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Abstract—High-performance reconfigurable computing involves
acceleration of significant portions of an application using recon-
figurable hardware. Mapping application task graphs onto recon-
figurable hardware is therefore of rising attention. In this work, we
approach the mapping problem by incorporating multiple architec-
tural variants for each hardware task; the variants reflect tradeoffs
between the logic resources consumed and the task execution
throughput. We propose a mapping approach based on genetic
algorithm, and show its effectiveness for random task graphs as well
as an N-body simulation application, demonstrating improvements
of up to 78.6% in the execution time compared with choosing a
fixed implementation variant for all tasks. We then validate our
methodology through experiments on real hardware, an SRC-6
reconfigurable computer.

Index Terms—Hardware Task Mapping, Genetic Algorithm, Recon-
figurable Computing.
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1 INTRODUCTION

ADVANCES in reconfigurable computing technol-
ogy have led to the development of high-

performance reconfigurable computers (HPRC), com-
prised of commodity microprocessors coupled with re-
configurable hardware. Applications that are executed
on HPRCs can therefore be accelerated by mapping
significant parts of them onto reconfigurable hardware.
With the availability of field-programmable gate ar-
rays (FPGA) of high capacity, HPRCs show a great
performance potential, with several orders of magni-
tude speedup possible over purely software implemen-
tations [1].

The architecture of a typical HPRC is shown in
Fig. 1. The FPGA device, coupled to the microprocessor
through a high-speed interconnect, serves as a reconfig-
urable co-processor. In order to exploit the performance
potential of the coprocessor, an application needs to be
carefully mapped to the system. For instance, when the
application to be accelerated does not fit in the FPGA, the
hardware mapping needs to be partitioned into multiple
FPGA configurations, in a way that minimizes the total
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execution time. Partitioning gives rise to overheads, due
to reconfiguration of the FPGA as well as transfer of
intermediate data, as shown in Fig. 2 ∗.

The problem of mapping and partitioning an appli-
cation has been studied by many researchers, and is
generally approached by decomposing the application
into its constituent tasks. These tasks might correspond
to computation kernels and hardware modules that are
part of a hardware implementation library for the par-
ticular HPRC platform [2]. After identifying the con-
stituent tasks, a task graph is constructed to describe the
data flow, which is then partitioned and scheduled into
multiple configurations. For carrying out the required
task scheduling, the usual practice is to consider the
availability of one hardware implementation for each
task. The parameters used for scheduling would include
the logic resource consumed for each task (as a fraction
of the total FPGA resource), as well as the processing
throughput for that particular hardware implementation.
Scheduling algorithms try to ensure that highly commu-
nicating tasks are retained within the same configuration
as far as possible, in order to minimize overheads due
to off-chip data transfer. In addition, the number of
configurations is also reduced to the extent possible, in
order to minimize the reconfiguration overhead.

An algorithm that takes care of both these aspects,
i.e., data transfer and reconfiguration time, was proposed
by us earlier as the Reduced Data Movement Schedul-
ing (RDMS) algorithm [3]. This algorithm, similar to
many other algorithms in the literature, considers only
one architecture variant available for the hardware im-
plementation of each task. If we incorporate multiple
architectural variants for hardware tasks, it is possible
to choose variants such that imbalances between the
processing throughput of interacting tasks are mini-
mized [4]. This presents an opportunity for optimization
during the mapping process. We therefore propose a
methodology for mapping task graphs with the added
dimension of multiple variants, based on the use of a
genetic algorithm. It will be demonstrated that by using

∗. In many cases the data communication and data processing can
be overlapped in order to achieve high throughput. We intentionally
distinguish these two times in this work for the sake of simplicity.
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the proposed approach, a significant improvement in
execution time can be achieved.

The rest of the paper is organized as follows. The
next section gives an overview of related work, along
with a background on the RDMS algorithm. Section 3
describes the proposed application mapping approach,
starting with the problem description followed by the
formulation of the genetic algorithm solution. Subse-
quently, the results are presented in Section 4. Finally,
Section 5 concludes the paper.

2 RELATED WORK

2.1 Multiple Task Variants and Genetic Algorithms

Use of multiple task variants for FPGAs has been consid-
ered earlier in the literature, although the applicability
is different. For example, in [5], [6], multiple kernel/task
variants are considered, to carry out a run-time binding
of a kernel/task with an implementation variant. This is
done more within the context of operating systems for
reconfigurable systems or embedded systems, whereas
the problem considered in this paper is the static map-
ping of task graphs containing dependence constraints.
In [7], an application mapping approach termed as par-
allelism granularity selection (PARLGRAN) is proposed,
to dynamically adjust the task granularity (the number
of task instances) to balance the throughput among tasks.
However, they consider it in the context of tasks chains,
and apply it for the case when the device supports
partial run-time reconfiguration.

Genetic algorithm (GA) has been used earlier by aca-
demic researchers for mapping task graphs to FPGAs [8],
[9], [10]. In [8], task graphs are mapped to a single FPGA
configuration composed of Xilinx MicroBlaze proces-
sors and hardware implementations of tasks. However,
reconfiguration, multiple variants, and communication
overheads are not considered. The work in [9] uses
GA to map task graphs onto a partially reconfigurable
FPGA, by modeling it as a tiled resource with multiple
configuration controllers operating in parallel. Again,
multiple task variants and communication overheads are
ignored. In [10], the authors use a genetic algorithm for
HW-SW partitioning in partially reconfigurable systems
that execute multiple periodic task graphs. As part of
the GA approach for determining the best partitioning,
different individuals are evaluated by using the execu-
tion time and deadline violations obtained by using a
modified list scheduling and placement algorithm. This
work does not consider multiple variants of hardware
tasks; nevertheless, it bears the most similarity to our
approach, since we also use a scheduler as a subroutine
in the genetic algorithm.

2.2 Background on RDMS Algorithm

Given the hardware task graph of one application and
the hardware implementation of each task, the RDMS
algorithm schedules the hardware tasks into a series of

FPGA configurations in a way that minimizes the total
hardware execution time, by restricting the number of
FPGA configurations and the transfer of intermediate
data between FPGA and host memory. In order to
achieve these desired objectives, the RDMS algorithm
takes three factors into account during the scheduling
process, namely, (a) the task data dependency, (b) the
hardware resource requirement of each task, and (c)
the inter-task data communication. Details of the RDMS
algorithm are given in [3].

3 PROPOSED MAPPING APPROACH

3.1 Problem Statement
The application to be implemented on hardware is con-
sidered to be represented by a function-level directed
acyclic graph (DAG), with tasks represented by the
symbols Fi, i ∈ [1, N ] where N is the number of
tasks in the task graph. A hardware library is available,
comprising of hardware modules used for implementing
the corresponding task nodes in the DAG. Within the
hardware library, every hardware module consists of
multiple implementations, reflecting trade-offs between
resource requirement and performance. The implemen-
tation variant number j for a task Fi is represented by
the symbol Hi,j . If there are J implementation variants
for each task, then j = 1, . . . , J .

Given a function-level DAG and a hardware library
of the corresponding hardware modules, optimization
techniques are needed to (1) select the proper imple-
mentation variant Hi,j for each task Fi, which can be
considered as a mapping between the hardware tasks
and the available implementations, and (2) schedule the
hardware tasks efficiently across multiple FPGA con-
figurations C1, . . . , Ck, . . . , CK , to maximize the perfor-
mance. Although step (2) can conceptually be carried
out by using the RDMS algorithm, the two steps (1) and
(2) need to be carried out together in order to obtain
the best mapping. Since an exhaustive search for the
suitable choice of implementation variant for each task
is infeasible, we propose an approach based on genetic
algorithm.

3.2 Genetic Algorithm - Overview and Formulation
Genetic algorithms [11] rely on starting with an initial
population of randomly chosen solutions, which are
successively refined through generations using crossover
and mutation operations. Every individual in the pop-
ulation is represented using a bit string known as a
chromosome. Each chromosome consists of genes. In
our formulation, we choose to use a gene for each of
the N tasks in the task graph; each gene represents the
choice of a particular implementation variant for the
task. For example, if there are J possible implementation
variants for each task, then every gene would require
�log2 J� bits. Correspondingly, a chromosome consists
of N genes, or N�log2 J� bits. Every chromosome rep-
resents one possible selection of variants for all tasks. A
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Input: Random initial population of Q chromosomes. Each
chromosome contains a randomly selected
implementation variant for every task in the
application

Output: New population after genetic evolution. The best
chromosome within this population is expected to be
the desired mapping of the implementation variants
for each task

repeat1
For each chromosome in the population comprising the2
current generation, evaluate Thwe using RDMS
algorithm;
Calculate the fitness of each chromosome using the3
fitness function in Eq (1);
repeat4

Select two chromosomes from the current population5
based on fitness;
Crossover based on crossover rate, generate two6
offsprings;
Step through all the bits in the offsprings, flip them7
based on mutation rate;

until new generation created with Q chromosomes ;8
Update Tthwe ← Min exec time from all prev generations9

until K generations have been evaluated ;10

Fig. 4. Genetic Algorithm for Task Mapping

sample chromosome is shown in Fig. 3, for N = 5 tasks
(or, 5 genes) and J = 8 (3 bits per gene).

With this encoding of the scheduling problem, we use
the genetic algorithm shown in Fig. 4. The algorithm
begins with initializing a population with Q individuals
having randomly assigned mappings, using Q chromo-
somes. Random initialization for task graph scheduling
is normally used when the task dependencies are not
encoded within the chromosome [12]–[14], which is the
case here. Dependencies between tasks are taken care
of by the RDMS algorithm during the evaluation of
the fitness of the mapping. Thwe denotes the hardware
execution time obtained using the RDMS algorithm.

Within each iteration of the algorithm, new chromo-
somes are generated through crossover and mutation,
giving rise to a new generation that replaces the existing
population. The crossover and mutation operations are
depicted in Fig. 3. The process repeats until a termination
criterion is reached, which in our case corresponds to an
upper limit on the number of iterations.

The selection of chromosomes for crossover and mu-
tation is based on their fitness, evaluated in Line 3 of the
algorithm. Since the GA tries to maximize the fitness, we

Input: A hardware task graph, with each task Fi having J
implementation variants Hi,j , j = 1, . . . , J .

Output: A reasonable initial target hardware execution time
Tthwe

Tthwe = ∞;1
for j = 1 to J do2

Apply RDMS algorithm on the task graph in which task3
Fi is mapped to implementation Hi,j , calculate Thwe;
if Tthwe > Thwe then4

Tthwe = Thwe;5

return Tthwe;6

Fig. 5. Algorithm to Initialize Target Hardware Execution Time, Tthwe

use a reciprocal function of the execution time as part of
the fitness function, similar to [12]:

fitness(i) =

⎧⎪⎪⎨
⎪⎪⎩

1

T
(i)
hwe−Tthwe

, if T (i)
hwe > Tthwe,

κ otherwise.

(1)

where fitness(i) is the fitness of chromosome i, and
T

(i)
hwe is the execution time of the task graph using the

task variants based on the genes in chromosome i. The
parameter Tthwe is a constant within an iteration (or gen-
eration), and needs to be initialized to a reasonable value.
Based on the fact that the minimum execution time will
at most be equal to that for the case when all tasks have
the same implementation variant, an algorithm to choose
Tthwe is given in Fig. 5. As mentioned earlier, selection
of chromosomes for crossover is based on the fitness
function (Line 5 of Fig. 4). We adopt Roulette wheel
selection method for choosing the chromosome [15].

4 RESULTS

4.1 Random Graph Simulation

In order to demonstrate the efficiency of GA-based map-
ping approach on a broad range of applications, we first
apply it on randomly generated data flow graphs, which
are of two types. The first type of graphs consists of out-
trees, such as one shown in Fig. 6(a). Each node basically
has one to three child nodes, and node 0 (which is the
virtual node in RDMS) is only connected to one node.
The second type consists of general random graphs, with
dependencies across multiple levels. We refer to them as
the cross-level graphs, Fig. 6(c). Each node level in the
task graph consists of 1 to 5 nodes, and in addition to
each node having one dependency on a node in previous
level, there are 0 to 2 dependencies on nodes in any of
the previous levels.

Given the task count, the graph is randomly gener-
ated in the sense that the task dependencies are ran-
domly generated, and the resource requirements and
corresponding processing times of the implementation
variants are chosen as shown in Table 1, to test the
algorithm for a wide range of values. For each generated
task graph, the proposed approach is used for obtaining
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Fig. 6. Simulation of Randomly Generated Graphs (Node #0: Imaginary Root Node)

TABLE 1
The Range of Resource Requirement and Processing Time of

Task Variants Used in Random Graph Simulation

Task Variant Resource Requirement (%) Processing Time (ms)
imp 1 25–50 0–20
imp 2 12.5–25 50–60
imp 3 6.25–12.5 200–250
imp 4 0–6.25 950–1000

the appropriate task mappings. We also obtain mappings
by choosing the same variant for every task (“fixed
mapping”), which gives J possible fixed mappings if
there are J variants for each task. The mapping with the
maximum execution time among the fixed mappings is
called ‘Fix-Max’, and the mapping with the minimum
execution time among the J fixed mapping solutions
is termed as ‘Fix-Min’. We compare Fix-Max, Fix-Min
and the proposed GA-based approach for different task
counts, using J = 4.

The task count for the two types of graphs is varied
from 10 to 40 and the corresponding simulation results
are shown in Fig. 6(b) and 6(d), respectively. Under all
different scenarios, GA-based strategy is able to find the
mapping that yields a hardware execution time which
is equal to or smaller than the minimum hardware exe-
cution time using Fixed Mapping. Furthermore, the gap
between the results of GA and Fixed Mapping becomes
wider as the task count increases, particularly when the
number of tasks is greater than 25.

4.2 N-Body Simulation Application
The proposed GA-based mapping approach is consid-
ered here for the N-body simulation application using
the parameters from three real reconfigurable computers
[1], Table 2. Details of the N-body application and its 18-
node task graph are given in [3]. For testing the mapping
algorithm, we set the parameter N = 16, 000, which
means each node in the task graph will process 1,600,000
particles or data items.

4.2.1 Testbed and Hardware Library Setup
The N-body simulation task graph is mapped to three
different RC platforms, SGI RC100, SRC-6, and Cray XD1

TABLE 2
The Characteristics of Three RC Platforms

SGI RC100 SRC-6 Cray XD1
FPGA Device XC4VLX200 XC2V6000 XC2VP50

Number of Slices 89,088 33,792 23,616
Full Configuration Time∗ 966 ms 60 ms 1,824 ms
Interconnect Bandwidth 2.1 GB/s 1.4 GB/s 1.4 GB/s

∗. Device configuration time + vendor-introduced overhead

[1]. are used for obtaining the task mappings that are
appropriate for the platforms. These parameters consist
of the FPGA logic resources, full configuration time, and
the sustained interconnect bandwidth, listed in Table
2. In this work, we consider only homogeneous logic
resources/slices in the FPGA.

In this work, we assume that each module in the
architectural variants hardware library consists of four
implementations for each task, imp i, i=1,. . . ,4. Among
the four implementation variants, imp 1 is the high per-
formance version, which also consumes the most logic
resources. The terminology “fully pipelined version” is
used for referring to this variant. The other variants
occupy less resources in decreasing order from imp 2 to
imp 4, with a corresponding reduction in the computa-
tion speed compared with the fully pipelined variant.

Primitive operators such as adder/subtractor, multi-
plier and divider, are used to construct the functionality
of nodes in N-body task graph. In general, multiple
primitive operators are needed to build a function node.
For instance, the function node #11 needs 1 adder, 4 mul-
tipliers and 1 divider. Many researchers have reported
various floating-point arithmetic designs on FPGA de-
vices [16]–[19]. The resource requirement of double-
precision (64-bit) floating-point operators of different
variants based on the available literature is listed in Table
3. This includes the parameters of the various implemen-
tation variants, the exception being adder/subtractor
and multiplier. For the adder/subtractor and multiplier
operators, imp 2, imp 3 and imp 4 are assumed to oc-
cupy 50%, 25% and 12.5% resource of imp 1, respectively.
If we assume that the design of both adder/subtractor
and multiplier follows Karatsuba approach [20], the
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TABLE 3
Resource Requirement (on SRC-6) & Processing Time of

Different Variants of Double-precision (64-bit) Floating-point
Operators

Operator
Resource Utilization(%)∗ Processing Time (ms)†

imp 1 imp 2 imp 3 imp 4 imp 1 imp 2 imp 3 imp 4
+/−‡ 5.71 [16] 2.85 1.43 0.71 16.0 32.0 64.0 128.0

×§ 7.26 [17] 3.63 1.81 0.91 16.0 64.0 256.0 1024.0

÷ 10.17¶ 9.03¶ 5.94¶ 0.99¶ 16.0 20.0 493.8 975.6
√ 9.40¶ 4.99¶ 3.03¶ 1.41¶ 16.0 29.1 507.9 1134.8

∗. 15% of slices in device are assumed to be reserved for vendor
service logic;

Resource usage on SGI RC100 = Resource usage on SRC-6 × 0.3793;
Resource usage on Cray XD1 = Resource usage on SRC-6 × 1.4309.

†. The time to perform 1.6 M operations under 100 MHz frequency.
‡. Processing time increases 2 times with half the resource usage.
§. Processing time increases 4 times with half the resource usage.
¶. Based on [18]

performance of the adder/subtractor and the multiplier
will drop to half and one fourth, respectively, if the logic
resource is reduced to half of the original value.

The processing time for each of the primitive operators
in Table 3 is obtained as follows. The imp 1 versions
of all operators are fully pipelined, and process one
input every clock cycle. Since the number of data items
processed by each node (and therefore each operator
within a node) is 1,600,000, the time take to process it
at a clock rate of 100 MHz is 16ms. The maximum clock
frequency is limited to 100 MHz in the reconfigurable
platforms considered, and slower clocks may be derived
internally within the FPGA by using their internal digital
clock managers. For the task variants other than the fully
pipelined versions, the processing time is appropriately
scaled up based on available literature and as explained
earlier for the adders and multipliers.

Table 4 lists the resource requirement of four imple-
mentation variants of each node composed of the prim-
itive operators characterized by Table 3. For obtaining
the parameters listed in the table, imp i version of a
node is taken to consist of only the imp i variants of its
constituent operators. The motivation behind this choice
is the fact that if a slow version of one of the constituent
operators is used, then there is limited benefit (and logic
resource penalty) in using faster variants for the other
constituent operators within the node. The processing
time for each implementation variant listed in Table 4 is
subject to the slowest constituent operator, which takes
the longest processing time.

4.2.2 Experimental Setup and Results
The proposed approach uses the RDMS algorithm as
part of the genetic algorithm procedure. The “task con-
figuration time” is a fictitious number used in RDMS,
and is basically a fraction of the full configuration time
based on the percentage of FPGA occupied by the task
implementation [3]. The task configuration time for SRC-
6 is listed in Table 5. The numbers for the other platforms

TABLE 4
Resource Requirement & Processing Time of Task Variants

Node∗ Constituent Resource Utilization (%)† Processing Time (ms)‡

No. Operators§ imp 1 imp 2 imp 3 imp 4 imp 1 imp 2 imp 3 imp 4
1,2 3A 17.13 8.56 4.28 2.14 16.0 32.0 64.0 128.0

3,4,5,6 1A 5.71 2.85 1.43 0.71 16.0 32.0 64.0 128.0

7 1M,1D 17.42 12.66 7.75 1.90 16.0 64.0 493.8 1024.0

8,9 2A,3M 33.20 16.60 8.30 4.15 16.0 64.0 256.0 1024.0

10 1D 10.17 9.03 5.94 0.99 16.0 20.0 493.8 975.6

11,15 1A,4M,1D 44.91 26.41 14.62 5.33 16.0 64.0 493.8 1024.0

12 1S 9.40 4.99 3.03 1.41 16.0 29.1 507.9 1134.8

13 4M 29.04 14.52 7.26 3.63 16.0 64.0 256.0 1024.0

14 1M 7.26 3.63 1.81 0.91 16.0 64.0 256.0 1024.0

16 3A,4M,1D 56.33 32.12 17.48 6.76 16.0 64.0 493.8 1024.0

17 2A,2M 25.94 12.97 6.48 3.24 16.0 64.0 256.0 1024.0

18 3A,3M 38.91 19.45 9.73 4.86 16.0 64.0 256.0 1024.0

∗. For task graph node numbering, please refer [3]
†. The listed resource utilization is on SRC-6 Platform;
Resource usage on SGI RC100 = Resource usage on SRC-6 × 0.3793;
Resource usage on Cray XD1 = Resource usage on SRC-6 × 1.4309.
‡. The time to perform 1.6 M operations under 100 MHz frequency.
§. A: adder/subtractor, M: multiplier, D: divider, S: square root.

TABLE 5
Configuration Time of Task Variants on SRC-6

Node Configuration Time∗ (ms) Node Configuration Time (ms)
No. imp 1 imp 2 imp 3 imp 4 No. imp 1 imp 2 imp 3 imp 4
1,2 10.28 5.14 2.57 1.28 12 5.64 2.99 1.82 0.85

3,4,5,6 3.43 1.71 0.86 0.43 13 17.42 8.71 4.36 2.18
7 10.45 7.60 4.65 1.14 14 4.36 2.18 1.09 0.54

8,9 19.92 9.96 4.98 2.49 16 33.80 19.27 10.49 4.06
10 6.10 5.42 3.56 0.59 17 15.56 7.78 3.89 1.95

11,15 26.95 15.84 8.77 3.20 18 23.34 11.67 5.84 2.92

∗. The task configuration time is a fictitious number as explained in
the text, and is essentially a measure of the resource consumption of
the task variant. For node numbers, please see [3].

are not listed here for brevity, but may be deduced
based on the node resource occupancy for the platform
(Table 4) and the full configuration time (Table 2).

The off-chip data transfer time for each of the tasks is
listed in Table 6. As noted earlier in Section 2.2, the on-
chip data transfer between tasks within a configuration
is not considered by the RDMS algorithm. The values
listed in Table 6 for the three platforms are based on
the interconnect bandwidth (Table 2), number of bytes
transferred for each particle over the task graph edge
considered and the number of particles that are trans-
ferred over the edge in the graph (1,600,000).

While obtaining results using the proposed approach,
the chromosome population of the genetic algorithm in
Fig. 4 is set to Q = 100, with K = 200 generations ;
crossover and mutation rates are respectively taken to
be 0.7 and 0.05, which seem to give good results for
the task graphs we have used. Since the number of
implementation variants for each task is J = 4, two bits
are used per gene, or 36 bits per chromosome (since the
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TABLE 6
Off-chip Communication Time on Three Platforms (ms)

S. N.∗ D. N.∗ Platform
S. N. D. N.

Platform
SGI RC100 SRC/Cray SGI RC100 SRC/Cray

0 1 18.29 27.43 6 15 6.10 9.14
0 2 18.29 27.43 7 17 6.10 9.14
0 3 6.10 9.14 8 15 6.10 9.14
0 4 6.10 9.14 8 11 6.10 9.14
0 5 6.10 9.14 9 11 6.10 9.14
0 6 6.10 9.14 9 12 6.10 9.14
0 7 12.19 18.29 10 14 6.10 9.14
0 17 6.10 9.14 10 13 6.10 9.14
1 8 18.29 27.43 11 15 6.10 9.14
2 18 18.29 27.43 12 14 6.10 9.14
2 8 18.29 27.43 13 16 6.10 9.14
2 9 18.29 27.43 14 16 6.10 9.14
3 11 6.10 9.14 15 17 6.10 9.14
3 10 6.10 9.14 16 17 6.10 9.14
4 11 6.10 9.14 17 18 6.10 9.14
5 15 6.10 9.14

∗. S. N.: Source Node; D. N.: Destination Node. For node numbers,
please refer [3]

number of tasks is N = 18). Crossover and mutation
rates are empirically determined to give the best per-
formance, as is the normal practice [13], [21]. In [13],
the effect of different rates for scheduling task graphs
on parallel homogeneous processor systems is studied
by experimentally varying the rate. They determine the
best crossover rate to be 0.7. In [10] also, a crossover rate
of 0.7 is used for HW-SW partitioning of task graphs. It
turns out that for our case also, the value of 0.7 gives
better results than other values. The best mutation rate
determined in [13] is 0.3, which is also the value used
in [10]. However, for our case the mutation rate needs
to be very low, since the mutation mechanism is very
disruptive because it could potentially flip every bit in
the chromosome. We therefore use a mutation rate of
0.05, which works well for the task graphs we used.
The choice of crossover and mutation rates is a trade-
off between exploration and exploitation [22]. Lower rates
will help in exploiting the good individuals within a
population in order to transmit the good traits to the next
generation. On the other hand, a higher rate prevents
the algorithm from being caught in local minima, by
allowing exploration of a larger area in the search space.

Fig. 7 show the progress of the estimated hardware
execution time Tmin

hwe during the iterations (or genera-
tions) of the genetic algorithm. The figures show it for
the three different platforms considered, using K = 100
generations.

• On SRC-6 platform, the genetic algorithm groups
the 18 tasks into 3 configurations and reduces the
inter-configuration communication overhead and
hardware processing time to the minimum. The
implementation versions, for all the 18 tasks in the
final mapping result, are listed in Table 7.
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Fig. 7. The Simulation of Hardware Execution Time

TABLE 7
Selection of Hardware Implementation Variant for Each Task

using Genetic Algorithm

Platform
Hardware Task No.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
SGI RC100 3 3 1 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2

SRC-6 3 3 3 3 2 3 1 2 2 1 2 2 1 1 2 2 1 1
Cray XD1 4 4 4 3 4 2 4 3 4 4 4 3 4 2 4 4 4 4

Cray Y∗ 3 3 1 3 3 1 1 2 2 1 2 2 2 1 2 2 1 1

∗. Assuming the full configuration time is 100 ms. Hardware task
numbers correspond to the N-body task graph in [3].

• On both SGI RC100 and Cray XD1 platforms, the op-
timal mapping is achieved by grouping all hardware
tasks into one single FPGA configuration, by using
the smaller implementation variants, as listed in
Table 8. The use of a single configuration helps due
to the large reconfiguration overhead, particularly
for Cray XD1; a reduction in the execution time by
avoiding one extra configuration offsets the increase
in execution time using slower (and smaller) task
variants. If we assume there exists a new platform
Cray Y, which is same as Cray XD1 in all respects
except that the full configuration time is 100 ms,
it is observed that the chosen mapping takes 4
configurations and imp 4 (the smallest variant) is
not selected for any task, as shown in Table 7 and
Table 8.

Table 8 compares the GA-based proposed approach
against the fixed mapping choices. Since there are four
variants for each task, there are four fixed mapping
choices, as noted in Section 3.2. From the table, it is ob-
served that the proposed approach can give a significant
improvement over the naive approach of choosing the
same variant for all tasks. Compared with the slowest
fixed mapping choice, the proposed algorithm gives an
improvement of up to 78.6% in the total execution time.

The genetic algorithm has been executed on a Linux
box with Intel Xeon 2.8 GHz and 8 GB main memory. The
time to finish the first 100 iterations of genetic algorithm
is approximately 40 seconds for all cases and mainly
contributed by the Dynamic Programming used in RDMS
algorithm.
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TABLE 8
Comparison between Fixed Implementation and Genetic

Algorithm on Three Platforms

Platform
Number of Configurations Hardware Execution Time (s)

imp 1 imp 2 imp 3 imp 4 GA imp 1 imp 2 imp 3 imp 4 GA
SGI 2 1 1 1 1 2.086 1.030 1.474 2.101 1.030

SRC-6 5 3 2 1 3 0.709 0.573 1.250 1.195 0.489
Cray 7 4 2 1 1 13.300 7.790 4.833 2.959 2.848

Cray Y 7 4 2 1 4 1.178 0.912 1.385 1.235 0.809

(a) (b)

(c) (d)

Fig. 8. The Implementation of a Synthetic Graph on SRC-6 (a) The
Original Graph. (b) Implementation with Fast Variants. (c) Implementa-
tion with Slow Variants. (d) Implementation with GA Mapping (Node #0:
Imaginary Root Node).

4.3 Synthetic Graph Experiments on SRC-6

Some experiments are carried out to emulate a synthetic
task graph on the SRC-6 platform. The graph that we
have used is shown in Fig. 8. The constituent nodes
are taken to be comprised of primitive double-precision
floating point operators. Two variants of each of the
operators are considered available, with characteristics
listed in Table 9. The processing time for the faster
variant is 5 ms for all operators, for 500,000 data items
processed at 100 MHz. The processing time for the
slower variant is appropriately scaled, similar to the N-
body example. Since we do not have the actual variant
implementations available, we emulate the actual imple-
mentation. Rather than checking the functionality, the

TABLE 9
Two Implementation Variants of Operators on SRC-6

Operator
Implementation Variant 1 Implementation Variant 2
Proc. Time Resource Proc. Time Resource

+/−∗ 5 ms 5.71% [16] 10 ms 2.85%
×† 5 ms 7.26% [17] 20 ms 3.63%
÷ 5 ms 10.17% [18] 155 ms 5.94% [18]
√ 5 ms 9.40% [18] 160 ms 3.03% [18]

∗. Processing time increases 2 times with half the resource usage.
†. Processing time increases 4 times with half the resource usage.

TABLE 10
Two Implementation Variants of Tasks on SRC-6

Node Operator Implementation 1 Implementation 2
No. Combination∗ Proc. Time Resource Proc. Time Resource
1,6 4A, 3M, 0D, 2S 5 ms 63.42% 160 ms 28.36%
2 2A, 3M, 0D, 3S 5 ms 61.40% 160 ms 25.67%
3 4A, 5M, 1D, 0S 5 ms 69.30% 155 ms 35.50%
4 4A, 3M, 0D, 0S 5 ms 44.62% 20 ms 22.31%
5 8A, 3M, 0D, 0S 5 ms 67.45% 20 ms 33.73%

∗. A: adder/subtractor, M: multiplier, D: divider, S: square root.

basic idea is to verify the proposed approach based on
actual data transfers and reconfiguration of the FPGA.

The input data size is 500,000 double-precision words
of 8 bytes each. Since the bandwidth of interconnect on
SRC-6 is 1.4 GB/s, the estimated data transfer time is
2.86 ms. Therefore all the edges in Fig. 8 have values
that are multiples of 2.86 ms, depending on the number
of inputs required for each node. Note that the edge
values depicted in the figure correspond to data trans-
fer between host memory and local memory, for inter-
configuration data transfer. Data transfer between tasks
residing within the same configuration is effectively
hidden (Section 2.2). RDMS needs to use an edge value in
Fig. 8 only when that edge connects two tasks in different
FPGA configurations.

Each task node in the graph shown in Fig. 8 is
composed of primitive operators as listed in the second
column of Table 10. Again, two variants are considered
for each of the nodes, based on two variants of the
primitive operators. The fast implementation, imp 1, is
comprised of only fast primitives and imp 2 consists of
only slow primitive operators. The resource of each task
is simply the summation of the resource of its component
operators. The operators inside each node operate in a
pipelined fashion; therefore, the theoretical throughput
of each task is same as that of the slowest operator in
the node. The processing time and resource requirement
of the two implementation variants of the 6 task nodes
are listed in Table 10.

Three different strategies are used for emulating the
task graph of Fig. 8(a) on SRC-6. First, we use a fixed
mapping choice of only fast variants for all tasks. Second,
we use the fixed mapping choice of slow variants. We
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TABLE 11
Implementation Result for Synthetic Graph On SRC-6

Number of Hardware Execution Time (s)
Configurations Estimated Measured

imp 1 imp 2 GA imp 1 imp 2 GA imp 1 imp 2 GA
6 2 4 0.436 0.463 0.330 0.471 0.483 0.363

compare these two approaches with the proposed GA-
based approach, with the results summarized in Fig. 8
and Table 11. As the results show, the proposed ap-
proaches gives the best execution time, and it achieves
it by using a larger number of FPGA configurations
compared with the use of the slow variants (Fig 8(c)).
The measured hardware execution time for the three
experiments is also listed in Table 11, which is close to
the estimated value, thus validating our approach.

5 CONCLUSION

In this paper, a new approach for mapping task graphs
to reconfigurable hardware is explored, based on the
availability of multiple implementation variants of each
hardware task in the application. The mapping of task
instances to the appropriate variant depends not only
on the FPGA capacity and reconfiguration time, but also
on the interaction between tasks in the task graph. The
methodology proposed in this paper makes use of a
genetic algorithm for obtaining the best mappings. The
proposed approach can be used with any scheduling
algorithm under the hood, and we have chosen RDMS
algorithm because it takes care of data dependencies.
Results using simulations for random tasks graphs as
well as a real application, in addition to synthetic graph
experiments on a real reconfigurable platform, demon-
strated the effectiveness of the proposed approach.
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