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Abstract—For the next generation of wireless technologies,
Orthogonal Frequency Division Multiplexing (OFDM) remains
a key signaling technique. Peak-to-Average Power Ratio (PAPR)
reduction must be included with OFDM to reduce the detrimental
high PAPR exhibited by OFDM. The cost of PAPR reduction
techniques stems from adding multiple IFFT iterations, which
are computationally expensive and increase latency. We propose a
novel PAPR Estimation Technique called PESTNet which reduces
the necessary IFFT operations for PAPR reduction techniques
by using deep learning to estimate the PAPR before the IFFT is
applied. This paper gives a brief background on PAPR in OFDM
systems and describes the PESTNet algorithm and the training
methodologies. A case study of the estimation model is provided
where results demonstrate PESTNet is able to give an accurate
estimate of PAPR and can compute large batches of resource
grids up to 10 times faster than IFFT based techniques.

Index Terms—OFDM, 5G, LTE, PAPR, CNN

I. INTRODUCTION

Orthogonal Frequency Division Multiplexing (OFDM) has
been widely used in current wireless and cellular technologies,
including 4G LTE(Long Term Evolution), Optical Fibres,
IEEE 802.11 standards, and 5G NR, due to its increased
spectral efficiency, robustness in the presence of multipath
propagation, and reduced transceiver design. The challeng-
ing drawback of OFDM has been the high Peak-to-Average
Power Ratio (PAPR). OFDM signals are generated using the
Inverse Fast Fourier Transform (IFFT), which is a linear
combination of Quadrature Amplitude Modulation (QAM)
symbols. The combination of these signals can lead to a
high PAPR [12]. Thus, OFDM must be used in combination
with PAPR reduction techniques to reduce the detrimental
effects of high PAPR. PAPR Reduction techniques include
Clipping and Filtering, Partial Transmit Sequences, Active
Constellation extensions, and related techniques. [21] provides
a survey of these traditional methods, covering each and
more in detail. Recently, PAPR reduction techniques use
Deep Learning (DL)-based implementations of conventional
PAPR reduction approaches [28], [14], [15], [25], while other
unconventional algorithms rely on converting OFDM symbols
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using IFFTs to produce a result [16], [17], [24]. A limitation
is that they are reliant on the nature of the training data,
and they combine neural network computations with IFFT
computations, which by itself is a very computationally expen-
sive operation, and thereby increase the transceiver system’s
computational complexity significantly. To overcome these
limitations, we propose to use DL to perform PAPR estimation
of frequency domain symbols before IFFT is applied. Our
technique, called PESTNet , does not depend on a given PAPR
reduction strategy. PESTNet determines the PAPR estimate in
the frequency domain. An accurate estimation would elim-
inate the need for IFFTs for PAPR measurement, and the
subsequent IFFT-based PAPR calculations, and would reduce
the computation load, complexity, and operational latency.
Furthermore, convolutional neural networks (CNNs) are well-
suited to predict correlated data, so PESTNet is capable of
predicting PAPR with substantial accuracy for large batches
of data with significantly less latency than the state-of-the-
art. The estimation process is easily scalable for MIMO and
Carrier Aggregation since it is independent of the traffic den-
sity, training circumstances, processing paths, and the number
of antennas. Pre-trained models can easily be deployed, and
a trained modified model can be deployed directly in base
stations or transmitters without needing to process individual
antenna chains.

This paper is organized as follows: Section II provides
a brief background, discussing the challenges of PAPR in
OFDM systems as well as the advantages of CNNs. Section IIT
covers the related work. To our knowledge, there are only a
few works that focus on PAPR estimation, and none that use
DL to estimate PAPR. So, we also present related work using
DL to reduce PAPR. Section IV describes the proposed model
and training methodologies, while Section V gives an overview
of the results of the estimation model. Section VI concludes
the paper.

II. BACKGROUND
A. Orthogonal Frequency Division Multiplexing (OFDM)

In OFDM, symbols are modulated onto orthogonal sub-
carriers with narrow bands of frequency which overlap with
each other’s nulls. The Inverse Discrete Fourier transform
(IDFT) is used to generate an OFDM waveform; the output
of an IDFT is a sum of orthogonal time domain signals.



Mathematically, let X = {Xj,k =1,2,...N —1} be the input
data stream modulated onto a complex constellation map using
any data modulation scheme (BPSK, QPSK, m-QAM, etc.).
Applying the Inverse Fast Fourier Transform algorithm (IFFT)
gives a discrete time domain signal:
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where X are the data symbols modulated onto orthogonal
subcarriers represented by the complex exponential.

B. Peak-to-Average Power Ratio (PAPR)
PAPR is calculated [4]:

max{|z[n]|*}
Eflen]P]

where E|[.] is the expectation operator and z[n] is the signal
generated from Eqn. (1).

High PAPR arises when subcarriers that are identical at a
certain time instant add up and result in a higher peak than the
average power of the signal [12]. High PAPR in communica-
tion systems is undesirable as it drives the power amplifier of
the transmitter into the nonlinear region of operation, causing
the frequency components of the OFDM signal to spread out
and interfere with other subcarriers, resulting in out of band
distortion [12]. Non-linear amplification also causes the output
to be a distorted non-linear amplification of the input signal.

PAPR(z[n]) = (2)

C. Comvolutional Neural Networks (CNN)

Neural networks, in general, are information processing
nodes inspired by the structure of the neurons within the
human brain. The term Deep Learning (DL) refers to the
use of multiple layers of such neurons to learn complex em-
bedded mathematical functions in data. Convolutional Neural
Networks (CNNs) are a DL domain, that use convolution
operations on data to extract correlated information, before
passing it on to fully connected layers (or the layers of
neurons). There are multiple layers in a CNN, such as the
Convolution Layer, Activation Layer, Pooling Layer, and the
Fully Connected Layer [3]

The Convolution Layer convolves the input data with a
variable kernel shape and moves it through a variable stride.
The shape of the output of the Convolution Layer is:
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where N is the size of the input, P is the number of zeros
padded, I is the size of the filter and S is the stride [3]. A
wide range of activation functions are used in CNNs depending
on the nature of the data, such as the ReLu, leaky ReLu,
inverse tanh, sigmoid, and linear function [5]. An activation
function is used to make sure the data is within a uniform range
at all stages of the CNN. A Pooling operation, MaxPool or
AvgPool, is performed to retain the important features obtained
after convolution. Multiple Convolution layers are used in
succession with varying kernels to extract features from the

inputs. Finally, one or more Fully Connected (FC) Layers
make up the deep neural network of the CNN. The neurons in
each FC layer are connected to every neuron in the preceding
and succeeding layer, with each connection assigned a weight.
The output at the j** neuron of the k" layer is determined
by:

M
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where ¢(.) is the activation function, wj(f) is the weight

associated with the connection between the i*” neuron in the
(k— 1) layer and the j*" neuron of the k" layer and z{* ")
is the input coming from this i*" neuron of the (k — 1)
layer. There are M such neurons in the previous layer. bgk) is
the bias associated with the j** neuron of the k*" layer and
¢(.) is the activation function [5]. At the output, Classification
tasks require the number of neurons to match the number of
classes, while Regression tasks have a single neuron with a
linear activation.

The training of the CNN is done in two stages, the forward
propagation and the backward propagation [23]. Initially, all
the layers” weights are initialized. In forward propagation, the
inputs are fed across the layers of the CNN described above,
resulting in an output. The loss function or cost function,
compares these outputs with the labels, or the ground truths,
to calculate the measure of the deviation or loss. The loss
obtained, L is used in the backpropagation step to update the
weights through the Gradient Descent algorithm [22]. Using
the set of initial weights and the corresponding loss, L, the
new set of weights for each layer is calculated using Eqn.(5).
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where « is the learning rate hyper-parameter which controls
how much the weights change in response to the calculated
loss.

The design of the CNN includes the process of selecting and
tuning the best hyper-parameters, i.e., the convolution layer
kernel shapes, number of filters, stride, pooling, learning rate,
loss function, and optimization algorithm, that cause the model
to learn the underlying patterns to the best extent possible.
The design is followed by training using back-propagation and
the gradient descent algorithm [6], where the weights of each
layer in the CNN are optimized such that the loss function is
minimized.

III. RELATED WORK

Reduction of PAPR in OFDM systems has been widely
researched using traditional techniques, such as Clipping
and Filtering, Selective mapping (SLM, Partial Transmit Se-
quences(PTS), Active Constellation Extension (ACE), and
Tone reservation (TR). Each of these is defined in the survey
in [21]. On the other hand, there is very limited research on
the estimation of PAPR in OFDM systems. [26], [10] estimate
PAPR for use in selective mapping to reduce complexity, but
at the expense of accuracy. The related estimation techniques



are specifically tailored to work with the associated selective
mapping approach for PAPR reduction, while our technique
does not depend on the given technique for PAPR reduction.

DL is being increasingly applied in communication systems
for various applications such as constellation design [18],
channel encoding and decoding [27] and channel estimation
[27], etc. This is driven by the advantages that DL offers,
such as energy efficiency, and the potential to provide better
solutions for complex and resource intense processes [20].
Similarly, DL has been applied to the PAPR reduction problem
in OFDM systems.

A. Deep-learning-based PAPR Reduction Solutions

[16] proposes an Autoencoder to learn the best constellation
mapping, that reduces PAPR while retaining bit error rate
(BER), by taking into account the PAPR and BER into the loss
function. Once trained, the encoder and decoder are separated
and deployed in the transmitter and receiver respectively.
In a similar approach, [17] incorporates a significantly less
complex neural network, than the one used in [16] into the
OFDM chain to reduce the PAPR. Instead of using data
symbols in the frequency domain, the neural network is trained
on time domain OFDM signals and the loss function is a
combination of 3 objective functions to reduce PAPR, out
of band distortion BER. By dividing the neural network into
multiple modules, [17] achieves better results than [16].

[24] proposes to use a loss function that requires a trade-
off between the BER and PAPR, in addition to a modified
tanh-based activation layer, which forces the power to become
Gaussian. The activation layer controls the PAPR while the au-
toencoder (AE) loss can focus only on the BER. This method
requires modifications at both transmitter and receiver and
does not take into account the effects of multipath propagation.

[14] proposes SeqNet which reduces the PAPR of a DFT-s-
OFDM system by finding the optimal phase sequence indices
in an approach inspired by SLM. The information about the
best phase indices that reduce the PAPR of the DFT signal
is required to be sent along with the message such that the
receiver can reconstruct the original signals.

[25] proposes a DNN based tone reservation scheme, where
the DNN is trained to obtain a set of peak canceling symbols,
that can be used to reduce the PAPR in the time domain
equivalent. No additional signals or distortion are needed
to be transmitted since the receiver can simply remove the
reserved subcarriers and recover the data from the remainder
of subcarriers, but it results in induces spectral inefficiency

While these studies successfully reduce the PAPR using DL
with various algorithms, they are reliant on the nature of train-
ing data. In addition, the IFFT operations of PAPR reduction
significantly increase the transceiver system’s computational
complexity. Our approach can supplement the PAPR reduction
techniques by eliminating the need for these IFFT operations.
PESTNet uses DL to estimate the PAPR in the frequency
domain symbols before IFFT is applied. Our technique enables
the PAPR estimate of the data symbols to serve as a basis for
PAPR reduction algorithms.

B. Estimation Models

The approach used is based on the ResNet model, which is
one of several popular architectures that have been introduced
for image classification. Others include LeNet, AlexNet, and
GoogleNet. ResNet is made up of multiple residual connec-
tions between layers that help in learning the features by
solving the issue of vanishing gradient [6]. It has been regarded
as one of the leading architectures in image classification.
The work in [8] replaces the convolutional layers with fully
connected layers to adapt ResNet to non-linear regression.
Since our task employs non-linear regression, we use a similar
version of ResNet as the one used in [8] to compare with our
PAPR estimation results.

IV. SYSTEM DESCRIPTION

The proposed model for PAPR estimation is shown in Fig. 1.
We create an OFDM case study based on LTE, according to
the 3GPP standards [11]. Raw symbols are modulated with
64-QAM, followed by mapping them to the LTE resource
grid. Fig.1(a) shows the traditional LTE system, where the
resource grid is sent through the IFFT block to generate the
OFDM signal in the time domain, at which point the PAPR is
calculated. Fig.1(b) shows the architecture of our CNN model,
with a single output node to estimate the PAPR. The LTEgrid
is the 2-dimensional LTE resource grid data, which serves
as the input to the CNN. PAPR measurements of the time
domain signals serve as the PAPR labels or output for the
CNN Regression task. Fig.1(c) shows the convolution layers
used. A combination of two convolution layers is used to
facilitate sufficient extraction of features from the inputs. The
final MaxPool layer is replaced with a GlobalMaxPooling
layer, which extracts only the maximum values among all the
available filters [9]. Each Fully Connected Layer (Dense) is
designed with 32 neurons followed by the ReLu activation [5].
The use of four fully connected layers provides sufficient
depth to the CNN, which is important to get the best estima-
tion performance. 32 neurons in each fully connected layer,
provided the best tradeoff between the performance and the
complexity of the neural network. ReLu activation function is
preferred over other activation functions because it provides
better performance without introducing vanishing gradients.
[19]. Additionally, all the layers of the CNN except the first
are preceded by a dropout layer, with a 0.5 dropout factor [6].
The use of the dropout following each layer improves the
performance of the neural network by randomly turning off
a percentage of neurons in each epoch, forcing the neural
network to learn the underlying relationship between the inputs
and the output, thereby reducing overfitting. Finally, the output
layer has a single neuron with a linear activation function, to
make Regression possible.

A. Dataset generation and CNN training

Using the MATLAB LTE toolbox, two distinct datasets
are generated with R.6 and R.9 configurations as described
in Table 1. 100,000 samples of R.6 and 50,000 samples of
R.9 are generated, with each of these having sizes of 6.26GB
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Fig. 1. Block diagram of the proposed PESTNet

TABLE I
LTE DATASET CONFIGURATIONS

Config. Modulation Subcarriers Code Rate
R.6 64QAM 300 0.75
R9 64QAM 1200 0.75

and 12.51GB respectively. The input to the CNN is the 2-
dimensional LTE resource grid and the PAPR measurements of
the time domain signals serve as the PAPR labels for the CNN
Regression task. The data pre-processing steps include normal-
ization of the data to a [0,1] scale, an 80-20 train-test split, with
20% of the training data reserved for validation. Early stopping
is used to make sure the model doesn’t overfit. Over the course
of training, the model is modified in accordance with each
configuration’s input shapes and optimized. Specifically, the
hyper-parameters we use to optimize training are batch size,
kernel size and the number of filters in each convolution layer,
shape and stride of MaxPool layer, learning rate, and dropout
factor. Table II lists each of these hyperparameters. The choice
of the Conv2d shape, filter size, MaxPool shape and stride,
for each configuration, is made such that the dimensionality
of the inputs is reduced uniformly while extracting as much
information as possible. Each configuration, R.6 and R.9
is trained using the Adam optimizer and the Huber loss,
which is less sensitive to outliers compared to the Mean
squared error (MSE) and combines the benefits from the
Mean Absolute Error and the Mean Squared Error functions
[7]. Furthermore, a learning rate of 0.0005 is selected as it
provided a steady loss performance when compared to other
learning rates. This ensures that the model learns the data
accurately, without underfitting or overfitting. Training and
testing are done using the TensorFlow?2.6 libraries [2] on the
University of Florida’s HiperGator systems, equipped with two
NVIDIA A100-SXM4-80GB GPU cores, 8 AMD EPYC 7742
processors and 64GB of RAM [1].

TABLE 11
OPTIMAL HYPERPARAMETERS

Parameter R.6 R9
Batch Size 64 64
Conv2D-1 Shape, Filter size  (3.5), 32 (1,3), 32
MaxPool Shape, Stride (2,6),(2,6) (2,6),(2,6)
Conv2D-2 Shape, Filter size  (3,5), 16 (1,3), 16
Dropout factor 0.5 0.5
Learning Rate 0.0005 0.0005

B. Performance metrics

The objective of the proposed approach is to accurately
estimate the PAPR while reducing computational load and
latency. The time taken to compute IFFT is calculated by
implementing the IFFT algorithm on a single frame of the LTE
resource grid in Matlab. The hardware used is the HiperGator
system [1] with just the AMD EPYC 7742 processors and
64GB of RAM, without the use of the GPU. As is the conven-
tion, Cosine Similarity(CS) and Normalized MSE (NMSE) [7]
are used together to evaluate the regression model, where the
NMSE is the MSE normalized by the signal power of ground
truth data and ranges between [0,1], with O being the least
erroneous and 1 being the most. Combined, a lower NMSE
and a higher CS mean that the error between the prediction
and label is small and both vectors are similar to each other.
We also measure the frequency at which prediction errors of a
given magnitude are made by the model. Finally, we consider
the computational latency, i.e., the time taken to process a
large number of resource grid samples. A large number of
samples is used because existing IFFT-based PAPR reduction
algorithms are designed to first observe and analyze the PAPR
trend across a large number of samples, followed by tuning of
the front end for PAPR reduction.

The proposed model is not dependent on the traffic density
or the training circumstances. Because it is based only on the



nature and volume of the training data, pre-trained models
can easily be deployed in a variety of locations as long as
the dataset configuration remains the same. Additionally, the
model is independent of processing paths or the number of
antennas so the resource grid’s dimensionality can be increased
to allocate the number of antennas, to accommodate MIMO.
Such a trained modified model can be deployed directly in
base stations or transmitters to estimate the PAPR, without
the need of having to process individual antenna chains. In
existing PAPR reduction methods, each such chain is fed to
IFFTs. Thus the proposed approach is easily scalable to meet
MIMO and Carrier Aggregation requirements.

C. Comparison with Deep ResNet

In addition to PESTNet , we use a Deep ResNet based
architecture for non-linear regression to estimate the PAPR.
The work in [8] used a similar technique, but modified the
popular ResNet50 architecture [13] used for classification
problems, such that it is applicable to nonlinear regression. In
our analysis, the LTEGrid is converted to a 1D array to match
the input configuration of the Deep ResNet model proposed
in [8]. The Deep ResNet is used on both the R.6 and R.9
configurations. Due to a large number of residual connections
in the ResNet architecture, the number of parameters is
significantly higher than the proposed PESTNet . Table III
shows the difference in complexity of the two models. For
a given model, the different number of parameters for each
configuration is due to the different number of subcarriers. A
similar data preprocessing and preparation method is followed,
as PESTNet . The hyperparameters used in training the Deep
ResNet are the same as the ones used in [8], except for the
loss function. Huber loss is used instead of the MSE, as it is
better suited for regression, as explained in Section IV-A.

TABLE III
MODEL COMPLEXITY

Model Config. Number of parameters
PESTNet R.6 12,695
Deep ResNet [8] R.6 278,449
PESTNet R9 5713
Deep ResNet [8] R.9 1,084,849

V. RESULTS

To evaluate PESTNet, we implemented PESTNet using
the training procedure and CNN architecture described in
the previous sections. We gathered the performance metrics
discussed in Section IV-B and used them to determine the
accuracy and computational complexity, indicated by latency.
We also used the state-of-the-art DL architecture, ResNet [8],
to compare the results.

A. Accuracy

Table II shows the optimal hyperparameters for configu-
rations R.6 and R.9 as revealed by monitoring the PAPR

TABLE IV
PAPR ESTIMATION ERROR: PESTNET AND DEEP RESNET [8]

Model Dataset NMSE CS MSE
PESTNet R.6 0.0031 0.9984 0.3319
R9 0.0021  0.999 0.2446
Deep ResNet [8] R.6 0.0031 0.9985 0.3274
R.9 0.0021  0.999 0.2446

estimation performance metrics. For Deep ResNet, the default
parameters suggested by [8] are used in its implementation.
Table IV shows the performance results for both DL models
and both configurations. The NMSE and Cosine Similarity
are very close to ideal conditions, i.e. O and 1 respectively.
The MSE for R.6 is higher than the case of R.9. This can
be attributed to the higher number of subcarriers, 1200 in the
R.9 compared to just 300 in case of R.6, allowing the CNN
to extract more information.

Histograms are provided in Fig. 2 and Fig. 3 to show the
deviations between the actual PAPR (ground truth labels) and
the estimated PAPR (predicted output). Samples that have 0dB
deviation have no difference between the actual PAPR and the
predicted or estimated PAPR. Furthermore, if the frequency of
the estimation values at 0dB in the histogram are equal to the
test sample size, then the model has accurately estimated the
PAPR for all the test symbols. The PESTNet deviation error
distributions shown in Fig. 2 are concentrated at the respective
deviation means for R.6 and R.9, which are at 0.011dB and
0.018dB respectively. For reference, the maximum, minimum,
and average PAPR values are 14.25dB, 8.71dB, and 10.32dB,
respectively for R.6, and 13.76dB, 9.46dB, and 10.78dB for
R.9. The results are similar for ResNet, shown in Fig. 3. Here,
the deviation error is concentrated at the respective means,
0.019 and 0.030 for the R.6 and R.9 dataset configurations
respectively. For all cases, PESTNet and Deep ResNET; R.6
and R.9, approximately 95% of the errors lie within 2 standard
deviations of the mean deviation error. This narrow spread
of the errors from the mean 95% of the estimated values
are clustered around a very low deviation error. The model
predictions are close to the ideal predictions.

TABLE V
OPERATION LATENCY COMPARISON

Method Run Time(sec) # of Frames
IFFT: R.6 12 (0.00012x 10%) 10,000
IFFT: R.9 9.7 (0.000097 x 10*) 10,000
PESTNet : R.6 1.21 10,000
PESTNet : R.9 1.85 10,000
Deep ResNet [8]: R.6 3.01 10,000
Deep ResNet [8]: R.9 3.37 10,000
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B. Computational Complexity

Another claim of this paper is that PESTNet is less com-
putationally complex compared to existing PAPR reduction
algorithms, which perform the IFFT before the reduction
algorithm is applied to the time domain signals. Table V
compares the time taken to execute a single IFFT operation
(for a single frame) versus the time for 10,000 frames for
the IFFT, the trained PESTNet , and the trained ResNet. To
calculate the value for IFFT for 10,000 frames, we multiplied
the value for 1 frame by 10,000. However, this is a conserva-
tive value, since in current techniques, for each of the 10,000
frames, the IFFT computation would be followed by a PAPR
computation, followed by a waiting time to process the next
frame. Considering only the IFFT computation, the latency for
an IFFT-based PAPR estimate for 10,000 frames is 12 seconds
for R.6 and 9.7 seconds for R.9. Our DL comparison, Deep
ResNet, is faster, at 3.01 seconds and 3.37 seconds for R.6
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Fig. 3. Histogram of Prediction (Estimate) Deviation Error for R.9 Dataset
Configuration for (a) PESTNet and (b) ResNet

and R.9, respectively. The latency for PESTNet is fastest, with
1.21 seconds and 1.85 seconds for R.6 and R.9, respectively,
which outperforms the IFFT latency by at least a factor of 10
for the R.6 dataset configuration and at least a factor of 5 for
R.9. PESTNet is faster than Deep Resnet, 2.5 times faster for
R.6 and almost 2 times faster for R.9. Furthermore, PESTNet
provides similar estimation accuracy while having significantly
fewer parameters and computation time than Deep ResNet. It
shows that a simple CNN architecture is sufficient to estimate
the PAPR, as the introduction of the Residual connections adds
complexity to the model.

A limitation of the proposed method is that the models are
only applicable in scenarios that mimic the training conditions,
ie. R.6 and R.9 configurations of the LTE resource grid
respectively. Thus, the results discussed are applicable to all
scenarios/environments where the same R.6 or R.9 configura-
tions are used. Additionally, the model is trained offline and
the training data includes all the different possible combina-



tions of the 64QAM symbols. This ensures that the trained
model has seen all the possible combinations of symbols
of the LTE grid, guaranteeing similar performance obtained
in testing, as long as the same configuration is maintained.
Due to space constraints, tests of additional configurations
are beyond the scope of this work. Future experiments can
also test the robustness of these specific models in different
environments/scenarios.

VI. CONCLUSION AND FUTURE WORK

In this work, we presented PESTNet , a novel Pre-IFFT
PAPR estimation Technique for OFDM systems using DL.
PESTNet provides accurate estimation while reducing the
computational latency of current IFFT based techniques. This
was achieved by using a CNN model to directly estimate
the PAPR of OFDM symbols before IFFT is applied. A
case study is performed for LTE, where the results show
that PESTNet gives an accurate estimate of PAPR for two
configurations, and is able to compute the PAPR of large
batches of resource grids faster compared to existing IFFT
based techniques. Note that the PAPR estimation technique,
i.e., estimating the PAPR of the LTE symbols, is supplemental
to PAPR reduction techniques. Thus, we do not compare our
approach to PAPR reduction techniques, but we use a version
of ResNet to validate our PAPR estimation model.

Furthermore, due to the accurate estimation it provides,
PESTNet can serve as a first step in multi-level PAPR reduc-
tion algorithms where first the PAPR estimate of a given set of
symbols is calculated and then an appropriate PAPR reduction
algorithm is implemented. Additionally, it can be extended to
MIMO and Carrier Aggregation scenarios by pre-training the
CNN models on such datasets. This is a better alternative to
IFFT based solutions, which need multiple processing blocks
and IFFT blocks for each antenna chain.
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