre tool when the schedule is created so that the data in the design still flows
appropriately. In this way, the functionality of the original design is maintained while allowing
the design to be clocked at much higher rates. In the PLL option design, this feature was not
necessary due to the simplicity of the schedule. The Ogre tool was able to figure this out and a
state machine was generated which enabled every block on every cycle.

The parameters on each block in the Ogre tool are easily updated. Figure 6 shows an example of
how parameters are set for a certain block, in this case the loop filter block. Once a block in the
design is clicked, the current parameters for the block are shown and can be changed by the user.

The information regarding what parameters exist and what values are valid for each parameter is
found in the XML metadata accompanying each block. Parameters range from low-level things
such as bit widths, to higher-level properties such as loop bandwidth. With these highly

interpolator EL
TED

loop
filter

z!1

update
µ

modulo-1 arithmetic

+

−

strobe
(underflow)

strobe

strobe

x(kTs)

e(nT)

v(nT)

µ

(4 samples/bit)

data

error

piece-wise
parabolic

(length = 4)

y(nT) yI(nT)

1
4

6

parameterized blocks and the ease of changing parameters, blocks become very reusable to
designers.

Overall, the design process for the PLL option was very much simplified by the use of Ogre.
With the ability to reuse blocks and with Ogre doing much of the work itself, the design
completed in less than an hour. Of course, this did not represent the complete design. The
generated VHDL had to be integrated with the rest of the system for the FPGA to be correctly
configured. However, the overall design time was reduced due to the use of Ogre on this section
of the design.

When the designer is finished connecting the blocks in their design, the “BYU Interface
Synthesis” block (which is present in every Ogre design) is clicked to reveal the Ogre VHDL
generation interface. An example is shown in Figure 7. Once the output directory is specified, the
designer clicks the “Generate” button to start the process. It is at this point that the design is
reviewed, the schedule is created, and the top-level VHDL is output along with VHDL for the
state machine. The VHDL for all of the library cores used in the design is also output to provide
the designer with everything necessary to use the new design.

Figure 5: The discrete-time PLL-based FM demodulator of Figure 3.(c) using the Ogre tool. The VHDL code
generated from this model was used in the final design.

7

Figure 6: Parameter window for Loop Filter (loop_filter_v2_0) library block.

LABORATORY TEST RESTLTS

Each receiver design was tested in hardware using the setup shown in Figure 8. A tri-mode
telemetry transmitter from Quasonix was used as the PCM/FM source. The data source was set
to the internally generated length-(215-1) PN sequence and the carrier frequency was set to 2255
MHz. The resulting signal was mixed to 70 MHz using an LO and mixer as shown. A calibrated
noise source was used to set the desired Eb/N0. A modest LNA was used to set the signal level as
required by the ADC. The ADC and FPGA were housed on the Nallatech/Xilinx XtremeDSP
board. The ADC operated at 100 Msamples/s and the FPGA was a Virtex4 (XC4VSX35-
10FF668). Data and clock were output from the FPGA board and used by the bit error rate test
set to measure the bit error rate performance. A photograph of the experiment is shown in Figure
9.

All three designs used a pair of identical low-pass FIR filters as shown in Figure 1. This filter
plays the role of the IF filter in more traditional analog designs and controls the trade-off
between intersymbol interference and noise power [4]. The low-pass filter was a length-469 FIR
filter with an equivalent 3-dB bandwidth of 200 kHz and a transition bandwidth of 678 kHz. The
PLL-based demodulator was a second order loop with a damping constant of 1 and closed loop
bandwidth of 200 kHz.

8

Figure 7: Ogre tool VHDL generation.

Figure 8: Laboratory test configuration.

clock

PCM/FM
Transmitter

ADC
FPGA

Bit Error
Rate Test

data

Fireberd 6000A Nallatech
XTremeDSP

LO

2325
MHz

2255
MHz

Quasonix
T3 Telemetry
Transmitter

Agilent 8648D

Calibrated
Noise Source

HP 3708A

LNA

Minicircuits
ZFL-1000 LN
NF = 2.9 dB

Minicircuits
ZEM-4300+

9

Figure 9: A photograph of the laboratory test configuration for the PCM/FM demodulators.

The test results are summarized by the plots in Figure 10. The only difference between the three
approaches is the FM demodulator. The tests results show that the discrete-time versions of the
limiter-discriminator shown in Figure 3 (a) and (b) produce essentially the same bit error rate
performance. The PLL-based demodulator has a slightly higher bit error rate: about 0.6 dB
inferior to the limiter-discriminator approaches. A reference curve is also included in Figure 10.
The reference curve is derived from Figure 2-10 of the 199-06 Telemetry Applications
Handbook [4]. The relationship between the BER performance of the rapid-prototype
demodulator and the reference curves shows that the BER performance of the rapid-prototype is
comparable to the commercially available demodulator used to generate the data in the
Telemetry Applications Handbook.

transmitter

LNA

Nallatech/Xilinx
XtremeDSP card

bit error rate
test set

oscilloscope
(for monitoring the
eye diagram at FM
demodulator output)

local
oscillator

calibrated
noise source

power supply

mixer

10

Figure 10: Laboratory test results for the PCM/FM demodulator using the three FM demodulators outlined in Figure
3. The reference curve is from Figure 2-10 of [4].

CONCLUSION

In this paper we described a rapid prototyping environment for FPGAs specifically targeted to
modulators and demodulators. This tool, called Ogre, reduces the design and test cycle times by
exploiting reuse based on a carefully chosen library of cores. We applied the design environment
to design three different versions of a PCM/FM demodulator in a few hours. Laboratory tests
showed that the bit error rate of the PCM/FM demodulators is comparable to those available on
the market today. Thus, the rapid prototyping does not sacrifice performance.

REFERENCES

[1] A. Arnesen, et al, “Increasing Design Productivity Through Core Reuse, Meta-Data
Encapsulation, and Synthesis,” Proc. of Intl. Conference on Field-Programmable Logic and
Applications (FPL), Milano, Italy, Aug. 31 – Sep. 2, 2010.

[2] M. Rice, M. Padilla, and B. Nelson, “On FM Demodulators in Software-Defined Radios
Using FPGAs,” Proc. of Military Communications Conference (MILCOM), Boston, MA,
Oct. 18-21, 2009.

[3] Rice, M. Digital Communications: A Discrete-Time Approach, Prentice-Hall, and Upper
Saddle River, NJ, 2009.

[4] Range Commanders Council Telemetry Group; Document 119-06 Telemetry Applications
Handbook, 2006.

6 7 8 9 10 11 12 13 14 15
10 8

10 6

10 4

10 2

100

Eb/N0 (dB)

B
ER

Demod (a)
Demod (b)
Demod (c)
Reference

