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Abstract—One potential method to efficiently deploy deep
neural networks is through neuromorphic computing, a pro-
cessing paradigm that emulates the energy-efficient spiking
neural networks (SNNs) of the human brain. To evaluate the
current capabilities of neuromorphic computing, this research
investigates Intel’s state-of-the-art Loihi processor through a
heartbeat classification case study. In particular, artificial-to-
spiking neural network conversion with SNN-Toolbox is leveraged
to create a spiking 1D-convolutional neural network for Loihi.
Latency and accuracy optimization strategies in this framework
are explored, and the SNN performance on Loihi is compared
to the performance of architecturally identical artificial neural
networks (ANNs) on Intel Core i7 CPU, Intel Neural Compute
Stick 2, and Google Coral Edge TPU devices. The SNN reaches
an accuracy and macro-averaged F1 score of 97.8% and 87.9%,
respectively, compared to 98.4% and 90.8% for the CPU-based
ANN. Additionally, with the best dynamic power across devices,
Loihi provides a 32 times lower energy-delay product versus the
CPU baseline. Compared to the edge devices, Loihi is found
to result in a larger energy-delay product due to a higher
latency bottlenecked by x86 core-to-host I/O and x86 core-based
management. Overall, this research highlights the benefits and
limitations of a practical neuromorphic computing methodology.

Index Terms—Heartbeat classification, neural network hard-
ware, neuromorphic computing, performance analysis, spiking
neural networks

I. INTRODUCTION

A major limitation in deploying deep neural networks
(DNNs) is energy consumption, as DNNs are challenging to
efficiently implement on milliwatt and microwatt devices [1].
With data analytics moving to the edge to achieve benefits in
bandwidth consumption, latency, and privacy, it is crucial to
consider architectural methods to reduce the energy costs of
neural networks. Solutions will lead to more real-time insights
and enable more capabilities in the Internet of Things (IoT).

Neuromorphic computing is an attractive paradigm for
energy-efficient processor design as it uses the human brain’s
high parallelism and low power as inspiration. The emergence
of Intel’s neuromorphic research chip Loihi [2], a platform
for spiking neural networks (SNNs), provides the opportunity
to explore applications that can benefit from neuromorphic
computing. This research identifies heartbeat classification
through electrocardiogram signals as a fitting case study, as
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it is hypothesized that an SNN can perform low-latency, low-
energy identification of arrhythmias on Loihi. An energy-
efficient design could be deployed in a wearable device to
provide real-time insights and help in diagnosis and prevention
of heart disease, a top health challenge in the USA [3].

To perform heartbeat classification on Loihi, this research
investigates SNN design through artificial-to-spiking neural
network conversion in the SNN-Toolbox framework [4]. A
variety of strategies are outlined to elucidate practical design
of an accurate and performant spiking 1D-convolutional neural
network (1D-CNN). In comparing latency and energy perfor-
mance of the SNN on Loihi versus architecturally identical
artificial neural networks (ANNs) on Intel Core i7 CPU, Intel
Neural Compute Stick 2, and Google Coral Edge TPU devices,
this research also evaluates how such a neuromorphic approach
compares to other state-of-the-art neural network devices.

II. BACKGROUND

The background for this research is presented as two topics.
First, electrocardiogram analysis is discussed to provide moti-
vation for heartbeat classification. Second, the foundations of
neuromorphic computing are described, along with informa-
tion regarding the architecture of Loihi.

A. Electrocardiogram Analysis

Electrocardiograms (ECGs or EKGs) are tests that capture
electrical activity fluctuations in the heart [5]. Electrical activ-
ity changes when heart muscles polarize in a rhythmic man-
ner, creating heartbeats. Heartbeats are represented in ECG
signals by morphological features such as the QRS complex,
P wave, and T wave. To record ECG signals, noninvasive
electrodes (or leads) are attached to the skin, often in 5-
lead or 12-lead configurations. In a medical setting, signals
can be analyzed by clinicians to characterize heart function
and diagnose conditions related to cardiac health, such as
arrhythmias. It is also possible to perform portable, continuous
recording or monitoring of ECG signals for several hours or
days using a wearable device, such as a Holter monitor [6].
With portable devices, signals can be saved for later analysis,
or anomalous heartbeats can be detected automatically in real
time, providing immediate insights that can be used to trigger
additional recording or alerts. These insights can ultimately
result in improved opportunities for care.



B. Neuromorphic Computing

Neuromorphic computing is a type of processing that
closely models the human brain. Carver Mead helped for-
malize neuromorphic processors in the 1980s with a book on
analog VLSI-based neural circuits [7]. The field has developed
to encapsulate digital and analog modeling of SNNs. A neuron
in an SNN has a membrane potential that is augmented over
time through the presentation of binary spikes on synapses.
Once a voltage threshold is reached, that neuron fires a spike
and resets its state. Different neuron models can represent
spiking behavior, with one example being the leaky integrate-
and-fire (LIF) model, which treats neuron membranes as
leaky integrator RC circuits [8]. Moreover, information can
be captured in the rates or timing of spikes. These codings
are called “rate coding” and “temporal coding”, respectively.

SNN energy is primarily consumed through spiking, which
is asynchronous and sparse. This property has inspired design-
ers to strive to create energy-efficient neuromorphic hardware.
Such a processor provides a mode of operation in con-
trast to the energy-consuming synchronous clocking of CPUs
and GPUs. Neuromorphic hardware also ideally avoids the
processor-memory bottleneck of von Neumann architectures,
where throughput is limited by processor-memory bandwidth.
This benefit is a result of spiking neurons maintaining local
state, thus co-locating computation and communication.

A recent neuromorphic research chip is Loihi, a digital
integrated circuit fabricated on a 14nm process [2]. Loihi
represents a key step forward in neuromorphic design, espe-
cially with its programmable on-chip learning engine, a unique
capability versus past designs such as IBM TrueNorth [9].
Each Loihi chip contains a mesh of 128 neuron cores with
1,024 neurons per core and up to 130 million synapses for
spike communication. Additionally, each Loihi chip contains
three embedded x86 Lakemont cores, where spiking neural
interfacing processes (SNIPs) are run to manage neuron cores.
Neuron dynamics are based on current-based synapse (CUBA)
LIF modeling with discretely approximated variables for mem-
brane potential and synaptic response current.

III. RELATED RESEARCH

This research details three areas of related work. First,
a survey of ECG-based heartbeat classification is provided,
with emphasis on SNN-based approaches. Second, methods
and frameworks to create SNNs, including SNN-Toolbox, are
described. Lastly, this section concludes with past performance
comparisons of SNNs on Loihi versus ANNs on other devices.

A. Electrocardiogram-Based Heartbeat Classification

Multiple stages can exist in an ECG analysis pipeline: signal
preprocessing, heartbeat segmentation, feature extraction, and
classification [10]. One of the most common datasets used in
analysis is the MIT-BIH Arrhythmia Database, which contains
30 minute ECG recordings for 47 patients with various ar-
rhythmia types [11]. The Association for the Advancement of
Medical Instrumentation (AAMI) provides standards for model
evaluation on such datasets [12].

Neuromorphic computing has inspired the exploration of
SNNs for ECG analysis. For example, Corradi et al. implement
a spiking recurrent network of LIF neurons on the custom
VLSI-based Dynamic Neuromorphic Asynchronous Processor
(DYNAP) system, attaining 95% classification accuracy over
18 classes in the MIT-BIH dataset [13]. In another approach
on DYNAP, Bauer et al. use reservoir computing to perform
ECG-based anomaly detection, with the approach estimated
to be capable of sub-mW power [14]. Lastly, Amirshahi
and Hashemi use a reward-modulated spike-timing dependent
plasticity (STDP) learning rule to train a spiking ECG clas-
sifier [15]. They provide benchmarks of other neural network
heartbeat classifiers on an ARM Cortex-A53 CPU and estimate
SNN energy to be two to nine orders of magnitude smaller.

B. Spiking Neural Network Creation

Deep SNNs have been challenging to accurately train as
they are unable to directly use backpropagation [16]. This
inability stems from the non-differentiable nature of spike
functions. Recent work has aimed to overcome this challenge,
such as SLAYER [17], which uses temporal credit assignment
to backpropagate error for SNN training, and Nengo [18],
which provides functionality for converting ANNs to SNNs.
The focus of this work is on the ANN-to-SNN conversion
framework, SNN-Toolbox [4]. This framework operates by
converting each artificial neuron to a spiking integrate-and-
fire neuron and computing SNN parameters that best correlate
ANN activation values to average SNN spike rates. A key
strategy employed to achieve high accuracy is data-based
weight normalization, which avoids too low or high firing rates
by scaling weights and biases with the maximum activation
values calculated over a subset of data. Moreover, SNN-
Toolbox allows users to transfer models from deep learning
frameworks like TensorFlow (TF) and supports TF layer types
such as softmax, batch normalization, and pooling. Models
converted in this framework can be mapped to various neuro-
morphic backends including Loihi. For more information on
the fundamentals of SNN-Toolbox, please refer to [4].

C. Spiking Neural Network Performance on Loihi

Prior Loihi benchmarking has focused on dynamic energy
cost per inference, the product of dynamic power and latency.
For instance, Blouw et al. create a two-layer perceptron for
keyword spotting with Nengo on Loihi’s Wolf Mountain
board [19]. Loihi was estimated to provide 5.3× and 20.5×
better dynamic energy cost per unbatched inference versus
the Intel Neural Compute Stick 1 and NVIDIA Jetson TX1,
respectively. Other work has evaluated Loihi with energy-delay
product (EDP), the product of energy and latency, to account
for low-energy, but slow models. For example, Ceolini et al.
use SLAYER to create a SNN with three convolutional layers,
two pooling layers, and two fully-connected layers for gesture
recognition [20]. The SNN on Loihi achieved better than
non-spiking accuracy with fused dynamic vision sensor and
electromyography data. Loihi also provided an EDP estimated
to be 26× better than that of a NVIDIA Jetson Nano GPU.



Fig. 1. Heartbeat Classification Methodology. First, an ANN is trained to classify normal heartbeats versus common arrhythmia types. Next, SNN-Toolbox
creates an SNN with parameters that correlate ANN activation values to spike rates. Then, strategies are explored to improve SNN accuracy and latency.
Lastly, the SNN on Loihi is compared to ANNs on devices such as the Edge TPU and NCS2 in terms of latency and energy.

IV. METHODOLOGY

The development of neuromorphic platforms like Loihi
provides opportunities for competitive benchmarking and
exploration of energy-efficient SNN designs. This research
explores ANN-to-SNN conversion through SNN-Toolbox to
perform heartbeat classification on Loihi. While research exists
outlining design considerations of SNN-Toolbox for MNIST,
CIFAR-10, and DvsGesture datasets [21], the performance of
SNN-Toolbox models on Loihi versus models on edge neural
network hardware has yet to be comprehensively explored. The
methodology of this work (shown in Fig. 1) aims to bridge
SNN-Toolbox design considerations to practical deployment
and to compare approaches across neural network hardware.

A. Model Design, Tuning, and Optimization

This research assumes efficient and accurate heartbeat seg-
mentation from ECG signals and focuses on classification. A
preprocessed version of the MIT-BIH dataset is selected for
classification [22]. This dataset has 109,446 segmented heart-
beats, each 187 samples in length, captured from lead II of an
ECG with sampling frequency 125 Hz. The dataset has five
classes of heart rhythms: N (normal), SVEB (supraventricular
ectopic beat), VEB (ventricular ectopic beat), F (fusion beat),
and Q (unknown). These classes have imbalanced proportions:
N (82.77%), SVEB (2.54%), VEB (6.61%), F (0.73%), and Q
(7.35%). The authors of [22] provide training and test sets in
an equivalent 80/20 split across classes. The training set is
further partitioned into a 90/10 split for a validation set.

A 1D-CNN architecture is selected for study of SNN-
Toolbox. The model, shown in Table I, is designed to achieve
high accuracy, be large enough for insightful benchmarks, but
not have too many layers to significantly impact SNN-Toolbox
conversion, as rate approximation error can accumulate with
increasing network depth [4]. This model is trained for 50
epochs with TensorFlow 2.2.0, using categorical crossentropy
loss, a batch size of 32, and the Adam optimizer with learning
rate 0.001. Evaluation is performed with AAMI recommended
metrics of precision (positive predictivity), recall (sensitivity),
false positive rate (FPR), and accuracy, along with a concise
macro-averaged F1 score metric for model comparison.

After training, the model is converted to an architecturally
identical SNN with SNN-Toolbox. The ANN and SNN have the
same layers and number of neurons, but the SNN operates with
a spiking neuron model, which requires key hyperparameters
to be tuned. For instance, an inference is performed by
presenting each sample as bias current to the SNN for n

TABLE I
BASELINE 1D-CNN ARCHITECTURE

Layer Activation Output Filter-Kernel-Stride Parameter
Type Function Shape Configuration Count
Input - (187, 1) - -

Conv1D ReLU (92, 8) (8, 5, 2) 48
Conv1D ReLU (44, 16) (16, 5, 2) 656
Conv1D ReLU (20, 32) (32, 5, 2) 2,592
Flatten - (640) - -

FC ReLU (32) - 20,512
FC Softmax (5) - 165

timesteps. The parameter n thus determines the number of
computational operations per sample, which in turn affects
test accuracy and latency. The optimal value of n is captured
through exploration of this accuracy-latency tradeoff. Another
parameter is the neuron reset mechanism, which determines
how neurons reset voltage after reaching a threshold. A soft
reset mechanism is selected, which means that at the time
a neuron’s voltage moves past the threshold, the membrane
potential is reset to the current membrane potential minus the
voltage threshold. Lastly, a set of data samples is needed for
conversion. A subset corresponding to 10% of the training set
with equivalent class distribution is used for this purpose.

Conversion is not guaranteed to generate high accuracy,
as poor conversion may result from variance or outliers in
the weight, bias, or activity distributions of the ANN [4].
This research considers further strategies to improve SNN
accuracy to overcome these challenges. For one, bias values
are constrained to zero during training to prevent large values
from impacting conversion, as performed in [23]. Second,
regularization in the form of dropout is added between the final
convolutional layer and first fully-connected layer to penalize
large weights and biases.

The SNN is mapped to Loihi’s neuron cores through the
Intel NxSDK software, which provides a NxTF interface to
implement spiking TF layers. In running inference on Loihi,
each sample is sent from a host CPU to Loihi’s x86 cores to
Loihi’s neuron cores. Each sample is run for n timesteps. In
each timestep, there is spiking time for neurons to send spikes
and update state. There is also management time for SNIPs
to run on the x86 cores to interact with neuron cores. The
SNIPs needed for SNN-Toolbox include: input injection from
the x86 cores to the neuron cores, classification readout from
the neuron cores to the x86 cores, and reset of neuron core
state between samples. After each sample, results are read out
from the x86 cores to the host CPU.



B. Performance Evaluation

The spiking 1D-CNN on Loihi is compared to architec-
turally identical models on CPU and low-power, AI-targeted
edge hardware. An Intel Core i7-6700 CPU @ 3.40GHz with
16 GB RAM is chosen as a CPU baseline and the host for the
accelerator devices. The Kapoho Bay platform, with two Loihi
chips, is selected as an edge, USB form factor of Loihi. The
Intel Neural Compute Stick 2 (NCS2) and Google Coral Edge
TPU (Edge TPU) are chosen as devices that represent the state-
of-the-art for neural network inferencing at the edge [24]. All
devices interface from a TensorFlow 2.2.0 script in Python 3.5,
but require different frameworks for mapping: Intel NxSDK
0.9.9 and SNN-Toolbox 0.5.0 for Loihi, OpenVINO 2021.1.110
for the NCS2, and TFLite from TensorFlow 2.2.0 for the Edge
TPU. Model quantization also differs with INT8 for Loihi and
the Edge TPU and a minimum quantization of FP16 for the
NCS2. The quantized accuracies for the NCS2 and Edge TPU
are equivalent to original accuracy. The metrics for device
evaluation include latency, power (idle, running, and dynamic),
dynamic energy cost per inference, and EDP. Dynamic energy
cost per inference is calculated by multiplying dynamic power
by latency and EDP by multiplying dynamic energy cost per
inference by latency. Devices are compared primarily through
EDP to represent tradeoffs that can be made in CMOS circuitry
to improve energy or delay. These metrics are calculated for
unbatched inferencing to match this online use case.

Latency is measured as the average inference time computed
over a loop of 1,000 test heartbeats, averaged over 10 trials.
The power benchmarking methodology is inspired by [19].
Across all devices, idle power is measured from boot. For
all devices except Loihi, average running power is calculated
over a two-minute inference loop. Dynamic power is then
calculated by subtracting idle power from running power. The
CPU uses the software command line utility s-tui, collecting
samples every 200 ms, to get package power readings, while
the NCS2 and Edge TPU use inline voltage-current USB and
USB-C meters, respectively, with readings recorded every 10
seconds. The USB meter has two-decimal precision, and the
USB-C meter has three-decimal precision. Due to the nature
of measurement, USB I/O is included in power estimates.

NxSDK probes are used to estimate idle, dynamic, and total
power of a Loihi chip on the Kapoho Bay platform. These
probes also provide power breakdown in terms of neuron core
and x86 core usage. The frequency of power measurements on
Kapoho Bay makes it not possible to accurately capture neuron
core readings at low timestep counts, so samples are extended
to run for 8,192 timesteps to collect an adequate number of
readings. This collection is performed for five samples, which
is an adequate amount of data to gather readings without
overwhelming embedded memory. To calculate dynamic en-
ergy, x86 and neuron core power are treated as always active
during an inference. This choice may be pessimistic, as neuron
cores can be idle during part of the inference. However, given
the indirect power estimation methodology, assuming both
components as always on provides the safest power estimates.

Fig. 2. Confusion Matrix Heatmaps Normalized By Class Size for ANN
(blue) and SNN (green).

V. RESULTS

The results of this research are presented as two main
categories. First, the optimized SNN is evaluated versus the
baseline ANN architecture, with insights into the strategies
used to achieve maximum SNN accuracy. Second, the SNN
on Loihi is compared to the ANN on CPU, Intel NCS2, and
TPU hardware in terms of runtime and energy.

A. Model Evaluation

Evaluation of the ANN versus the final, optimized SNN at
64 timesteps is presented in Fig. 2, which shows confusion
matrices, Table II, which shows per-class metrics of recall,
precision, and false positive rate, and Table III, which shows
total accuracy and macro-averaged F1 score. As with past
literature [25], the prediction of a heartbeat as class VEB when
it is class F or class Q does not count as a false positive for
class VEB. Similarly, a prediction of class SVEB from class Q
is not considered a false positive for class SVEB. In general,
the ANN achieves better recall, precision, and false positive
rate across classes, but the SNN is close in metrics especially
for classes N, VEB, and Q. The SNN recall values for classes
SVEB and F trail the ANN recall values more significantly.
Of note, these classes have the lowest proportions of training
samples. Overall, the SNN achieves 0.6% lower accuracy and
2.9% lower macro-averaged F1 score than the ANN.

TABLE II
PER-CLASS METRIC COMPARISON

ANN SNN
Class Recall Precision FPR Recall Precision FPR

(%) (%) (%) (%) (%) (%)
N 99.6 98.8 5.78 99.5 98.3 8.03

SVEB 75.9 89.0 0.244 70.0 87.2 0.267
VEB 94.6 97.9 0.147 93.4 96.2 0.260

F 72.8 83.7 0.106 59.9 85.1 0.0782
Q 98.3 99.3 0.0542 96.6 99.0 0.0739

TABLE III
OVERALL METRIC COMPARISON

Metric ANN SNN
Accuracy (%) 98.4 97.8

Macro-Averaged F1 Score (%) 90.8 87.9



Fig. 3. Accuracy-Latency Tradeoff. Test set accuracy for the SNN is depen-
dent on the number of timesteps that each sample is presented. Maximum
accuracy is achieved when each sample runs for at least 64 timesteps.

To get maximum SNN accuracy on the test set, a variety
of design parameters are considered. For one, the accuracy-
latency tradeoff of this SNN, shown in Fig. 3, is explored to
get an optimum number of timesteps n to run each sample. It
is demonstrated that the SNN achieves its top accuracy at 64
timesteps. It is also found that this timestep count produces the
best macro-averaged F1 score. The SNN is optimized to run
at 64 timesteps to achieve the best latency for this accuracy.
Moreover, solely converting the network in Table I does not
lead to the SNN with the best performance, reaching a macro-
averaged F1 score of 81.9%. To improve accuracy, this work
explores bias restriction, by creating a model with all neuron
bias values set as zero, and regularization, by adding a dropout
layer with 25% drop rate between the last convolutional layer
and first fully-connected layer in the model. The results of
these potential optimizations alone and together are shown in
Fig. 4. Restricting bias values and adding regularization help
in isolation and together. The model with just dropout achieves
the best performance and is the final, optimized SNN.

B. Model Energy and Runtime Performance

SNN performance is evaluated on the Loihi Kapoho Bay
platform. In terms of resource usage, the SNN occupies 9
neuron cores, and a total of 72 neuron cores are active due to
Loihi’s barrier synchronization constraints. Latency-wise, the
model takes on average 7.222 ms for each inference. Through
NxSDK profiling, it is found that on average, 0.798 ms of this
time is spiking computation on the neuron cores, 3.464 ms
is management time to run SNIPs on x86 cores and manage
neuron cores, and 2.960 ms is to read classifications from
the x86 cores to the host CPU. These results show that Loihi
runtime is bottlenecked by x86 core-based management and
x86 core-to-host I/O rather than by spiking computation.

Fig. 4. Exploration of Strategies to Improve SNN Accuracy. Presented are
ANN and SNN macro-averaged F1 scores for the baseline model, a model
with dropout of 25% before the fully-connected layer, a model with bias
values restricted to zero, and a model with both dropout and zero biases. Top
performance was achieved with only dropout.

Loihi is further compared to CPU, NCS2, and Edge TPU
devices, with benchmarks shown in Table IV. The SNN is
the slowest at 7.222 ms, while the Edge TPU is the fastest at
0.204 ms. Loihi has the best dynamic power, using 58 mW.
The neuron cores contribute 38 mW of this power, while the
x86 cores use 20 mW. The NCS2 and Edge TPU have similar
dynamic powers, of 0.61 W and 0.656 W, respectively, while
the CPU dynamic power is the highest at 15.7 W. In EDP, the
SNN on Loihi is found to provide a 32× improvement over
the CPU approach. Also, although having a 2.6× improvement
in dynamic energy cost per inference versus the NCS2, Loihi
results in an EDP that is 1.6× worse than the NCS2 because
of higher latency. The Edge TPU results in the best EDP of
0.0273 µJs due to best-in-class latency.

VI. DISCUSSION

ANN-to-SNN conversion proves generally successful for
the 1D-CNN tested. Tuning the number of timesteps and
regularization enable the SNN to achieve close to non-spiking
accuracy and F1 score on Loihi at the minimum latency
needed. Achieving comparable accuracy to an ANN with
such tuning strategies is important for practical neuromorphic
computing. Still, SNN accuracy has room for improvement.
In particular, the recall for classes SVEB and F are noticeably
lower than the ANN. This problem could perhaps be remedied
with a more balanced dataset and therefore a better subset of
data used for conversion. Nevertheless, while ANN-to-SNN
conversion works decently for the network tested, additional
investigation should be conducted in how to convert networks
of greater scale and diversity. Extending the capabilities of
such a methodology will enable neuromorphic computing to
be a competitive paradigm for low-power AI.

TABLE IV
DEVICE PERFORMANCE COMPARISON

Device Power (W) Inference Dynamic Energy Cost Energy-Delay
Idle Running Dynamic Latency (ms) Per Inference (mJ) Product (µJs)

Intel Core i7-6700 CPU @ 3.40GHz 11.8 27.5 15.7 2.455 38.5 94.6
x86 Cores - - 0.020 7.222 0.14 -

Intel Loihi Kapoho Bay Neuron Cores - - 0.038 7.222 0.27 -
Total 0.262 0.320 0.058 7.222 0.42 3.0

Intel Neural Compute Stick 2 0.56 1.17 0.61 1.787 1.1 1.9
Google Coral Edge TPU 0.358 1.014 0.656 0.204 0.134 0.0273



In reference to benchmarking, Loihi results in a significantly
lower EDP versus the CPU. Loihi is able to achieve this EDP
reduction with heartbeat classification being an unbatched
use case. A batched use case is likely to see better CPU
performance. Moreover, the lower dynamic power of Loihi
is found to not outweigh the lower latencies of the NCS2
and the TPU, leading to a higher EDP for Loihi. Further
analysis shows Loihi to have a latency bottleneck due to
x86 core-to-host I/O and x86 core-based management. It is
fair to note that Loihi is a research chip, and the choice of
x86 cores is not fundamental to its design. Improving such
architectural constraints can help future neuromorphic chips
improve performance. Nonetheless, as it was not possible to
exclude USB I/O power from NCS2 and Edge TPU estimates,
the gap in actual EDP between those devices and Loihi may
be greater. In the context of energy-efficient neural network
inferencing, this use case benefits from a more mature and
inference-targeted device like a TPU, rather than from Loihi
and this ANN-to-SNN conversion methodology.

A future route to improve upon this research is to explore
more energy-efficient SNN designs. This research involves
rate-coding, but temporally coded neurons could potentially
provide higher energy efficiency due to sparser spike commu-
nication. Another option is to encode ECG signals as spikes,
rather than as bias current, and to feed those spikes into an
SNN as samples are collected. An SNN could capture temporal
information across multiple heartbeats through these spikes,
removing the need to perform a model state reset between
samples. Lastly, as Loihi supports on-chip learning, one can
explore ECG analysis in the form of a personal heartbeat
learning system to enable increased health insights.

VII. CONCLUSION

In this study, Loihi was investigated as a neuromorphic
platform for heartbeat classification. An SNN was created
with SNN-Toolbox, reaching close to non-spiking accuracy and
macro-averaged F1 score and achieving a lower energy-delay
product on Loihi than that of the CPU baseline. Due to higher
latency, the energy-delay product of Loihi was found to be
higher than the Intel Neural Compute Stick 2 and Google Coral
Edge TPU. Loihi’s latency was bottlenecked by x86 core-to-
host I/O and x86 core-based management instead of spiking
computation. Addressing these constraints is a future direction
to enhance neuromorphic architectures. The improvement of
architectures, along with continued study of efficient SNN
design, will increase the potential of neuromorphic computing
in low-energy use cases like heartbeat classification.
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