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Abstract—While the popularity of high-resolution, computer-

vision applications (e.g. mixed reality, autonomous vehicles) is 

increasing, there have been complementary advances in time-of-

flight depth sensor resolution and quality. These advances in time-

of-flight sensors provide a platform for new research into real-

time, depth-upsampling algorithms targeted at high-resolution 

video systems with low-latency requirements. This paper describes 

a case study in which a previously developed bilateral-filter-style 

upsampling algorithm is profiled, parallelized, and accelerated on 

an FPGA using high-level synthesis tools from Xilinx. We show 

that our accelerated algorithm can effectively upsample the 

resolution and reduce the noise of time-of-flight sensors. We also 

demonstrate that this algorithm exceeds the real-time 

requirements of 90 frames per second necessitated by mixed-

reality hardware, achieving a lower-bound speedup of 40 times 

over the fastest CPU-only version. 

Keywords—time-of-flight sensor, depth upsampling, FPGA 
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I. INTRODUCTION 

Mixed-reality technology has grown popular in recent years 

and is expected to become a 1.65-billion-dollar industry by 

2024 [1]. The advent of this technology introduces many 

challenges from both the hardware and software perspectives. 

Advanced head-mounted displays have native resolutions 

greater than 2160×1200 (2.5 million pixels) displaying at 

refresh rates of 90 Hz, which translates to a frame time of 

roughly 11 ms per image [2-3]. Considering these requirements, 

performing complex image-processing algorithms, such as 

image-based depth inference, on this high-resolution data in 

real time is a challenging task. In mixed-reality apps, it is often 

essential to be able to infer depth from images and/or sensors to 

display images on surfaces perceived by the user. Traditional 

algorithms to infer depth using camera sources alone such as 

disparity mapping fail in non-textured regions, and high-

accuracy algorithms based on Markov-random-field models do 

not satisfy the accuracy and performance requirements of 

mixed-reality systems [4]. Methods based on the fusion of both 

color and depth information often achieve high accuracy but, 

even on systems accelerated with a GPU, methods that claim 

real-time performance fail to meet the frame time demands of 

mixed-reality systems [5]. 

In this paper, a case study involving a mixed-reality headset 

assembly is detailed. This headset consists of a high-resolution 

color camera as well as a low-resolution, time-of-flight (ToF) 

depth sensor. The goal of this research is to perform real-time 

upsampling of the low-resolution ToF data to match the 

resolution of the color image, which will then be rendered to a 

display. This case is a typical scenario for augmented reality 

applications in which real-time scene depth is necessary for 

virtual objects to interact with real-world surfaces. 

Upsampling depth data in real time from a ToF sensor is 

challenging due to several factors. First, ToF sensors are 

notoriously noisy and suffer from the “flying pixel” problem 

[4]. Second, ToF sensors tend to have inadequately small 

resolutions, requiring them to be upsampled by a large factor to 

match typical rendering resolutions. This situation can be 

computationally intensive and tends to result in noisy, 

inaccurate depth images [5]. To mitigate these inaccuracies, 

methods have been developed to fuse data from both the ToF 

sensors and the high-resolution cameras [4]; however, many of 

these methods can be too computationally intensive to meet the 

real-time constraints of modern apps on conventional hardware. 

We propose that previously developed methods can leverage 

hardware acceleration using modern high-level synthesis 

(HLS) tools for field-programmable gate arrays (FPGAs) to 

achieve high-resolution, low-latency depth upsampling for 

mixed-reality applications. Specifically, this paper describes a 

case study in which the Noise-Aware Filter for Real-Time 

Depth Upsampling (NAFDU) [6] is tested on a CPU platform, 

then accelerated using Vivado HLS and evaluated on the Xilinx 

Zynq UltraScale+ MPSoC device on the ZCU102 board. 

II. RELATED WORK 

In [5] and [7], low-resolution depth data from a ToF sensor 

is fused with a high-resolution color image using a novel 

region-growing, energy-minimization algorithm. The authors 

show that their method achieves high accuracy on the industry-

standard Middlebury dataset compared to many other methods. 

However, the algorithm’s execution time is dependent on image 

content. Additionally, the algorithm’s iterative behavior 

imposes severe restrictions for real-time apps.  
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 Yuan, M. details a framework for temporal upsampling 

using a hybrid camera [8]. This approach achieves high 

accuracy, but it was shown to be unable to handle rapid scene 

changes, such as those occurring in a typical head-mounted 

display scenario when a user quickly turns his or her head. 

A unique approach to the problem of running augmented-

reality apps on mobile devices was proposed by Shea in [9], 

where scene data from a mobile device was uploaded to an 

external cloud server with a high-powered GPU. This 

methodology was successful in reducing the overall power 

consumption of the system while also maintaining a high 

degree of image quality compared to processing entirely on the 

mobile device. However, the interaction delay of their system 

was 55 ms, which does not fall within the 11 ms constraint of a 

typical, real-time application. 

In [6], Chan details a straightforward sensor fusion 

algorithm, which applies a modified Joint-Bilateral 

Upsampling (JBU) filter to low-resolution depth data and high-

resolution color data [6]. This method shows high accuracy 

relative to other, more computationally intensive, methods. 

Further, the algorithm itself is tightly bounded in execution time 

with respect to input, which is inconsistent with energy-

minimization techniques like the ones used in [7], [10], and [11]. 

Though the execution time cited in the original paper of 49 ms 

falls outside of the 11 ms constraint of real-time apps, due to 

the desirable characteristics of the algorithm, NAFDU was 

chosen to be accelerated on hardware for this study. 

III. BACKGROUND 

A. Noise-Aware Filter for Depth Upsampling (NAFDU) 

As previously stated, NAFDU was chosen for hardware 

acceleration. This method is based on a traditional bilateral 

filter, which is expressed in (1). 

 

      𝑃 =  
1

𝑘𝑝

∑ 𝐼𝑞 𝑓(‖𝑝 − 𝑞‖) 𝑔(‖𝐼𝑝 −  𝐼𝑞‖)𝑞∈ Ω           (1) 

In (1), 𝐼𝑞  is the pixel value in the original image at 𝑝, Ω is 

the neighborhood centered at pixel 𝑝. Generally, both 𝑓 and 𝑔 

are gaussian functions; 𝑓 is referred to as the domain term, and 

𝑔 is referred to as the range term. 𝑘𝑝 is the normalization term 

and is equal to the sum of the domain and range terms over the 

current neighborhood. 

NAFDU is based on the JBU filter proposed by Kopf [12], 

in which the bilateral filter is used for upsampling by taking the 

range term from a separate, high-resolution image. The 

assumption made by the JBU is that the high-resolution image 

will have similar, more detailed structural information about the 

scene, which can be referenced for the low-resolution image. 

Chan illustrates that the aforementioned method of using a 

second image to calculate the range term of the bilateral filter 

can lead to the phenomenon known as “texture-copying” [6].  

Texture-copying in the JBU filter is due to the erroneous 

assumption that the color image will exhibit similar structural 

characteristics in its gradient as the depth data (i.e. observing a 

color-varying surface that may, in fact, be physically flat) [6]. 

NAFDU addresses this assumption by introducing a sigmoid 

blending function, α, which is used to make the range term 

dependent on both the color image and the depth image. The 

assumption made is that if a given area has a small depth 

gradient, it is likely flat, and therefore the range term from the 

depth data should be used for upsampling, even if a large color 

gradient is observed. Similarly, if a high color gradient is 

observed in conjunction with a high depth gradient, the range 

term from the high-resolution data is preferred because it is 

assumed to be more accurate. This blending function has the 

effect of preserving edges during upsampling, while also 

avoiding the texture-copy phenomenon in flat areas that may 

have high color variations. The adjusted range term for the 

NAFDU upsampling filter is expressed in (2).  

 

     𝑟𝑝 = α(∆Ω) g(‖Ĩp- Ĩq‖)+(1-α(∆Ω)) h(‖Ip↓- Iq↓‖)  (2) 

 

In (2), Ĩp and  Ĩq are the pixel values in the color image in the 

neighborhood, Ω, centered at 𝑝; ∆Ω is the absolute difference 

between the maximum- and minimum-valued pixels in the 

current neighborhood; ℎ and 𝑔 are gaussian functions; α(∆Ω) 

is the sigmoid blending function. A more thorough explanation 

of the NAFDU algorithm is presented in [6]. 

B. Time-of-Flight (ToF) Sensor 

ToF sensors are growing in popularity and are shrinking in 

cost. This newfound demand is derived from the fact that they 

produce high-resolution depth maps at high frame rates. These 

sensors have two main components: a light source, usually a 

diffused near-infrared laser, and an image sensor. The time that 

it takes for each photon to leave the light source and arrive at 

the sensor is measured and used to infer the depth at that point 

in space. 

C. High-Level Synthesis (HLS) 

As HLS tools continue to mature, complex hardware designs 

can be synthesized using few lines of code and run at speeds 

comparable to those composed from low-level hardware 

description languages such as VHDL or Verilog. Vivado HLS 

was selected for this study. This tool facilitates the development 

and simulation of hardware using high-level C and C++ 

programming languages. Synthesizable functions that describe 

hardware can be translated to register-transfer language (RTL) 

for synthesis. Vivado HLS also includes a co-simulator to 

simulate the translated functions using a testbench written in C 

or C++. The ability to use higher-level languages can 

significantly reduce the overall development cycle for hardware. 

The tradeoff for this increase in productivity is less flexibility 



and control of the design in synthesis and implementation on 

hardware. 

D. Hardware Testbed 

The hardware testbed used in this case study is a 2048×1536 

resolution color camera coupled to a 320×240 resolution ToF. 

A diagram of the processing flow of this testbed is shown in Fig. 

1. The target maximum latency of the accelerated algorithm is 

11 ms, matching the frame display time of popular mixed-

reality headsets [2-3]. We acknowledge that the latency must 

be lower in practice to account for other processing in the 

rendering pipeline; however, 11 ms was judged to be a 

reasonable initial target for a proof-of-concept experiment. 

IV. APPROACH 

In this section, the approach in each stage of the research is 

outlined. The first stage includes the steps taken to optimize and 

parallelize NAFDU on a desktop PC. These initial steps were 

taken to assess the scalability of the algorithm. In the final stage 

of this research, NAFDU was accelerated using Vivado HLS 

and run on the Xilinx ZCU102 MPSoC board. 

A. NAFDU on Desktop PC 

 The following steps were used to validate the algorithm of 

the original CPU codebase: a single depth map and color image 

was read as input, the depth-map resolution was reduced using 

the resize function in OpenCV, and then the NAFDU algorithm 

was used to restore the depth map to its original size. The new 

image was then compared to the original using root-mean-

square error (RMSE) as a metric. Multiple kernel window sizes 

were tested to assess their effect on RMSE, which are shown 

later in Section V.A. The Middlebury image dataset was used 

throughout this study for evaluating the quality of upsampled 

depth maps [13-14]. Example images from this dataset can be 

seen in Fig. 1 and Fig. 2. 

B. NAFDU Optimization and Parallelization 

After evaluating the serial baseline, a series of optimizations 

were applied. The goal of these optimizations was twofold: first, 

to ensure that the desktop version of NAFDU could be 

compared fairly to the FPGA implementation in terms of speed 

and accuracy; second, to accelerate the algorithm to stream live 

video for demonstration purposes. OpenMP was used to 

parallelize the codebase to evaluate NAFDU for 

parallelizability and scalability. 

NAFDU follows a structure typical of most convolution-

style computer-vision algorithms, where two outer loops iterate 

through all pixels and two inner loops iterate through the spatial 

neighborhood around the pixel specified by the outer loop. 

OpenMP pragmas were applied to the outer loop to optimize 

the number of threads created and thus minimize parallel 

overhead. Three thread-scheduling schemes were tested: static, 

dynamic, and guided. Guided scheduling proved to yield the 

Fig. 1. NAFDU System Diagram, “Books” from Middlebury Dataset Used as an Example [10] 

Fig. 2 “Art” from Middlebury Dataset [13] 



best performance of the three for all cases, with static 

scheduling as a close second. It is well known that dynamic 

scheduling tends to yield the largest parallel overhead due to 

the additional requirement of runtime load balancing [15]. The 

code was benchmarked for runtime and parallel efficiency for 

one through eight threads on a desktop PC with an Intel Core i7 

4790k @ 4.6 GHz and 16 GB of RAM. 

After assessing the parallelizability of NAFDU, the initial 

codebase was transformed from floating-point arithmetic to 

fixed-point arithmetic, which led to a dramatic speedup which 

is outlined in Section V.A. Due to the insignificant difference 

in speed, but notable increase in accuracy, 64-bit integers were 

used in place of 32-bit integers, using 23 bits of fractional 

precision. This design optimization removed all floating-point 

instructions from the codebase and resulted in less than a 1% 

decrease in accuracy but provided a 1.5 to 4 times speedup for 

all tested kernel widths. 

C. Design for High-Level Synthesis 

 HLS was selected over a hardware description language in 

this research for two main reasons. First, the increased 

productivity afforded by HLS allowed for rapid 

experimentation with multiple architectures. Second, the 

authors desired to provide another reference to the academic 

community of HLS being used to accelerate a real-time 

application. Vivado HLS was chosen due to the authors’ 

familiarity with Xilinx tools.  

A detailed diagram of the accelerator developed in the final 

design is shown in Fig. 3. This architecture is beneficial for 

scalability when applied high-resolution images, such as those 

in our testbed (2048×1536). It has been shown that frame-based 

accelerators, in which the entire video frame must be kept in 

memory for computation, are limited by the amount of BRAM 

(block RAM) on the device [16], which restricts the image 

resolutions that they can support. Our FIFO architecture does 

not share this limitation, because the resource usage scales with 

kernel size, not image resolution. 

V. EXPERIMENTAL RESULTS 

In this section, detailed results will be presented from both 

the CPU and FPGA stages of the case study. The CPU results 

include error reduction and execution times for selected kernel 

widths, and the FPGA results include execution times and 

resource utilization on the Xilinx ZCU102 MPSoC board. 

A. NAFDU on Desktop PC 

In Fig. 4, we show the expected error reductions when 

NAFDU is used to correct a depth map which has been injected 

with noise. As expected, as the spatial kernels increase in size, 

the error decreases in the resulting image. Notably, the final 

RMSE stabilizes at ~12% for floating point and ~14% for fixed 

point regardless of increasing the kernel radius. The authors 

therefore judged a 25 px kernel width to be a reasonable 

maximum target for our hardware designs, as it is the smallest 

kernel which achieves this accuracy. However, in practice, due 

 

Fig. 3. FPGA NAFDU Accelerator Diagram for Kernel Width n 
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to long compilation times, the 13 px kernel was the maximum 

kernel size that was able to be implemented in hardware for this 

study. Simulation results indicate that performance of the 25 px 

kernel would be similar to others tested.  

Execution times for the parallelized version of NAFDU on a 

CPU are shown in Fig. 5. Both floating- and fixed-point results 

are included in the graph. The graph demonstrates that for the 

floating-point version, we achieved a 4.62× speedup with 8 

cores in the 25 px-kernel width case. The fixed-point version 

for the same kernel, conversely, only achieved a 3.66× speedup 

with 8 cores over the serial baseline. We reason that the lower 

speedup is due to resource contention of the integer math units 

when the number of threads, 8, is larger than the number of 

physical cores, in this case 4. 

B. NAFDU on FPGA 

The results shown for the accelerated NAFDU were 

gathered using Vivado HLS version 2018.2. Results include 

pixel latency and theoretical framerates, as well as, resource 

utilization estimates for 2048×1536 images. The development 

board used was the Xilinx ZCU102 for selected kernel widths 

up to 13 px. 

1) Performance Results 

The target frame time for real-time, high-resolution image 

processing was previously defined as 11 ms. In our tests, for all 

kernel sizes, we report that the performance on the Zynq 

UltraScale+ MPSoC is comparable to expected results from 

simulations. The measured clock rate of 300 MHz was slower 

than the simulated clock period of 500 MHz. The total 

throughput of the test system was limited by a slower clock rate 

and the DMA-based system architecture, which passes data to 

the accelerator from an image loaded by software into DDR. 

These performance results are a lower bound on what could be 

expected with a production level system, which could interface 

directly with camera data as a stream instead of passing data to 

the accelerator from DDR. Even considering this lower-bound 

performance, our design achieves a frame time of 10.5 ms for 

all kernels, which meets the target frame time of 11 ms. This 

frame time also represents a speedup of 40× compared to the 

fastest CPU version for the 13 px kernel and a 4.7× 

improvement over the original GPU implementation. All 

kernels tested had identical frame times, showcasing the 

scalability of our streaming architecture. 

2) Resource Usage 

The final resource utilization percentages for all kernel sizes 

tested can be found in Fig. 6. The kernel size significantly 

impacts the amount of resources used in the design. Adder trees 

are automatically generated by the HLS synthesizer to handle 

the two-dimensional multiply-accumulate reduction over the 

entire kernel. Upon deeper analysis, these automatically-

generated adder trees use a significant number of LUTs to 

handle pipelined integer multiply-accumulations. 

The performance per watt for each kernel width appears to 

scale quadratically with kernel size, as shown in Fig. 7. We see 
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that the smallest kernel width yields the highest performance 

per watt because all kernel sizes maintained the same framerate 

while the resource utilization increased. FPS-per-watt results 

for designs between 3 and 7 px kernel widths also suggest that 

this device can achieve real-time performance at sub-watt 

power, a common target for embedded-system designs. 

VI. CONCLUSIONS 

In summary, the goal of this research was to select a depth-

upsampling algorithm suitable for hardware acceleration to 

meet the high-resolution, real-time constraints imposed by 

mixed-reality apps. NAFDU was chosen for this purpose due to 

its low algorithmic complexity, deterministic execution time, 

and high accuracy compared to more complex methods. We 

parallelized NAFDU on a desktop PC to demonstrate its 

scalability and asses the error discrepancy between floating- 

and fixed-point data representations. Subsequently, we 

designed and developed a NAFDU accelerator using Vivado 

HLS which showed significant performance gains when 

executed on the Zynq UltraScale+ MPSoC platform. The final 

design achieved a 10.5 ms frame time for the largest kernel 

width tested, 13 px. This execution time represents a 40× 

speedup from the fastest CPU version and a 4.7× improvement 

over the original GPU implementation of NAFDU. Kernel 

widths smaller than 13 px also achieve high performance per 

watt, demonstrating that low-power, embedded systems could 

leverage the NAFDU accelerator and still maintain high 

framerates. The accelerated version of NAFDU has met the 

real-time, high-resolution constraints imposed by mixed-reality 

apps and is a prime example of how HLS tools have matured in 

terms of producing hardware that is both scalable and capable 

of real-time performance. 
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