
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Deep Learning for Hyperspectral Image

Classification on Embedded Platforms

Siddharth Balakrishnan*, David Langerman†, Evan Gretok‡ and Dr. Alan D. George§

Department of Electrical and Computer Engineering, University of Pittsburgh

Room 1238D, Benedum Hall

NSF Center for Space, High-performance, and Resilient Computing (SHREC)

Pittsburgh, PA 15261

{*sid.bala, †dal181, ‡ewg13, Alan.George}@pitt.edu

Abstract— Hyperspectral image (HSI) analysis refers to the

processes used to identify and classify objects photographed using

equipment that can image photons from a broad range of the

electromagnetic spectrum. Downlinking such large images from

space on radiation-resistant platforms with limited on-board

computing power takes a large amount of time, memory, and other

mission-critical resources. Performing such analysis in space

before downlinking all images will save these resources by

enabling a subset of images of interest to be downloaded rather

than the entire set. The goal of this study is to benchmark and

evaluate HSI-classification methods which incorporate deep

learning on embedded platforms with limited computing

resources. Support Vector Machine (SVM), Multi-Layer

Perceptron (MLP), and Convolutional Neural Network (CNN) are

the classification methods used in this study. These algorithms

were executed on a desktop PC and two embedded platforms: the

ODROID-C2 and the Raspberry Pi 3B. Accuracy, run-time, and

memory benchmarks determined the optimal model for each

platform. Based on results gathered in this research, CNN

classification is recommended for the desktop PC due to its high

accuracy of 97%. MLP classification is recommended for the

embedded platforms under study, as it showcased the shortest run-

time and second-highest accuracy.

Keywords—hyperspectral image analysis, deep learning,

embedded platforms, performance benchmarking

I. INTRODUCTION

Numerous images of Earth are taken from satellites and

other spacecraft. These images are usually very high in

resolution and bit-depth. As a result, downloading every single

image for analysis on earth is inefficient in terms of

communication time and processing power in an already

computation-constrained environment [1]. The primary goal of

this research is to benchmark and evaluate deep-learning apps

for hyperspectral image (HSI) classification on embedded

platforms. From this study, the optimal HSI-classification

method for platforms with limited computing capabilities can

be determined. This study also serves as a framework for

conducting such analysis on-board a spacecraft, which could

allow a subset of images of interest to be downloaded – saving

time, memory, and other mission-critical resources.

Hyperspectral images are taken with a hyperspectral camera

that collects amplitude readings from a subset of spectral bands

(various wavelengths in the electromagnetic spectrum) for each

pixel in the image [2]. Patterns can be extracted from these

amplitudes in order to classify each pixel in the image. By doing

so, the HSI data of interest can be recognized for further

investigation, depending upon the context in which HSI is being

used. HSI imagery is used in a wide variety of applications such

as astronomy and space surveillance. For example, [3] uses an

adaptive optics-compensated telescope to acquire HSI.

 Three classification methods were used for HSI analysis in

this study: Support Vector Machine (SVM); Multi-Layer

Perceptron (MLP); and Convolutional Neural Network (CNN).

SVM is a machine-learning model that creates a margin in a

transformed input space, splitting the input data into two classes

using hyperplane in multidimensional space [4]. SVMs are

inherently a two-class classifier. As a result, in order to conduct

predictions for a multi-class dataset, a one-versus-all method is

used for each class. A MLP is a deep-learning model that is

capable of modeling nonlinear functions. MLPs consist of

“fully connected layers” in which every node is connected with

respective weights determined when a model is trained [5].

Similar to MLPs, CNNs are a deep-learning model, but they

contain convolutional layers, where each layer transforms one

set of feature maps. The last few layers of a typical CNN are

normally “fully connected layers” that mirror an MLP in

functionality. However, the convolutional layers in CNNs

generally increase their accuracy over MLPs, because these

convolutional layers tend to extract relevant features from the

image and discard noise and extraneous information [5] [6].

The classification models were all trained on the desktop PC

and the final prediction was executed on the three platforms

listed below in Table I.

II. RELATED WORK

In [7], a review of different hyperspectral image analysis

techniques using deep learning concluded that there is minimal

evidence suggesting that deep-learning models outperform

reference methods, but they are quite competitive. The literature

reviewed in this paper noted that a widely used reference model

TABLE I. PLATFORM COMPARISON

 ODROID-C2
Raspberry Pi

3B
Desktop PC

Architecture

ARM Cortex

-A53 Quad

Core

ARM Cortex

-A53 Quad

Core

x86 Quad

Core

Processor Amlogic S905
Broadcom

BCM2837

Intel i7-6700

vPro

Clock 1.5 GHz 1.2 GHz 3.4 GHz

RAM 2 GB DDR3 1 GB DDR2 16 GB DDR3

OS
Ubuntu 16.04

(Mate)
Raspbian 8

Windows 10

Pro

is the SVM model. It was found that proposed and reference

models in this work obtained an overall training accuracy of

over 95%.

In [8], supervised HSI classification algorithms along with

Markov Random Fields post-processing is investigated to

assess accuracy of various models before and after post-

processing. The HSI classification algorithms include SVM and

CNN models. The CNN model was based on a model developed

in [5]. Moreover, these models were run on a server with Nvidia

GeForce GTX 1080 and Tesla K40c GPUs [5].

The models developed in [5] are part of a study in which

deep-learning networks are developed for land-cover

classification with HSI. These models deal with the challenges

of high-dimensionality HSI datasets effectively by extracting

band-specific spectral and spatial features. These extracted

features are then used to perform pixel-wise landcover

classification. The models are claimed to outperform the highest

reported accuracies on popular HSI data sets such as the Indian

Pines data set. As a result, the MLP and CNN models used in

this study were also based on the same models that were

developed by [5].

III. METHODS

 This section discusses the HSI dataset, models, and methods
used to train, test, and make final predictions. Furthermore, the
parameters and architectures for each model are detailed.

A. Dataset

The Indian Pines HSI dataset was leveraged to train and test
the classification algorithms under study. This dataset is widely
used by HSI researchers in testing proposed classification
algorithms. The dataset represents an image of farmland in
northwestern Indiana and consists of 224 spectral bands with 16
different agricultural classes [9]. The ground truth of the dataset
identifies different types of land cover, ranging from buildings
to a variety of vegetation, in the farmland. The ground-truth
matrix constructed from the dataset was converted into an image
to visualize the different types of landcover, shown in Fig. 1.

B. Models

The Scikit-learn Python library was leveraged to develop

the SVM [10]. The parameter values for the SVM model are

summarized in Table II(a). A radial basis function (which uses

the squared Euclidean distance between feature vectors) was

used as kernel to develop the SVM. The value of C in Table

II(a) indicates the relative weight coefficient. It should be noted

that the tolerance value may differ on other platforms. The

values for each parameter were chosen using a five-fold, cross-

validation technique, a resampling procedure in which the

shuffled dataset is split into five groups and each group is used

as the test set while the model is trained on the rest of the

dataset. For each instance that the model is trained, parameters

are tuned over the specified range of values, and the model with

the optimal parameters is selected to maximize accuracy.

The TensorFlow framework was used to construct and train

the MLP and CNN deep-learning models in this study. These

a. SVM b. MLP c. CNN Legend

Fig. 3. Image Outputs

TABLE II. PARAMETERS USED FOR SVM, MLP AND CNN

(a) SVM (b) MLP (c) CNN

Gamma: 2-8 Patch Size: 1 Patch Size: 27

C: 27 Batch Size: 200 Batch Size: 200

Tolerance: 1e-14 Learning Rate: 0.01 Learning rate: 0.01

Fig. 1. Ground Truth Matrix Visualization from Original Image

(a) MLP Architecture [5] (b) CNN Architecture [5]

Fig. 2. Model Architectures Used in this Study

models were based on land-cover classification models

developed by the Satellite Application Center from the Indian

Space Research Organization [5] [11]. The MLP model can be

described by a weighted, directed acyclic graph. The output of

each nodal layer is a function of the sum of inputs modified by

a nonlinear transfer function such as a sigmoid, which was the

activation function used in [9]. The architecture of the MLP

model was set so that each patch of the image could be used as

input to the model with the architecture shown in Fig. 2a. The

parameters used to construct the model are summarized in Table

II(b). The model was trained for 50,000 epochs.

Similarly, each patch of the image was used as an input to

the CNN with the architecture shown in Fig. 2b. Typical CNNs

contain alternating layers of convolutional filters and max-

pooling layers. The final layers of most CNNs are fully

connected layers, used for classification [12].

C. Training, Testing, and Prediction

 The raw dataset was pre-processed to include a border to

avoid loss of data at the output. The pixels in the image were

divided into 80% training and 20% testing sets. These sets were

used to develop and validate the SVM, MLP, and CNN models

on the desktop PC before porting the trained models to the

ODROID-C2 and Raspberry Pi 3B platforms.

For the final prediction, each pixel from the data was fed

into the trained models and the predicted outputs were used to

reconstruct an image as shown in Fig. 3. The labels predicted

for each pixel were compared with the pre-defined labels in the

ground-truth image to determine the accuracy of the prediction.

During prediction, run-time and memory benchmarks were

calculated. These predictions and calculations were executed on

the desktop PC, ODROID-C2, and Raspberry Pi 3B platforms.
After the models were trained and tested, the entire data set

was used to conduct the final predictions. The accuracies of the
models were noted, and the run-time and memory benchmarks
were averaged over ten trials.

IV. EXPERIMENTAL RESULTS

Accuracy, run-time, and memory benchmarks on the desktop
PC, ODROID-C2, and Raspberry Pi 3B are detailed in this
section. The overall accuracy of each model tested in this study
is compared to the accuracy of other models from the literature.
Inter-class accuracies for each of the models are also reported.

A. Accuracy Benchmarks

 The accuracy results shown in Fig. 4a were determined

through comparison of the model’s pixel-wise prediction with

the preset pixel classifications from the ground-truth matrix.

The results include accuracies for the SVM, MLP, and CNN

models on the desktop PC, ODROID-C2, and Raspberry Pi 3B.

The output images for each model are shown in Fig. 3.

Comparing the output images in Fig. 3 with the ground-truth

image in Fig. 1 reflects the accuracies of these models, which

are summarized in Table III. Out of the 16 agricultural land

classes identified in the ground-truth matrix, inter-class

accuracies (percent of pixels that were correctly identified

within the class) were also calculated and summarized in Table

IV.

1. Support Vector Machines

The SVM model in this study performed with an accuracy

of 62% on the desktop PC with an Intel i7-6700 vPro quad-core

processor, and an accuracy of 61% on the embedded platforms

with ARM Cortex-A53 quad-core processors. The model from

[8] achieved an accuracy of 68% on a server with the Nvidia

GeForce GTX 1080 and the Tesla K40c. The higher accuracy

achieved by [8] is likely due to training the model on a GPU

instead of a CPU. The reason for the disparity between the

accuracy of the SVM on the desktop PC and the embedded

platforms in this research is the random variations of model
accuracies within the ten trials.

TABLE III. ACCURACY OF MODELS

 Ours Others

SVM 62% 68% [8]

MLP 85% 82% [5]

CNN 97% 96% [5]

6
2

6
1

6
1

8
5

8
5

8
5

9
7

9
7

9
7

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

PC OD PI

P
er

ce
n
t

C
o
rr

ec
tl

y
 C

la
ss

if
ie

d
 P

ix
el

s

(a) Accuracy Benchmarks

4
2

5
4

6

6
7
3

7
2

3
9
0

5
2

9

2
0
5

1
5
4
3

3
0
3
2

0

500

1000

1500

2000

2500

3000

3500

PC OD PI

S
ec

o
n
d
s

(b) Run-Time Benchmarks

SVM MLP CNN

1
7
8

1
6
8

1
5
31
6
8

1
6
9

1
2
8

2
3
5 2
4
7

2
0
1

0

50

100

150

200

250

PC OD PI

M
eg

ab
y
te

s

(c) Memory Benchmarks

Fig. 4. Accuracy, Run-Time, and Memory Benchmarks of

Each Algorithm on All Tested Platforms

TABLE IV. INTER-CLASS ACCURACIES FOR EACH MODEL

Classes SVM MLP CNN

1. Stone/Steel/Tower 2.2% 95.7% 100%

2. Build/Grass/Tree/Drives 15.1% 76.3% 81.2%

3. Wood 2.7% 82.3% 63.2%

4. Wheat 8.9% 92.8% 76.7%

5. Soybean-Clean 75.2% 95.0% 78.5%

6. Soybean-Min 79.6% 97.3% 99.6%

7. Soybean-Notill 7.1% 96.4% 100%

8. Oats 93.5% 98.1% 71.2%

9. Hay/Windrowed 5.0% 100% 100%

10. Grass/Pasture Mowed 79.8% 90.1% 93.7%

11. Grass/Trees 89.0% 75.4% 90.1%

12. Grass/Pasture 15.2% 89.0% 70.5%

13. Corn 81.5% 99.5% 73.1%

14. Corn-Min 89.4% 91.0% 66.1%

15. Corn-Notill 61.7% 83.2% 90.6%

16. Alfalfa 100% 100% 60.8%

2. Multi-Layer Perceptron

The MLP model used in this study achieved an accuracy of 85%

on the desktop PC and the embedded platforms, while the model

from [5] achieved an accuracy of 82% on a desktop PC with

dual Intel Xeon E5-2630 v2 processors and a Nvidia Tesla K20c

GPU. The greater accuracy in this study, despite the use of a

GPU in [5], is likely due to the usage of the latest version of

Adagrad (which is the parameter update algorithm used for this

model), as the study in [5] was conducted in 2016 [13].

3. Convolutional Neural Network

Lastly, the CNN model in this study performed with an

accuracy of 97% on the desktop PC and the embedded

platforms. The model from [5] had an accuracy of 96% on a

desktop PC with dual Intel Xeon E5-2630 v2 processors and a

Nvidia Tesla K20c GPU. Similar to the MLP, the discrepancies

are likely due to the version differences of Adagrad.

Comparing the accuracies of the SVM, MLP, and CNN

reveals that the SVM model provided the lowest accuracy,

while the CNN model offered the best overall accuracy when

identifying the pixels in the Indian Pines dataset. The inter-class

accuracies of the SVM model also had a large range (97.8%)

and standard deviation (38.3%). The massive spread of the

SVMs inter-class accuracies can be attributed to the SVM being

over-trained on the classes with a higher number of samples and

therefore not able to identify classes with relatively fewer

number of samples as accurately. By contrast, the deep-learning

models had markedly better inter-class accuracies, even in

classes with small sample sizes. This outcome resulted in the

deep-learning models having a smaller range and standard

deviation than the SVM. The range and standard deviation are

24.6% and 7.9%, respectively, for the MLP, and 39.2% and

13.7%, respectively, for the CNN.

B. Run-Time Benchmarks

Run-time benchmarks were recorded for each classification

model and averaged over ten trials. The CNN was consistently

the slowest on all platforms with a run-time of 205 seconds on

the desktop PC, 1543 seconds on the ODROID-C2, and 3032

seconds on the Raspberry Pi 3B. The SVM was fastest on the

desktop PC at 42 seconds, while the MLP was fastest on the

ODROID-C2 and Raspberry Pi 3B at 390 seconds and 529

seconds, respectively. The run-time values are summarized in

Fig. 4b.

1) Desktop PC vs. Embedded Platforms

An overview of the run-time benchmarks of the three models

reveals that all three models ran faster on the desktop PC than

the embedded platforms by at least a factor of ten. This outcome

was expected due to the abundance of computational capacity

available on a desktop PC compared to that of the embedded

platforms. The Intel i7-6700 vPro quad-core processor on the

desktop PC uses hyperthreading technology that enables the

processor to run two threads in each core at once. By contrast,

the ARM Cortex-A53 quad-core processor in the embedded

platforms does not use that technology. As a result, the Intel i7-

6700 vPro quad-core processor displays performance gains

when compared to the ARM Cortex-A53 quad-core processor

[14]. Apart from hyperthreading, it should also be noted that the

desktop PC is clocked at 2.3 times the ODROID-C2 and 2.8

times the Raspberry Pi 3B. Higher clock speed, coupled with

larger cache size and improved memory management

technology present in the desktop PC, all further contribute to

better performance on the PC.
The CNN was consistently the slowest algorithm on all

platforms. The reason for this is two-fold: the computational cost
of the convolutional layers in the architecture of the CNN model
and the use of the spectral bands of a 27×27-pixel input patch to

predict the class for each pixel. The SVM and MLP models only
used the spectral bands of the pixel being predicted (i.e.,
surrounding pixels have no impact on the output).

Moreover, it should be noted that the SVM model ran faster

than the MLP model on the desktop PC but slower than the MLP

model on the embedded platforms. When conducting the final

predictions, SVMs are inherently slower than MLPs since 16

one-versus-all SVMs have to be executed for prediction of each

pixel in this dataset, whereas MLP only has to be executed once

since the single model in Fig. 2a can act as a multi-class

classifier. The much larger cache on the desktop PC enables

execution of 16 one-versus-all SVMs during prediction, while

the embedded platforms likely have to keep calling back to

memory. The constant referencing to memory in the embedded

platforms contributes to a jump in run-time for SVM, resulting

in the prediction taking longer than MLP [14].

2) ODROID-C2 vs. Raspberry Pi 3B

 While the ODROID-C2 and the Raspberry Pi 3B share the

same architecture, the compatibility issues of the Tensorflow

wheels with the operating systems must be noted. The armv7l

kernel on the Raspberry Pi 3B is incompatible with the 64-bit

architecture of the ARM Cortex-A53 quad-core processor. As a

result, the 32-bit version of the Tensorflow wheel was used on

the Raspberry Pi 3B, while the 64-bit version of the wheel was

used on the ODROID-C2 (which has the aarch64 kernel) [15].

This setup explains why all models take more time for prediction

on the Raspberry Pi 3B than the ODROID-C2.

C. Memory Benchmarks

 On average, the MLP model consumed the least amount of

memory on all platforms tested in this study (168 MB on desktop

PC, 169 MB on ODROID-C2, and 128 MB on Raspberry Pi 3B).

The average memory usage of the SVM model was the second

highest, with these benchmarks: 178 MB on desktop PC; 168

MB on ODROID-C2; and 153 MB on Raspberry Pi 3B. Lastly,

the CNN model had the highest memory usage (235 MB on

desktop PC, 247 MB on ODROID-C2, and 201 MB on

Raspberry Pi 3B). Memory usage was relatively consistent

across all platforms. These results are summarized in Fig. 4c.

 The percent differences of the memory usage between the

platforms relative to the desktop PC are summarized in Table

V. The memory benchmarks on the desktop PC and the

ODROID-C2 differed by less than 6% from the memory

benchmark on the desktop PC. However, the difference

between the memory benchmarks on the desktop PC and the

Raspberry Pi 3B were more than 14% greater than the

benchmark on the desktop PC. The greater percent difference

of the desktop PC versus Raspberry Pi 3B compared to the

desktop PC versus ODROID-C2 can be attributed to the

ODROID-C2 having nearly twice as much memory bandwidth

as the Raspberry Pi 3B (4000 MB/s and 2000 MB/s,

respectively) [15]. Lastly, SVM’s one-vs-all classification

method caused the model to use more memory than MLP,

despite the complexity of the MLP model itself [16] [17].

D. Discussion

Evaluating the accuracy, run-time, and memory

benchmarks across platforms reveals the best model for each

TABLE V. PERCENT DIFFERENCE OF MEMORY BENCHMARKS ON

EMBEDDED PLATFORMS VS. DESKTOP PC

 SVM MLP CNN

Desktop PC vs.

ODROID-C2
5.62% 0.60% 5.11%

Desktop PC vs

Raspberry Pi 3B
14.04% 23.81% 14.47%

platform. The abundance of processing power, memory

capacity (RAM), and memory bandwidth on the desktop PC

compared to the embedded platforms means that the accuracy

of these HSI classification algorithms should be maximized

using the CNN. Also, the CNN is recommended for the PC due

to the high accuracy of 97% that was achieved at speeds 7.5

times faster than the fastest embedded platform (ODROID-C2).

Despite the two embedded platforms used in this study having

the same architecture, the differences in memory management

of the processors, kernels, clock speeds (1.5 GHz on ODROID-

C2 vs 1.2 GHz on Raspberry Pi 3B), and RAM (2 GB on

ODROID-C2 vs 1.2 GB on Raspberry Pi 3B) contributed to the

performances of the models on these platforms being different.

The ODROID-C2 having more memory bandwidth than the

Raspberry Pi 3B resulted in the models taking longer to conduct

inference on the Raspberry Pi 3B. Furthermore, the 32-bit

TensorFlow wheel used on the Raspberry Pi 3B due to

compatibility issues with the kernel also contributed to longer

run-times. Lastly, the older DDR2 RAM on the Raspberry Pi

3B may also have contributed to models running relatively

slowly on the platform, as the newer generations of DDR3

RAM present on the ODROID-C2 and desktop PC are much

faster. The accuracy-per-time and accuracy-per-memory

metrics, shown in Table VI, were maximized in order to select

the best algorithm for each embedded platform. The MLP

model was determined to be the best algorithm for the

ODROID-C2 and the Raspberry Pi 3B, as it showcased the

shortest run-times (390 seconds and 529 seconds, respectively)

and the second-highest accuracy benchmark of 85%. An

increase of 12% in accuracy, in the authors’ opinion, is not

justified for the CNN on the embedded platforms due to the

massive run-time increase of 400% for the ODROID-C2 and

570% for the Raspberry Pi 3B.

V. CONCLUSIONS

Hyperspectral imaging in space can reveal much useful

information about our world. HSI analysis techniques have been

developed and are often executed on computationally tractable

environments on Earth. However, conducting these analyses in

computation-constrained environments on-board a spacecraft

would be extremely beneficial, enabling users to intelligently

downlink a subset of data rather than the entirety.

Benchmarking different machine-learning algorithms for HSI

analysis on different platforms with varying performance

capabilities allowed the authors to determine the best

algorithms to run on embedded platforms.

SVM, MLP, and CNN models were benchmarked on a

popularly used Indian Pines HSI dataset. The models were all

trained on the desktop PC. Accuracy, run-time, and memory

benchmarks were collected on the desktop PC, ODROID-C2,

and Raspberry Pi 3B platforms for the final prediction of pixel

classifications in the hyperspectral image. The desktop PC has

a more powerful processor than the embedded platforms and as

a result had the best accuracy and run-time benchmarks.

Considering the relative abundance of processing power on the

desktop PC and the benchmarks collected, it is evident that the

CNN model is the best model of the three models investigated

in this study. However, the increase in accuracy was not

justified on the embedded platforms, due to a substantial

increase in run-time. As a result, the MLP model was selected

to be the optimal model to run on embedded platforms with

constrained performance capability.

VI. FUTURE WORK

The next steps are to conduct this HSI classification on other

embedded platforms, such as the Digilent ZedBoard to leverage

the ARM Cortex-A9 architecture that is currently being used in

space apps [18]. Performing this analysis on an embedded GPU

is another avenue to explore more efficient methods of

conducting HSI analysis on resource-constrained platforms.

ACKNOWLEDGMENTS

This research was funded by the NSF SHREC Center (c/o

IUCRC grant CNS-1738783), Swanson School of Engineering,

and the Office of the Provost at the University of Pittsburgh.

REFERENCES

[1] A. J. Pellish, Radiation 101: Effects on Hardware and Robotic Systems, MD:
NASA Goddard, 2015.

[2] HySpex, Hyperspectral Imaging, Oslo, Norway: Norsk Elektro Optikk, 2016.

[3] K. Hege, D. O'Connell, W. Johnson, S. Basty and E. Dereniak, "Hyperspectral

imaging for astronomy and space surveillance," Proceedings of SPIE - The
Internation Society for Optical Engineering, vol. 5159, pp. 380-391, 2004.

[4] A. Shmilovici, "Support Vector Machines," In Data mining and knowledge

discovery handbook, pp. 231-247, 2009.

[5] A. Santara, K. Mani, P. Hatwar, A. Singh, A. Garg, P. Kirti and P. Mitra,

"BASS Net: Band-Adaptive Spectral-Spatial Feature Learning Neural Network
for Hyperspectral Image Classification," arXiv, vol. 1612, 2016.

[6] K. Makantasis, K. Karantzalos, A. Doulamis and N. Doulamis, "Deep
Supervised earning for Hyperspectral Data Classification through

Convolutional Neural Networks," IEEE International Geoscience and Remote
Sensing Symposium (IGARSS), pp. 4959-4962, 2015.

[7] H. Petersson, D. Gustafsson and D. Bergstrom, "Hyperspectral Image Analysis
Using Deep Learning - A Review," 2016 Sixth International Conference on
Image Processing Theory, Tools, and Applications (IPTA), 2016.

[8] X. Cao, F. Zhou, L. Xu, D. Meng, Z. Xu and J. Paisley, "Hyperspectral Image
Classification with Markov Random Fields and a Convolutional Neural

Network," IEEE Transactions on Image Processing, vol. 27, no. 5, pp. 2354-
2367, 2018.

[9] M. Baumgardner, L. Beihl and D. Landgrebe , "220 Band AVRIS
Hyperspectral Image Data Set," Purdue University Research Repo, 2015.

[10] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel and e. al., "SciKit Learn:
Machine Learning in Python," JMLR, vol. 12, pp. 2825-2830, 2011.

[11] M. Abadi, A. Agarwal, P. Barham, E. Brevdo and e. al., "TensorFlow: A

System for Large-Scale Machine Learning," 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 16), pp. 265-283, 2016.

[12] W. Hu, Y. Huang, L. Wei, F. Zhang and H. Li, "Deep Convolutional Neural
Networks for Hyperspectral Image Classification," Journal of Sensors, pp. 1-

12, 2015.

[13] S. Ruder, "An Overview of Gradient Descent Optimization Algorithms,"

axXiv, vol. 1609, 2017.

[14] VERSUS, "ARM Cortex-A53 vs Intel Core i7-6700 | Mobile chipset

comparison," 2018. [Online]. Available: https://versus.com/en/arm-cortex-
a53-vs-intel-core-i7-6700. [Accessed 22 09 2018].

[15] M. Plauth and A. Polze, "Are Low-Power SoCs Feasible for Heterogenous
HPC Workloads?," in Euro-Par 2016: Parallel Processing Workshops Lecture

Notes in Computer Science, Grenoble, France, Springer, 2017, pp. 763-774.

[16] E. Mizutani and E. S. Dreyfus, "On Complexity Analysis of Supervised MLP-

learning for Algorithmic Comparisons," International Joint Conference on
Neural Networks (IJCNN'01), vol. 1, pp. 347-352, 2001.

[17] M. Gardner and S. Dorling, "Artificial Neural Networks (the multilayer
perceptron) - a review applications in the atmospheric sciences," Atmospheric

Environment, vol. 32, no. 14-15, pp. 2627-2636, 1998.

[18] C. Wilson and A. D. George, "CSP Hybrid Space Computing," Journal of

Aerospace Information Systems, vol. 15, no. 4, pp. 215-227, 2018.

TABLE VI. ALGORITHM EVALUATION FOR EMBEDDED PLATFORMS

Accuracy

per

Second

(%/sec)

ODROID Pi

Accuracy

per RAM

Used

(%/MB)

ODROID Pi

SVM 0.11 0.09 SVM 0.37 0.40

MLP 0.22 0.16 MLP 0.50 0.66

CNN 0.06 0.03 CNN 0.39 0.48

	I. Introduction
	II. Related Work
	III. Methods
	A. Dataset
	B. Models
	C. Training, Testing, and Prediction

	IV. Experimental Results
	A. Accuracy Benchmarks
	B. Run-Time Benchmarks
	1) Desktop PC vs. Embedded Platforms
	2) ODROID-C2 vs. Raspberry Pi 3B

	C. Memory Benchmarks
	On average, the MLP model consumed the least amount of memory on all platforms tested in this study (168 MB on desktop PC, 169 MB on ODROID-C2, and 128 MB on Raspberry Pi 3B). The average memory usage of the SVM model was the second highest, with the...
	The percent differences of the memory usage between the platforms relative to the desktop PC are summarized in Table V. The memory benchmarks on the desktop PC and the ODROID-C2 differed by less than 6% from the memory benchmark on the desktop PC. Ho...

	D. Discussion

	V. Conclusions
	VI. Future Work
	Acknowledgments

	References

