
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©2018 IEEE

Accelerating Real-Time, High-Resolution

Depth Upsampling on FPGAs

David Langerman, Sebastian Sabogal†, Dr. Barath Ramesh‡ and Dr. Alan George§

Department of Electrical and Computer Engineering, University of Pittsburgh

NSF Center for Space, High-performance, and Resilient Computing (SHREC)

Pittsburgh, PA

Email: *dal181@pitt.edu , †ses220@pitt.edu , ‡barath.ramesh@pitt.edu , §alan.george@pitt.edu

Abstract—While the popularity of high-resolution, computer-

vision applications (e.g. mixed reality, autonomous vehicles) is

increasing, there have been complementary advances in time-of-

flight depth sensor resolution and quality. These advances in time-

of-flight sensors provide a platform for new research into real-

time, depth-upsampling algorithms targeted at high-resolution

video systems with low-latency requirements. This paper describes

a case study in which a previously developed bilateral-filter-style

upsampling algorithm is profiled, parallelized, and accelerated on

an FPGA using high-level synthesis tools from Xilinx. We show

that our accelerated algorithm can effectively upsample the

resolution and reduce the noise of time-of-flight sensors. We also

demonstrate that this algorithm exceeds the real-time

requirements of 90 frames per second necessitated by mixed-

reality hardware, achieving a lower-bound speedup of 40 times

over the fastest CPU-only version.

Keywords—time-of-flight sensor, depth upsampling, FPGA

acceleration, high level synthesis, image processing

I. INTRODUCTION

Mixed-reality technology has grown popular in recent years

and is expected to become a 1.65-billion-dollar industry by

2024 [1]. The advent of this technology introduces many

challenges from both the hardware and software perspectives.

Advanced head-mounted displays have native resolutions

greater than 2160×1200 (2.5 million pixels) displaying at

refresh rates of 90 Hz, which translates to a frame time of

roughly 11 ms per image [2-3]. Considering these requirements,

performing complex image-processing algorithms, such as

image-based depth inference, on this high-resolution data in

real time is a challenging task. In mixed-reality apps, it is often

essential to be able to infer depth from images and/or sensors to

display images on surfaces perceived by the user. Traditional

algorithms to infer depth using camera sources alone such as

disparity mapping fail in non-textured regions, and high-

accuracy algorithms based on Markov-random-field models do

not satisfy the accuracy and performance requirements of

mixed-reality systems [4]. Methods based on the fusion of both

color and depth information often achieve high accuracy but,

even on systems accelerated with a GPU, methods that claim

real-time performance fail to meet the frame time demands of

mixed-reality systems [5].

In this paper, a case study involving a mixed-reality headset

assembly is detailed. This headset consists of a high-resolution

color camera as well as a low-resolution, time-of-flight (ToF)

depth sensor. The goal of this research is to perform real-time

upsampling of the low-resolution ToF data to match the

resolution of the color image, which will then be rendered to a

display. This case is a typical scenario for augmented reality

applications in which real-time scene depth is necessary for

virtual objects to interact with real-world surfaces.

Upsampling depth data in real time from a ToF sensor is

challenging due to several factors. First, ToF sensors are

notoriously noisy and suffer from the “flying pixel” problem

[4]. Second, ToF sensors tend to have inadequately small

resolutions, requiring them to be upsampled by a large factor to

match typical rendering resolutions. This situation can be

computationally intensive and tends to result in noisy,

inaccurate depth images [5]. To mitigate these inaccuracies,

methods have been developed to fuse data from both the ToF

sensors and the high-resolution cameras [4]; however, many of

these methods can be too computationally intensive to meet the

real-time constraints of modern apps on conventional hardware.

We propose that previously developed methods can leverage

hardware acceleration using modern high-level synthesis

(HLS) tools for field-programmable gate arrays (FPGAs) to

achieve high-resolution, low-latency depth upsampling for

mixed-reality applications. Specifically, this paper describes a

case study in which the Noise-Aware Filter for Real-Time

Depth Upsampling (NAFDU) [6] is tested on a CPU platform,

then accelerated using Vivado HLS and evaluated on the Xilinx

Zynq UltraScale+ MPSoC device on the ZCU102 board.

II. RELATED WORK

In [5] and [7], low-resolution depth data from a ToF sensor

is fused with a high-resolution color image using a novel

region-growing, energy-minimization algorithm. The authors

show that their method achieves high accuracy on the industry-

standard Middlebury dataset compared to many other methods.

However, the algorithm’s execution time is dependent on image

content. Additionally, the algorithm’s iterative behavior

imposes severe restrictions for real-time apps.

National Science Foundation Grant No. CNS-1738783

mailto:david.langerman@chrec.org
mailto:david.langerman@chrec.org

 Yuan, M. details a framework for temporal upsampling

using a hybrid camera [8]. This approach achieves high

accuracy, but it was shown to be unable to handle rapid scene

changes, such as those occurring in a typical head-mounted

display scenario when a user quickly turns his or her head.

A unique approach to the problem of running augmented-

reality apps on mobile devices was proposed by Shea in [9],

where scene data from a mobile device was uploaded to an

external cloud server with a high-powered GPU. This

methodology was successful in reducing the overall power

consumption of the system while also maintaining a high

degree of image quality compared to processing entirely on the

mobile device. However, the interaction delay of their system

was 55 ms, which does not fall within the 11 ms constraint of a

typical, real-time application.

In [6], Chan details a straightforward sensor fusion

algorithm, which applies a modified Joint-Bilateral

Upsampling (JBU) filter to low-resolution depth data and high-

resolution color data [6]. This method shows high accuracy

relative to other, more computationally intensive, methods.

Further, the algorithm itself is tightly bounded in execution time

with respect to input, which is inconsistent with energy-

minimization techniques like the ones used in [7], [10], and [11].

Though the execution time cited in the original paper of 49 ms

falls outside of the 11 ms constraint of real-time apps, due to

the desirable characteristics of the algorithm, NAFDU was

chosen to be accelerated on hardware for this study.

III. BACKGROUND

A. Noise-Aware Filter for Depth Upsampling (NAFDU)

As previously stated, NAFDU was chosen for hardware

acceleration. This method is based on a traditional bilateral

filter, which is expressed in (1).

 𝑃 =
1

𝑘𝑝

∑ 𝐼𝑞 𝑓(‖𝑝 − 𝑞‖) 𝑔(‖𝐼𝑝 − 𝐼𝑞‖)𝑞∈ Ω (1)

In (1), 𝐼𝑞 is the pixel value in the original image at 𝑝, Ω is

the neighborhood centered at pixel 𝑝. Generally, both 𝑓 and 𝑔

are gaussian functions; 𝑓 is referred to as the domain term, and

𝑔 is referred to as the range term. 𝑘𝑝 is the normalization term

and is equal to the sum of the domain and range terms over the

current neighborhood.

NAFDU is based on the JBU filter proposed by Kopf [12],

in which the bilateral filter is used for upsampling by taking the

range term from a separate, high-resolution image. The

assumption made by the JBU is that the high-resolution image

will have similar, more detailed structural information about the

scene, which can be referenced for the low-resolution image.

Chan illustrates that the aforementioned method of using a

second image to calculate the range term of the bilateral filter

can lead to the phenomenon known as “texture-copying” [6].

Texture-copying in the JBU filter is due to the erroneous

assumption that the color image will exhibit similar structural

characteristics in its gradient as the depth data (i.e. observing a

color-varying surface that may, in fact, be physically flat) [6].

NAFDU addresses this assumption by introducing a sigmoid

blending function, α, which is used to make the range term

dependent on both the color image and the depth image. The

assumption made is that if a given area has a small depth

gradient, it is likely flat, and therefore the range term from the

depth data should be used for upsampling, even if a large color

gradient is observed. Similarly, if a high color gradient is

observed in conjunction with a high depth gradient, the range

term from the high-resolution data is preferred because it is

assumed to be more accurate. This blending function has the

effect of preserving edges during upsampling, while also

avoiding the texture-copy phenomenon in flat areas that may

have high color variations. The adjusted range term for the

NAFDU upsampling filter is expressed in (2).

 𝑟𝑝 = α(∆Ω) g(‖Ĩp- Ĩq‖)+(1-α(∆Ω)) h(‖Ip↓- Iq↓‖) (2)

In (2), Ĩp and Ĩq are the pixel values in the color image in the

neighborhood, Ω, centered at 𝑝; ∆Ω is the absolute difference

between the maximum- and minimum-valued pixels in the

current neighborhood; ℎ and 𝑔 are gaussian functions; α(∆Ω)

is the sigmoid blending function. A more thorough explanation

of the NAFDU algorithm is presented in [6].

B. Time-of-Flight (ToF) Sensor

ToF sensors are growing in popularity and are shrinking in

cost. This newfound demand is derived from the fact that they

produce high-resolution depth maps at high frame rates. These

sensors have two main components: a light source, usually a

diffused near-infrared laser, and an image sensor. The time that

it takes for each photon to leave the light source and arrive at

the sensor is measured and used to infer the depth at that point

in space.

C. High-Level Synthesis (HLS)

As HLS tools continue to mature, complex hardware designs

can be synthesized using few lines of code and run at speeds

comparable to those composed from low-level hardware

description languages such as VHDL or Verilog. Vivado HLS

was selected for this study. This tool facilitates the development

and simulation of hardware using high-level C and C++

programming languages. Synthesizable functions that describe

hardware can be translated to register-transfer language (RTL)

for synthesis. Vivado HLS also includes a co-simulator to

simulate the translated functions using a testbench written in C

or C++. The ability to use higher-level languages can

significantly reduce the overall development cycle for hardware.

The tradeoff for this increase in productivity is less flexibility

and control of the design in synthesis and implementation on

hardware.

D. Hardware Testbed

The hardware testbed used in this case study is a 2048×1536

resolution color camera coupled to a 320×240 resolution ToF.

A diagram of the processing flow of this testbed is shown in Fig.

1. The target maximum latency of the accelerated algorithm is

11 ms, matching the frame display time of popular mixed-

reality headsets [2-3]. We acknowledge that the latency must

be lower in practice to account for other processing in the

rendering pipeline; however, 11 ms was judged to be a

reasonable initial target for a proof-of-concept experiment.

IV. APPROACH

In this section, the approach in each stage of the research is

outlined. The first stage includes the steps taken to optimize and

parallelize NAFDU on a desktop PC. These initial steps were

taken to assess the scalability of the algorithm. In the final stage

of this research, NAFDU was accelerated using Vivado HLS

and run on the Xilinx ZCU102 MPSoC board.

A. NAFDU on Desktop PC

 The following steps were used to validate the algorithm of

the original CPU codebase: a single depth map and color image

was read as input, the depth-map resolution was reduced using

the resize function in OpenCV, and then the NAFDU algorithm

was used to restore the depth map to its original size. The new

image was then compared to the original using root-mean-

square error (RMSE) as a metric. Multiple kernel window sizes

were tested to assess their effect on RMSE, which are shown

later in Section V.A. The Middlebury image dataset was used

throughout this study for evaluating the quality of upsampled

depth maps [13-14]. Example images from this dataset can be

seen in Fig. 1 and Fig. 2.

B. NAFDU Optimization and Parallelization

After evaluating the serial baseline, a series of optimizations

were applied. The goal of these optimizations was twofold: first,

to ensure that the desktop version of NAFDU could be

compared fairly to the FPGA implementation in terms of speed

and accuracy; second, to accelerate the algorithm to stream live

video for demonstration purposes. OpenMP was used to

parallelize the codebase to evaluate NAFDU for

parallelizability and scalability.

NAFDU follows a structure typical of most convolution-

style computer-vision algorithms, where two outer loops iterate

through all pixels and two inner loops iterate through the spatial

neighborhood around the pixel specified by the outer loop.

OpenMP pragmas were applied to the outer loop to optimize

the number of threads created and thus minimize parallel

overhead. Three thread-scheduling schemes were tested: static,

dynamic, and guided. Guided scheduling proved to yield the

Fig. 1. NAFDU System Diagram, “Books” from Middlebury Dataset Used as an Example [10]

Fig. 2 “Art” from Middlebury Dataset [13]

best performance of the three for all cases, with static

scheduling as a close second. It is well known that dynamic

scheduling tends to yield the largest parallel overhead due to

the additional requirement of runtime load balancing [15]. The

code was benchmarked for runtime and parallel efficiency for

one through eight threads on a desktop PC with an Intel Core i7

4790k @ 4.6 GHz and 16 GB of RAM.

After assessing the parallelizability of NAFDU, the initial

codebase was transformed from floating-point arithmetic to

fixed-point arithmetic, which led to a dramatic speedup which

is outlined in Section V.A. Due to the insignificant difference

in speed, but notable increase in accuracy, 64-bit integers were

used in place of 32-bit integers, using 23 bits of fractional

precision. This design optimization removed all floating-point

instructions from the codebase and resulted in less than a 1%

decrease in accuracy but provided a 1.5 to 4 times speedup for

all tested kernel widths.

C. Design for High-Level Synthesis

 HLS was selected over a hardware description language in

this research for two main reasons. First, the increased

productivity afforded by HLS allowed for rapid

experimentation with multiple architectures. Second, the

authors desired to provide another reference to the academic

community of HLS being used to accelerate a real-time

application. Vivado HLS was chosen due to the authors’

familiarity with Xilinx tools.

A detailed diagram of the accelerator developed in the final

design is shown in Fig. 3. This architecture is beneficial for

scalability when applied high-resolution images, such as those

in our testbed (2048×1536). It has been shown that frame-based

accelerators, in which the entire video frame must be kept in

memory for computation, are limited by the amount of BRAM

(block RAM) on the device [16], which restricts the image

resolutions that they can support. Our FIFO architecture does

not share this limitation, because the resource usage scales with

kernel size, not image resolution.

V. EXPERIMENTAL RESULTS

In this section, detailed results will be presented from both

the CPU and FPGA stages of the case study. The CPU results

include error reduction and execution times for selected kernel

widths, and the FPGA results include execution times and

resource utilization on the Xilinx ZCU102 MPSoC board.

A. NAFDU on Desktop PC

In Fig. 4, we show the expected error reductions when

NAFDU is used to correct a depth map which has been injected

with noise. As expected, as the spatial kernels increase in size,

the error decreases in the resulting image. Notably, the final

RMSE stabilizes at ~12% for floating point and ~14% for fixed

point regardless of increasing the kernel radius. The authors

therefore judged a 25 px kernel width to be a reasonable

maximum target for our hardware designs, as it is the smallest

kernel which achieves this accuracy. However, in practice, due

Fig. 3. FPGA NAFDU Accelerator Diagram for Kernel Width n

10%

11%

12%

13%

14%

15%

16%

17%

18%

19%

20%

5 10 15 20 25 30 35 40

R
o

o
t-

M
ea

n
-S

q
u

ar
e

Er
ro

r

Kernel Width

RMSE Floating Point RMSE Fixed Point

Fig. 4. RMSE vs Kernel Width

to long compilation times, the 13 px kernel was the maximum

kernel size that was able to be implemented in hardware for this

study. Simulation results indicate that performance of the 25 px

kernel would be similar to others tested.

Execution times for the parallelized version of NAFDU on a

CPU are shown in Fig. 5. Both floating- and fixed-point results

are included in the graph. The graph demonstrates that for the

floating-point version, we achieved a 4.62× speedup with 8

cores in the 25 px-kernel width case. The fixed-point version

for the same kernel, conversely, only achieved a 3.66× speedup

with 8 cores over the serial baseline. We reason that the lower

speedup is due to resource contention of the integer math units

when the number of threads, 8, is larger than the number of

physical cores, in this case 4.

B. NAFDU on FPGA

The results shown for the accelerated NAFDU were

gathered using Vivado HLS version 2018.2. Results include

pixel latency and theoretical framerates, as well as, resource

utilization estimates for 2048×1536 images. The development

board used was the Xilinx ZCU102 for selected kernel widths

up to 13 px.

1) Performance Results

The target frame time for real-time, high-resolution image

processing was previously defined as 11 ms. In our tests, for all

kernel sizes, we report that the performance on the Zynq

UltraScale+ MPSoC is comparable to expected results from

simulations. The measured clock rate of 300 MHz was slower

than the simulated clock period of 500 MHz. The total

throughput of the test system was limited by a slower clock rate

and the DMA-based system architecture, which passes data to

the accelerator from an image loaded by software into DDR.

These performance results are a lower bound on what could be

expected with a production level system, which could interface

directly with camera data as a stream instead of passing data to

the accelerator from DDR. Even considering this lower-bound

performance, our design achieves a frame time of 10.5 ms for

all kernels, which meets the target frame time of 11 ms. This

frame time also represents a speedup of 40× compared to the

fastest CPU version for the 13 px kernel and a 4.7×

improvement over the original GPU implementation. All

kernels tested had identical frame times, showcasing the

scalability of our streaming architecture.

2) Resource Usage

The final resource utilization percentages for all kernel sizes

tested can be found in Fig. 6. The kernel size significantly

impacts the amount of resources used in the design. Adder trees

are automatically generated by the HLS synthesizer to handle

the two-dimensional multiply-accumulate reduction over the

entire kernel. Upon deeper analysis, these automatically-

generated adder trees use a significant number of LUTs to

handle pipelined integer multiply-accumulations.

The performance per watt for each kernel width appears to

scale quadratically with kernel size, as shown in Fig. 7. We see

0
.2

6

0
.6

7

1
.3

3 4
.3

4

1
6

.4
2

0
.2

0

0
.4

4

0
.7

6 2
.3

0

8
.0

0

0
.1

6

0
.2

8

0
.4

5

1
.3

3

4
.5

1

0
.1

5

0
.2

4

0
.3

9

1
.1

2 3
.5

5

0
.1

5

0
.2

7

0
.4

4

1
.2

9 4
.3

8

0
.1

4

0
.2

0

0
.2

9

0
.7

1 2
.2

8

0
.1

2

0
.1

6

0
.2

2

0
.4

6

1
.3

3

0
.1

0

0
.1

5

0
.1

9

0
.4

1

1
.1

8

0.00

5.00

10.00

15.00

20.00

3 5 7 13 25 3 5 7 13 25 3 5 7 13 25 3 5 7 13 25

1 2 4 8

Ex
ec

u
ti

o
n

 T
im

e
(S

ec
o

n
d

s)

Kernel Width / Cores

Floating Point Fixed Point

Fig. 5. NAFDU CPU Execution Times

0%

2%

4%

6%

8%

10%

12%

3 5 7 13

R
es

o
u

rc
e

U
ti

liz
at

io
n

Kernel Width (px)

FF%

DSP%

BRAM%

LUT%

Fig. 6 Zynq UltraScale+ MPSoC Resource Utilization

237

197

125

58

0

50

100

150

200

250

3 5 7 13

FP
S-

P
er

-W
at

t

Kernel Width

Fig. 7 Zynq UltraScale+ MPSoC Performance-per Watt

that the smallest kernel width yields the highest performance

per watt because all kernel sizes maintained the same framerate

while the resource utilization increased. FPS-per-watt results

for designs between 3 and 7 px kernel widths also suggest that

this device can achieve real-time performance at sub-watt

power, a common target for embedded-system designs.

VI. CONCLUSIONS

In summary, the goal of this research was to select a depth-

upsampling algorithm suitable for hardware acceleration to

meet the high-resolution, real-time constraints imposed by

mixed-reality apps. NAFDU was chosen for this purpose due to

its low algorithmic complexity, deterministic execution time,

and high accuracy compared to more complex methods. We

parallelized NAFDU on a desktop PC to demonstrate its

scalability and asses the error discrepancy between floating-

and fixed-point data representations. Subsequently, we

designed and developed a NAFDU accelerator using Vivado

HLS which showed significant performance gains when

executed on the Zynq UltraScale+ MPSoC platform. The final

design achieved a 10.5 ms frame time for the largest kernel

width tested, 13 px. This execution time represents a 40×

speedup from the fastest CPU version and a 4.7× improvement

over the original GPU implementation of NAFDU. Kernel

widths smaller than 13 px also achieve high performance per

watt, demonstrating that low-power, embedded systems could

leverage the NAFDU accelerator and still maintain high

framerates. The accelerated version of NAFDU has met the

real-time, high-resolution constraints imposed by mixed-reality

apps and is a prime example of how HLS tools have matured in

terms of producing hardware that is both scalable and capable

of real-time performance.

ACKNOWLEDGMENT

This work was supported by the NSF SHREC Center

industry and agency members and by the IUCRC Program of the

National Science Foundation under Grant No. CNS-1738783.

VII. REFERENCES

[1] "Augmented Reality Market Size By Component," Global

Market Insights, December 2017. [Online]. Available:

https://www.gminsights.com/industry-

analysis/augmented-reality-ar-market. [Accessed 17

August 2018].

[2] A. Binstock, "Powering the Rift," oculus.com, 15 May

2015. [Online]. Available:

https://www.oculus.com/blog/powering-the-rift/.

[Accessed 17 August 2018].

[3] HTC, "VIVE Specs," 2018. [Online]. Available:

https://www.vive.com/us/product/vive-virtual-

reality-system/. [Accessed 17 August 2018].

[4] I. Eichhardt, D. Chetverikov and Z. Jank´o, "Image-guided

ToF depth upsampling: a survey," Machine Vision and

Applications, Vols. 3-4, no. 28, pp. 267-282, 2017.

[5] V. Gandhi, J. Cech and R. Horaud, "High-resolution depth

maps based on TOF-stereo fusion," in Robotics and

Automation IEEE International Conference, 2012.

[6] D. Chan, H. Buisman, C. Theobalt and S. Thrun, "A noise-

aware filter for realtime depth upsampling," in

Workshop on Multi-camera and Multi-modal Sensor

Fusion Algorithms and Applications, 2008.

[7] G. D. Evangelidis, M. Hansard and R. Horaud, "Fusion of

range and stereo data for high-resolution scene-

modeling," IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 37, no. 11, pp. 2178-2192,

2015.

[8] M.-Z. Yuan, L. Gao, H. Fu and S. Xia, "Temporal

Upsampling of Depth Maps Using a Hybrid Camera,"

IEEE Transactions on Visualization and Computer

Graphics, 2018.

[9] R. Shea, A. Sun, S. Fu and J. Liu, "Towards Fully Offloaded

Cloud-based AR: Design, Implementation and

Experience," in Proceedings of the 8th ACM on

Multimedia Systems Conference, Taipei, Taiwan, 2017.

[10] C. Pal and D. Scharstein, "Learning conditional random

fields for stereo," in IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), Minneapolis, MN, 2007.

[11] L. Yuan, X. Jin, Y. Li and C. Yuan, "Depth map super-

resolution via low-resolution depth guided joint

trilateral up-sampling," Journal of Visual Communication

and Image Representation, no. 46, pp. 280-291, 2017.

[12] J. Kopf, M. F. Cohen, D. Lischinski and M. Uyttendaele,

"Joint bilateral upsampling," ACM Transactions on

Graphics, vol. 3, no. 26, p. Article 96, 2007.

[13] D. Scharstein and R. Szeliski, "A taxonomy and

evaluation of dense two-frame stereo correspondence

algorithms," International Journal of Computer Vision,

vol. 1/2/3, no. 47, pp. 7-42, 2002.

[14] D. Scharstein and R. Szeliski., "High-accuracy stereo

depth maps using structured light," in IEEE Computer

Society Conference on Computer Vision and Pattern

Recognition, Madison, WI, 2003.

[15] J. M. Bull, "Measuring Synchronisation and Scheduling

Overheads in OpenMP," Proceedings of First European

Workshop on OpenMP, vol. 8, p. 49, 1999.

[16] A. Gabiger-Rose, M. Kube, R. Weigel and R. Rose, "An

FPGA-based fully synchronized design of a bilateral

filter for real-time image denoising," IEEE Transactions

on Industrial Electronics, vol. 8, no. 61, pp. 4093-4104,

2014.

