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Abstract— Hyperspectral image (HSI) analysis refers to the 

processes used to identify and classify objects photographed using 

equipment that can image photons from a broad range of the 

electromagnetic spectrum. Downlinking such large images from 

space on radiation-resistant platforms with limited on-board 

computing power takes a large amount of time, memory, and other 

mission-critical resources. Performing such analysis in space 

before downlinking all images will save these resources by 

enabling a subset of images of interest to be downloaded rather 

than the entire set. The goal of this study is to benchmark and 

evaluate HSI-classification methods which incorporate deep 

learning on embedded platforms with limited computing 

resources. Support Vector Machine (SVM), Multi-Layer 

Perceptron (MLP), and Convolutional Neural Network (CNN) are 

the classification methods used in this study. These algorithms 

were executed on a desktop PC and two embedded platforms: the 

ODROID-C2 and the Raspberry Pi 3B. Accuracy, run-time, and 

memory benchmarks determined the optimal model for each 

platform. Based on results gathered in this research, CNN 

classification is recommended for the desktop PC due to its high 

accuracy of 97%. MLP classification is recommended for the 

embedded platforms under study, as it showcased the shortest run-

time and second-highest accuracy. 
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I. INTRODUCTION 

Numerous images of Earth are taken from satellites and 

other spacecraft. These images are usually very high in 

resolution and bit-depth. As a result, downloading every single 

image for analysis on earth is inefficient in terms of 

communication time and processing power in an already 

computation-constrained environment [1]. The primary goal of 

this research is to benchmark and evaluate deep-learning apps 

for hyperspectral image (HSI) classification on embedded 

platforms. From this study, the optimal HSI-classification 

method for platforms with limited computing capabilities can 

be determined. This study also serves as a framework for 

conducting such analysis on-board a spacecraft, which could 

allow a subset of images of interest to be downloaded – saving 

time, memory, and other mission-critical resources.  

Hyperspectral images are taken with a hyperspectral camera 

that collects amplitude readings from a subset of spectral bands 

(various wavelengths in the electromagnetic spectrum) for each 

pixel in the image [2]. Patterns can be extracted from these 

amplitudes in order to classify each pixel in the image. By doing 

so, the HSI data of interest can be recognized for further 

investigation, depending upon the context in which HSI is being 

used. HSI imagery is used in a wide variety of applications such 

as astronomy and space surveillance. For example, [3] uses an 

adaptive optics-compensated telescope to acquire HSI. 

 Three classification methods were used for HSI analysis in 

this study: Support Vector Machine (SVM); Multi-Layer 

Perceptron (MLP); and Convolutional Neural Network (CNN). 

SVM is a machine-learning model that creates a margin in a 

transformed input space, splitting the input data into two classes 

using hyperplane in multidimensional space [4]. SVMs are 

inherently a two-class classifier. As a result, in order to conduct 

predictions for a multi-class dataset, a one-versus-all method is 

used for each class. A MLP is a deep-learning model that is 

capable of modeling nonlinear functions. MLPs consist of 

“fully connected layers” in which every node is connected with 

respective weights determined when a model is trained [5]. 

Similar to MLPs, CNNs are a deep-learning model, but they 

contain convolutional layers, where each layer transforms one 

set of feature maps. The last few layers of a typical CNN are 

normally “fully connected layers” that mirror an MLP in 

functionality. However, the convolutional layers in CNNs 

generally increase their accuracy over MLPs, because these 

convolutional layers tend to extract relevant features from the 

image and discard noise and extraneous information [5] [6]. 

The classification models were all trained on the desktop PC 

and the final prediction was executed on the three platforms 

listed below in Table I. 

II. RELATED WORK 

In [7], a review of different hyperspectral image analysis 

techniques using deep learning concluded that there is minimal 

evidence suggesting that deep-learning models outperform 

reference methods, but they are quite competitive. The literature 

reviewed in this paper noted that a widely used reference model  

TABLE I.  PLATFORM COMPARISON 

 ODROID-C2 
Raspberry Pi 

3B 
Desktop PC 

Architecture 

ARM Cortex 

-A53 Quad 

Core 

ARM Cortex 

-A53 Quad 

Core 

x86 Quad 

Core 

Processor Amlogic S905 
Broadcom 

BCM2837 

Intel i7-6700 

vPro 

Clock 1.5 GHz 1.2 GHz 3.4 GHz 

RAM 2 GB DDR3 1 GB DDR2 16 GB DDR3 

OS 
Ubuntu 16.04 

(Mate) 
Raspbian 8 

Windows 10 

Pro 

 



is the SVM model. It was found that proposed and reference 

models in this work obtained an overall training accuracy of 

over 95%.  

In [8], supervised HSI classification algorithms along with 

Markov Random Fields post-processing is investigated to 

assess accuracy of various models before and after post-

processing. The HSI classification algorithms include SVM and 

CNN models. The CNN model was based on a model developed 

in [5]. Moreover, these models were run on a server with Nvidia 

GeForce GTX 1080 and Tesla K40c GPUs [5]. 

The models developed in [5] are part of a study in which 

deep-learning networks are developed for land-cover 

classification with HSI. These models deal with the challenges 

of high-dimensionality HSI datasets effectively by extracting 

band-specific spectral and spatial features. These extracted 

features are then used to perform pixel-wise landcover 

classification. The models are claimed to outperform the highest 

reported accuracies on popular HSI data sets such as the Indian 

Pines data set. As a result, the MLP and CNN models used in 

this study were also based on the same models that were 

developed by [5]. 

III. METHODS 

 This section discusses the HSI dataset, models, and methods 
used to train, test, and make final predictions. Furthermore, the 
parameters and architectures for each model are detailed. 

A. Dataset 

The Indian Pines HSI dataset was leveraged to train and test 
the classification algorithms under study. This dataset is widely 
used by HSI researchers in testing proposed classification 
algorithms. The dataset represents an image of farmland in 
northwestern Indiana and consists of 224 spectral bands with 16 
different agricultural classes [9]. The ground truth of the dataset 
identifies different types of land cover, ranging from buildings 
to a variety of vegetation, in the farmland. The ground-truth 
matrix constructed from the dataset was converted into an image 
to visualize the different types of landcover, shown in Fig. 1. 

B. Models 

The Scikit-learn Python library was leveraged to develop 

the SVM [10]. The parameter values for the SVM model are 

summarized in Table II(a). A radial basis function (which uses 

the squared Euclidean distance between feature vectors) was 

used as kernel to develop the SVM. The value of C in Table 

II(a) indicates the relative weight coefficient. It should be noted 

that the tolerance value may differ on other platforms. The 

values for each parameter were chosen using a five-fold, cross-

validation technique, a resampling procedure in which the 

shuffled dataset is split into five groups and each group is used 

as the test set while the model is trained on the rest of the 

dataset. For each instance that the model is trained, parameters 

are tuned over the specified range of values, and the model with 

the optimal parameters is selected to maximize accuracy.  

The TensorFlow framework was used to construct and train 

the MLP and CNN deep-learning models in this study. These 

a. SVM b. MLP c. CNN                  Legend 

    

Fig. 3. Image Outputs 

TABLE II.  PARAMETERS USED FOR SVM, MLP AND CNN 

(a) SVM (b) MLP (c) CNN 

Gamma: 2-8 Patch Size: 1 Patch Size: 27 

C: 27 Batch Size: 200 Batch Size:  200 

Tolerance: 1e-14 Learning Rate: 0.01 Learning rate: 0.01 

 

Fig. 1. Ground Truth Matrix Visualization from Original Image 

(a) MLP Architecture [5] (b) CNN Architecture [5] 

Fig. 2. Model Architectures Used in this Study 



models were based on land-cover classification models 

developed by the Satellite Application Center from the Indian 

Space Research Organization [5] [11]. The MLP model can be 

described by a weighted, directed acyclic graph. The output of 

each nodal layer is a function of the sum of inputs modified by 

a nonlinear transfer function such as a sigmoid, which was the 

activation function used in [9]. The architecture of the MLP 

model was set so that each patch of the image could be used as 

input to the model with the architecture shown in Fig. 2a. The 

parameters used to construct the model are summarized in Table 

II(b). The model was trained for 50,000 epochs.  

Similarly, each patch of the image was used as an input to 

the CNN with the architecture shown in Fig. 2b. Typical CNNs 

contain alternating layers of convolutional filters and max-

pooling layers. The final layers of most CNNs are fully 

connected layers, used for classification [12]. 

C. Training, Testing, and Prediction 

 The raw dataset was pre-processed to include a border to 

avoid loss of data at the output. The pixels in the image were 

divided into 80% training and 20% testing sets. These sets were 

used to develop and validate the SVM, MLP, and CNN models 

on the desktop PC before porting the trained models to the 

ODROID-C2 and Raspberry Pi 3B platforms.  

For the final prediction, each pixel from the data was fed 

into the trained models and the predicted outputs were used to 

reconstruct an image as shown in Fig. 3. The labels predicted 

for each pixel were compared with the pre-defined labels in the 

ground-truth image to determine the accuracy of the prediction. 

During prediction, run-time and memory benchmarks were 

calculated. These predictions and calculations were executed on 

the desktop PC, ODROID-C2, and Raspberry Pi 3B platforms. 
After the models were trained and tested, the entire data set 

was used to conduct the final predictions. The accuracies of the 
models were noted, and the run-time and memory benchmarks 
were averaged over ten trials. 

IV. EXPERIMENTAL RESULTS 

Accuracy, run-time, and memory benchmarks on the desktop 
PC, ODROID-C2, and Raspberry Pi 3B are detailed in this 
section. The overall accuracy of each model tested in this study 
is compared to the accuracy of other models from the literature. 
Inter-class accuracies for each of the models are also reported. 

A. Accuracy Benchmarks 

 The accuracy results shown in Fig. 4a were determined 

through comparison of the model’s pixel-wise prediction with 

the preset pixel classifications from the ground-truth matrix. 

The results include accuracies for the SVM, MLP, and CNN 

models on the desktop PC, ODROID-C2, and Raspberry Pi 3B. 

The output images for each model are shown in Fig. 3. 

Comparing the output images in Fig. 3 with the ground-truth 

image in Fig. 1 reflects the accuracies of these models, which 

are summarized in Table III. Out of the 16 agricultural land 

classes identified in the ground-truth matrix, inter-class 

accuracies (percent of pixels that were correctly identified 

within the class) were also calculated and summarized in Table 

IV.  

1. Support Vector Machines 

The SVM model in this study performed with an accuracy 

of 62% on the desktop PC with an Intel i7-6700 vPro quad-core 

processor, and an accuracy of 61% on the embedded platforms 

with ARM Cortex-A53 quad-core processors. The model from 

[8] achieved an accuracy of 68% on a server with the Nvidia 

GeForce GTX 1080 and the Tesla K40c. The higher accuracy 

achieved by [8] is likely due to training the model on a GPU 

instead of a CPU. The reason for the disparity between the 

accuracy of the SVM on the desktop PC and the embedded 

platforms in this research is the random variations of model 
accuracies within the ten trials. 

TABLE III.  ACCURACY OF MODELS 

 Ours Others 

SVM 62% 68% [8] 

MLP 85% 82% [5] 

CNN 97% 96% [5] 
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(a) Accuracy Benchmarks
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(c) Memory Benchmarks

Fig. 4. Accuracy, Run-Time, and Memory Benchmarks of 

Each Algorithm on All Tested Platforms 

TABLE IV.      INTER-CLASS ACCURACIES FOR EACH MODEL 

Classes SVM MLP CNN 

1. Stone/Steel/Tower 2.2% 95.7% 100% 

2. Build/Grass/Tree/Drives 15.1% 76.3% 81.2% 

3. Wood 2.7% 82.3% 63.2% 

4. Wheat 8.9% 92.8% 76.7% 

5. Soybean-Clean 75.2% 95.0% 78.5% 

6. Soybean-Min 79.6% 97.3% 99.6% 

7. Soybean-Notill 7.1% 96.4% 100% 

8. Oats 93.5% 98.1% 71.2% 

9. Hay/Windrowed 5.0% 100% 100% 

10. Grass/Pasture Mowed 79.8% 90.1% 93.7% 

11. Grass/Trees 89.0% 75.4% 90.1% 

12. Grass/Pasture 15.2% 89.0% 70.5% 

13. Corn 81.5% 99.5% 73.1% 

14. Corn-Min 89.4% 91.0% 66.1% 

15. Corn-Notill 61.7% 83.2% 90.6% 

16. Alfalfa 100% 100% 60.8% 

 



2. Multi-Layer Perceptron 

The MLP model used in this study achieved an accuracy of 85% 

on the desktop PC and the embedded platforms, while the model 

from [5] achieved an accuracy of 82% on a desktop PC with 

dual Intel Xeon E5-2630 v2 processors and a Nvidia Tesla K20c 

GPU. The greater accuracy in this study, despite the use of a 

GPU in [5], is likely due to the usage of the latest version of 

Adagrad (which is the parameter update algorithm used for this 

model), as the study in [5] was conducted in 2016 [13]. 

3. Convolutional Neural Network 

Lastly, the CNN model in this study performed with an 

accuracy of 97% on the desktop PC and the embedded 

platforms. The model from [5] had an accuracy of 96% on a 

desktop PC with dual Intel Xeon E5-2630 v2 processors and a 

Nvidia Tesla K20c GPU. Similar to the MLP, the discrepancies 

are likely due to the version differences of Adagrad. 

Comparing the accuracies of the SVM, MLP, and CNN 

reveals that the SVM model provided the lowest accuracy, 

while the CNN model offered the best overall accuracy when 

identifying the pixels in the Indian Pines dataset. The inter-class 

accuracies of the SVM model also had a large range (97.8%) 

and standard deviation (38.3%). The massive spread of the 

SVMs inter-class accuracies can be attributed to the SVM being 

over-trained on the classes with a higher number of samples and 

therefore not able to identify classes with relatively fewer 

number of samples as accurately. By contrast, the deep-learning 

models had markedly better inter-class accuracies, even in 

classes with small sample sizes. This outcome resulted in the 

deep-learning models having a smaller range and standard 

deviation than the SVM. The range and standard deviation are 

24.6% and 7.9%, respectively, for the MLP, and 39.2% and 

13.7%, respectively, for the CNN. 

B. Run-Time Benchmarks 

Run-time benchmarks were recorded for each classification 

model and averaged over ten trials. The CNN was consistently 

the slowest on all platforms with a run-time of 205 seconds on 

the desktop PC, 1543 seconds on the ODROID-C2, and 3032 

seconds on the Raspberry Pi 3B. The SVM was fastest on the 

desktop PC at 42 seconds, while the MLP was fastest on the 

ODROID-C2 and Raspberry Pi 3B at 390 seconds and 529 

seconds, respectively. The run-time values are summarized in 

Fig. 4b. 

1) Desktop PC vs. Embedded Platforms 

An overview of the run-time benchmarks of the three models 

reveals that all three models ran faster on the desktop PC than 

the embedded platforms by at least a factor of ten. This outcome 

was expected due to the abundance of computational capacity 

available on a desktop PC compared to that of the embedded 

platforms. The Intel i7-6700 vPro quad-core processor on the 

desktop PC uses hyperthreading technology that enables the 

processor to run two threads in each core at once. By contrast, 

the ARM Cortex-A53 quad-core processor in the embedded 

platforms does not use that technology. As a result, the Intel i7-

6700 vPro quad-core processor displays performance gains 

when compared to the ARM Cortex-A53 quad-core processor 

[14]. Apart from hyperthreading, it should also be noted that the 

desktop PC is clocked at 2.3 times the ODROID-C2 and 2.8 

times the Raspberry Pi 3B. Higher clock speed, coupled with 

larger cache size and improved memory management 

technology present in the desktop PC, all further contribute to 

better performance on the PC. 
The CNN was consistently the slowest algorithm on all 

platforms. The reason for this is two-fold: the computational cost 
of the convolutional layers in the architecture of the CNN model 
and the use of the spectral bands of a 27×27-pixel input patch to 

predict the class for each pixel. The SVM and MLP models only 
used the spectral bands of the pixel being predicted (i.e., 
surrounding pixels have no impact on the output).  

Moreover, it should be noted that the SVM model ran faster 

than the MLP model on the desktop PC but slower than the MLP 

model on the embedded platforms. When conducting the final 

predictions, SVMs are inherently slower than MLPs since 16 

one-versus-all SVMs have to be executed for prediction of each 

pixel in this dataset, whereas MLP only has to be executed once 

since the single model in Fig. 2a can act as a multi-class 

classifier. The much larger cache on the desktop PC enables 

execution of 16 one-versus-all SVMs during prediction, while 

the embedded platforms likely have to keep calling back to 

memory. The constant referencing to memory in the embedded 

platforms contributes to a jump in run-time for SVM, resulting 

in the prediction taking longer than MLP [14]. 

2) ODROID-C2 vs. Raspberry Pi 3B 

 While the ODROID-C2 and the Raspberry Pi 3B share the 

same architecture, the compatibility issues of the Tensorflow 

wheels with the operating systems must be noted. The armv7l 

kernel on the Raspberry Pi 3B is incompatible with the 64-bit 

architecture of the ARM Cortex-A53 quad-core processor. As a 

result, the 32-bit version of the Tensorflow wheel was used on 

the Raspberry Pi 3B, while the 64-bit version of the wheel was 

used on the ODROID-C2 (which has the aarch64 kernel) [15]. 

This setup explains why all models take more time for prediction 

on the Raspberry Pi 3B than the ODROID-C2. 

C. Memory Benchmarks 

 On average, the MLP model consumed the least amount of 

memory on all platforms tested in this study (168 MB on desktop 

PC, 169 MB on ODROID-C2, and 128 MB on Raspberry Pi 3B). 

The average memory usage of the SVM model was the second 

highest, with these benchmarks: 178 MB on desktop PC; 168 

MB on ODROID-C2; and 153 MB on Raspberry Pi 3B. Lastly, 

the CNN model had the highest memory usage (235 MB on 

desktop PC, 247 MB on ODROID-C2, and 201 MB on 

Raspberry Pi 3B). Memory usage was relatively consistent 

across all platforms. These results are summarized in Fig. 4c. 

 The percent differences of the memory usage between the 

platforms relative to the desktop PC are summarized in Table 

V. The memory benchmarks on the desktop PC and the 

ODROID-C2 differed by less than 6% from the memory 

benchmark on the desktop PC. However, the difference 

between the memory benchmarks on the desktop PC and the 

Raspberry Pi 3B were more than 14% greater than the 

benchmark on the desktop PC. The greater percent difference 

of the desktop PC versus Raspberry Pi 3B compared to the 

desktop PC versus ODROID-C2 can be attributed to the 

ODROID-C2 having nearly twice as much memory bandwidth 

as the Raspberry Pi 3B (4000 MB/s and 2000 MB/s, 

respectively) [15]. Lastly, SVM’s one-vs-all classification 

method caused the model to use more memory than MLP, 

despite the complexity of the MLP model itself [16] [17]. 

D. Discussion 

Evaluating the accuracy, run-time, and memory 

benchmarks across platforms reveals the best model for each 
 

TABLE V.   PERCENT DIFFERENCE OF MEMORY BENCHMARKS ON 

EMBEDDED PLATFORMS VS. DESKTOP PC 

 SVM MLP CNN 

Desktop PC vs. 

ODROID-C2 
5.62% 0.60% 5.11% 

Desktop PC vs 

Raspberry Pi 3B 
14.04% 23.81% 14.47% 



platform. The abundance of processing power, memory 

capacity (RAM), and memory bandwidth on the desktop PC 

compared to the embedded platforms means that the accuracy 

of these HSI classification algorithms should be maximized 

using the CNN. Also, the CNN is recommended for the PC due 

to the high accuracy of 97% that was achieved at speeds 7.5 

times faster than the fastest embedded platform (ODROID-C2). 

Despite the two embedded platforms used in this study having 

the same architecture, the differences in memory management 

of the processors, kernels, clock speeds (1.5 GHz on ODROID-

C2 vs 1.2 GHz on Raspberry Pi 3B), and RAM (2 GB on 

ODROID-C2 vs 1.2 GB on Raspberry Pi 3B) contributed to the 

performances of the models on these platforms being different. 

The ODROID-C2 having more memory bandwidth than the 

Raspberry Pi 3B resulted in the models taking longer to conduct 

inference on the Raspberry Pi 3B. Furthermore, the 32-bit 

TensorFlow wheel used on the Raspberry Pi 3B due to 

compatibility issues with the kernel also contributed to longer 

run-times. Lastly, the older DDR2 RAM on the Raspberry Pi 

3B may also have contributed to models running relatively 

slowly on the platform, as the newer generations of DDR3 

RAM present on the ODROID-C2 and desktop PC are much 

faster. The accuracy-per-time and accuracy-per-memory 

metrics, shown in Table VI, were maximized in order to select 

the best algorithm for each embedded platform. The MLP 

model was determined to be the best algorithm for the 

ODROID-C2 and the Raspberry Pi 3B, as it showcased the 

shortest run-times (390 seconds and 529 seconds, respectively) 

and the second-highest accuracy benchmark of 85%. An 

increase of 12% in accuracy, in the authors’ opinion, is not 

justified for the CNN on the embedded platforms due to the 

massive run-time increase of 400% for the ODROID-C2 and 

570% for the Raspberry Pi 3B. 

V. CONCLUSIONS 

Hyperspectral imaging in space can reveal much useful 

information about our world. HSI analysis techniques have been 

developed and are often executed on computationally tractable 

environments on Earth. However, conducting these analyses in 

computation-constrained environments on-board a spacecraft 

would be extremely beneficial, enabling users to intelligently 

downlink a subset of data rather than the entirety. 

Benchmarking different machine-learning algorithms for HSI 

analysis on different platforms with varying performance 

capabilities allowed the authors to determine the best 

algorithms to run on embedded platforms.  

SVM, MLP, and CNN models were benchmarked on a 

popularly used Indian Pines HSI dataset. The models were all 

trained on the desktop PC. Accuracy, run-time, and memory 

benchmarks were collected on the desktop PC, ODROID-C2, 

and Raspberry Pi 3B platforms for the final prediction of pixel 

classifications in the hyperspectral image. The desktop PC has 

a more powerful processor than the embedded platforms and as 

a result had the best accuracy and run-time benchmarks. 

Considering the relative abundance of processing power on the 

desktop PC and the benchmarks collected, it is evident that the 

CNN model is the best model of the three models investigated 

in this study. However, the increase in accuracy was not 

justified on the embedded platforms, due to a substantial 

increase in run-time. As a result, the MLP model was selected 

to be the optimal model to run on embedded platforms with 

constrained performance capability. 

VI. FUTURE WORK 

The next steps are to conduct this HSI classification on other 

embedded platforms, such as the Digilent ZedBoard to leverage 

the ARM Cortex-A9 architecture that is currently being used in 

space apps [18]. Performing this analysis on an embedded GPU 

is another avenue to explore more efficient methods of 

conducting HSI analysis on resource-constrained platforms. 
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TABLE VI.      ALGORITHM EVALUATION FOR EMBEDDED PLATFORMS 

Accuracy 

per 

Second 

(%/sec) 

ODROID Pi 

Accuracy 

per RAM 

Used 

(%/MB) 

ODROID Pi 

SVM 0.11 0.09 SVM 0.37 0.40 

MLP 0.22 0.16 MLP 0.50 0.66 

CNN 0.06 0.03 CNN 0.39 0.48 
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